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Identification and validation 
of a cigarette smoke‑related 
five‑gene signature as a prognostic 
biomarker in kidney renal clear cell 
carcinoma
Yefei Huang1,3, Qinzhi Wang1,3, Yu Tang1, Zixuan Liu1, Guixiang Sun1, Zhaojun Lu1,2* & 
Yansu Chen1*

Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), 
however, the underlying molecular events has not been fully established. In this study, RCC cells 
were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 
(NNK, nicotine-derived nitrosamine) for 120 days (40 passages), and then the soft agar colony 
formation, wound healing and transwell assays were used to explore characteristics of RCC cells. 
RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell 
growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed 
genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened 
and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. 
This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and 
tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher 
hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was 
also developed based on clinical features and the gene signature, which showed good application. 
Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after 
NNK exposure and its related AKT/mTOR signaling pathway was dramatically activated. Our findings 
supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-
related five-gene signature might serve as a highly efficient biomarker to identify progression of 
KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC 
progression.

Kidney and renal pelvis cancer is among the top ten most common cancers in the world, with 65,340 new cases 
and 14,970 deaths in 2018 in United States1. Renal cell carcinoma (RCC) accounts for ~ 85% of all renal malig-
nancies, and kidney renal clear cell carcinoma (KIRC) arising from the proximal convoluted tubule is the most 
common and malignant histological subtype and responsible for most of deaths among all the subtypes of RCC​2.

The link between cigarette smoking and RCC has been well-established. Active smoking is associated with 
histological RCC subtype, especially with KIRC3,4. The relative risk of KIRC is not only higher in smokers as 
compared to non-smokers, but also increased with the cumulative dose and duration of smoking5,6. Moreover, 
cigarette smoking has an ongoing effect on the progression of KIRC. Studies have validated that tobacco exposure 
is positively associated with aggressive clinical parameters of KIRC and decreases the cancer-specific survival 
and overall survival of KIRC patients7,8. However, the underlying molecular events of cigarette smoking on KIRC 
progression needed a further study.

Cigarette smoke contains numerous mutagens and carcinogens, such as nicotine, nitrosamines, polycyclic 
aromatic hydrocarbons, aromatic amines, and volatile organic compounds9. Nicotine is a major agent in cigarette 
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smoke, but the carcinogenic effect of nicotine is intensified by converting to nicotine-derived nitrosamines10. 
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the major ingredient and the most potent carcinogen 
among nicotine-derived nitrosamines, has reported to have relatively high levels in cigarette smoke and the 
smokers11–14. In this study, NNK was used to stimulate the RCC cells, and then the RNA-seq was performed in 
the KIRC cell line to identify the hub genes closely associated with NNK-induced malignancy. Next, the key 
candidate biomarkers were identified in the KIRC cohort of The Cancer Genome Atlas (TCGA) data. Thereafter, 
the gene signature was also constructed and its relationship some clinical traits and overall survival of KIRC 
patients was confirmed. Our work yielded a novel gene signature which was associated with tobacco smoke 
exposure and can accurately predict its relationship with KIRC progression.

Results
NNK exposure increased growth and migration abilities of RCC cells.  The human RCC cell lines 
786-O and KETR-3 were continuously exposed to 0.1% DMSO and NNK (0.01 and 0.1 μM) for 120 days (40 
passages). Then the results of soft agar colony formation assay revealed that the number of cell colonies had a 
significant dose-dependent increase after NNK exposure when compared with the 0.1% DMSO control group 
(Fig. 1A and B). The wound healing assay was performed and showed that long-term NNK exposure signifi-
cantly promoted KETR-3 and 786-O cell migration ability (Fig. 1C–F). The cell transwell assay also was per-
formed and observed that the number of cell migration was significantly increased in a dose-dependent manner 
after long-term NNK exposure in both KETR-3 and 786-O cells when compared with the respective 0.1% DMSO 
controls (Fig. 1G and H).

Identification of cigarette smoke exposure‑related genes in RCC cells.  We performed the RNA-
seq in 0.1% DMSO, 0.01 μM, 0.1 μM NNK treated 786-O cells to explore the potential molecular mechanism 
in NNK-induced malignancy of RCC cells. The volcano plot identified 389 differentially expressed genes (163 
up-regulated and 226 down-regulated genes) in 0.01 μM NNK-exposed group (Supplementary Table S1) and 
418 differentially expressed genes (168 up-regulated and 250 down-regulated genes) in 0.1 μM NNK-exposed 
group (Supplementary Table S2) when compared with 0.1% DMSO group using the criteria of |log2(FC)|≥ 0.585 
(Fig.  2A). Among all the differentially expressed genes, we found that eleven genes ANGPTL4, ANKRD12, 
CYB5A, DCN, ECHDC3, HOXC10, MAGEB2, MT1E, TGM2, TICAM2, ZNF579, and three genes AKT1S1, 
MAPK14, TEN1 were down-regulated or up-regulated in a NNK dose-dependent way with a cutoff criteria of 
|log2(FC)|≥ 1 and |log2(FC)(0.1 μM NNK vs. 0.1% DMSO)-log2(FC)(0.01 μM NNK vs. 0.1% DMSO)|≥ 0.1 (Fig. 2B). Real time PCR 
assay was used to validate the findings of RNA-seq in 786-O cells, our data showed that seven genes ANGPTL4, 
ANKRD12,  CYB5A, ECHDC3, HOXC10, TICAM2 and ZNF579  were significantly down-regulated while 
AKT1S1 was significantly up-regulated after 0.1 μM NNK stimulation; in addition, two genes MAGEB2 and 
MT1E were marginally down-regulated in a after NNK exposure (Fig. 2C).

Expression of fourteen cigarette smoke exposure‑related genes in KIRC and normal kidney 
tissues in TCGA‑KIRC dataset.  To explore the roles of these fourteen genes in KIRC, we evaluated their 
expression patterns in TCGA-KIRC cohort. As shown in Fig. 3, we found that three cigarette smoke exposure-
reduced genes DCN, ECHDC3, MT1E and two cigarette smoke exposure-induced genes AKT1S1, TEN1 were 
significantly down-regulated and up-regulated in KIRC when compared with the kidney normal tissues, respec-
tively. Studies have reported that active smoking is associated with histological KIRC subtype3,4. Here we found 
that ECHDC3 expression in KIRC was continuously reduced, while AKT1S1 expression was gradually increased 
with the elevated malignancy of pathological grades (Supplementary Fig. S1). However, four cigarette smoke 
exposure-reduced genes ANGPTL4, TGM2, TICAM2, ZNF579, and one cigarette smoke exposure-promoted 
gene MAPK14 were significantly up-regulated and down-regulated in KIRC when compared with the kidney 
normal tissues, respectively (Fig.  3). Furthermore, TGM2 and TICAM2 expression in KIRC were gradually 
increased while MAPK14 expression was gradually decreased with the elevated malignancy of pathological 
grades (Supplementary Fig.  S1). In addition, MAGEB2 had very low expression levels in KIRC and kidney 
normal tissues.

Prognostic value of individual cigarette smoke exposure‑related gene in TCGA‑KIRC 
cohort.  Considering the opposite expression patterns in RNA-seq of NNK-stimulated cells and TCGA 
dataset and low gene expression of MAGEB2 in tissues, subsequently, eight cigarette smoke exposure-related 
genes ANKRD12, CYB5A, DCN, ECHDC3, HOXC10, MT1E, AKT1S1, TEN1 were selected to determine their 
prognostic value in TCGA-KIRC cohort. Each gene was classified as low or high expression based on defined 
cutoff (< or ≥ median of gene expression in cancer tissues). The Kaplan–Meier curves and univariate COX pro-
portional regression models showed that ANKRD12 (HR (95%CI): 0.64 (0.47–0.87)), CYB5A (HR (95%CI): 
0.59 (0.43–0.80)), ECHDC3 (HR (95%CI): 0.45 (0.33–0.62)), and HOXC10 (HR (95%CI): 0.64 (0.47–0.87)) had 
significantly positive while DCN (HR (95%CI): 1.39 (1.03–1.88)) and AKT1S1 (HR (95%CI): 1.98 (1.45–2.71)) 
had significantly negative relationship with overall survival of KIRC patients (Fig. 4).

Construction and prognostic value of  cigarette smoke exposure‑related gene signature 
in TCGA‑KIRC cohort.  Individual KIRC tissue recently has been identified to have the substantial intratu-
mour heterogeneity, demonstrating that single gene are unlikely to reveal a complete status of KIRC progression15. 
In addition, studies have found that the gene signature will be better than a single gene to judge prognosis of 
a variety of tumors16–18. Therefore, a single gene was not sufficiently comprehensive and efficient to evaluate 
the contribution of cigarette smoking to KIRC progression, in this study, the cigarette smoke exposure-related 
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Figure 1.   NNK Exposure Increased Growth and Migration Abilities of RCC Cells. (A and B) The soft agar 
colony formation of KETR-3 and 786-O cells exposed to 0 (0.1% DMSO), 0.01, 0.1 μM NNK at passage 40 
for 120 days, and the number of cell colonies was counted (n = 3/group). (C–F) Cell wound healing assays in 
KETR-3 and 786-O cells exposed to 0 (0.1% DMSO), 0.01, 0.1 μM NNK at passage 40. The width of cell wound 
healing was measured (n = 3/group). (G and H) The migration of KETR-3 and 786-O cells exposed to 0 (0.1% 
DMSO), 0.01, 0.1 μM NNK at passage 40 (magnification × 100), and the relative number of cell migration per 
field was showed (n = 3/group). Data were presented as means ± standard deviations *P < 0.05, **P < 0.001.
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gene signature was produced through integrating multiple candidate genes. Lasso regression analysis was firstly 
used to avoid over-fitting problems in the gene signature, and five cigarette smoke exposure-related candidate 
genes ANKRD12, CYB5A, ECHDC3, MT1E, and AKT1S1 were retained when the optimal λ value was achieved 
(Supplementary Fig. S2A and B). Finally, a cigarette smoke exposure-related five-gene signature was established 
using the multivariate COX regression model and was digitized into a risk score based on the sum of the product 
of risk coefficient of each gene and the relevant mRNA expression level (Table 1).

We examined the correlation of the risk score with patients’ clinicopathlogical characteritics, and found that 
the risk score was significantly higher in advanced TNM stage (III/IV), invasion depth T3/4, lymphatic node 
metastasis N1, distant metastasis M1 and low pathological grade groups (G3/G4) when compared with early 
TNM (I/II), T1/2, N0, M0 and high pathological grade groups (G1/G2) (Fig. 5A). The time-dependent ROC 
curve was used to identify predictive value for KIRC patients’ survival and revealed that the risk score had a 
larger area under the curve (AUC) than individual genes (Fig. 5B).

Figure 2.   Identification of Cigarette Smoke Exposure-related Genes in RCC Cell. (A) The volcano plots of 
differentially expressed genes of 786-O cells exposed to 0 (0.1% DMSO), 0.01, 0.1 μM NNK at passage 40. (B) 
Identification of fourteen hub differentially expressed cigarette smoke exposure-related genes. (C) Real-time 
PCR validated the mRNA expression levels of fourteen hub differentially expressed cigarette smoke exposure-
related genes in 786-O cells exposed to 0 (0.1% DMSO), 0.01, 0.1 μM NNK at passage 40. Data were presented 
as means ± standard deviations *P < 0.05, **P < 0.001.
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Figure 3.   Expression of Fourteen Cigarette Smoke Exposure-related Genes in KIRC and normal kidney 
tissues in TCGA-KIRC dataset. The box plots of ANGPTL4, ANKRD12, CYB5A, DCN, ECHDC3, HOXC10, 
MAGEB2, MT1E, TGM2, TICAM2, ZNF579, AKT1S1, MAPK14, and TEN1 in KIRC tumor tissues (cancer, 
n = 531) and kidney normal tissues (normal, n = 72) from starBase database. Note: The gene-level transcription 
estimates was showed in a form of log2 (FPKM + 0.01).
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Figure 4.   Prognostic Value of Individual Cigarette Smoke Exposure-related Gene In TCGA-KIRC 
Cohort. The Kaplan–Meier curves showed that the overall survival of patients with high or low expression 
(ANKRD12, CYB5A, DCN, ECHDC3, HOXC10, MT1E, AKT1S1, TEN1) based on defined cutoff 
(< or ≥ median of gene expression in cancer tissues) in TCGA-KIRC cohort.
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Next, patients were classified to low-risk or high-risk group based on the median threshold of the risk score 
to further explore the prognostic value of the risk score in KIRC (Supplementary Fig. S2C). We found that the 
number of deaths was significantly much more in the high-risk group than the low-risk group, and survival 
time of the death sample significantly decreased with the decreasing risk score (Supplementary Fig. S2D). The 
Kaplan–Meier curve showed that the survival time of patients with high-risk score was significantly shorter than 
the time of patients with lower-risk score (HR = 2.12, 95%CI: 1.54–2.90) (Fig. 5C). In addition, patients with 
high-risk score was a significantly adverse prognostic indicator in both early and advanced TNM stages (Sup-
plementary Fig. S3). Multivariate analysis showed that the risk score was an independent prognostic indicator 
(HR = 1.7, 95%CI: 1.25–2.30) after adjusting with age, sex, tumor TNM stage and grade (Fig. 5D).

Nomogram construction and validation.  Based on the multivariate COX proportional regression 
model (Fig. 5D), the prognostic nomogram was constructed to quantitatively predict the individualized prog-
nostic risk for 1-, 3-, and 5-year overall survival by integrating cigarette smoke exposure-related gene signature 
risk scores with baseline variables (age and gender) and other independent clinical variables (grade and TNM 
stage). Each variable was assigned a corresponding point value based on its risk contribution to this model 
(Fig. 6A). Finally, the calibration curves suggested the agreement between the actual and predicted overall sur-
vival. The calibration curve showed that the 1-, 3-, and 5-year overall survival predicted by the nomograms were 
consistent with actual observations (Fig. 6B–D), indicating that the nomograms performed well.

NNK exposure promoted AKT1S1 expression and activated AKT/mTOR signaling path‑
ways.  In this study, we found that AKT1S1 played as the most important component in the cigarette smoke 
exposure-related gene signature; and studies have showed that AKT1S1 acts an critical role in the intersection of 
the AKT/mTOR signaling pathways19, therefore, we explored AKT1S1 expression level in Ketr-3 and 786-O cells 
exposed to 0.1% DMSO and 0.01, 0.1 μM NNK. We found that NNK exposure dramatically up-regulated mRNA 
levels of AKT1S1 (Fig. 7A), and AKT1S1, p-AKT, p-mTOR protein levels had significant increase after NNK 
exposure when compared with the 0.1% DMSO control group (Fig. 7B–C). In addition, in order to detect the 
function and pathways of AKT1S1 in NNK-promoted KIRC progression, we constructed the protein interaction 
network (PPI network) with the String database (https://​string-​db.​org/) (Supplementary Fig. S4). The results of 
showed that AKT1S1 was enriched in mTOR signaling pathway with the lowest false discovery rate value in the 
biological process of Gene Ontology (GO) analysis, and in autophagy pathway with the lowest false discovery 
rate value in the KEGG analysis.

Discussion
It’s well-known that tumor cells infinite growth and metastasis are the crucial characters of tumor malignant 
progression20. Epidemiological data have indicated that cigarette smoking is associated with the tumor malignant 
progression and the poor prognosis of KIRC21,22. In this study, we found that long-term exposure to the major 
component of cigarette smoke, nicotine-derived NNK, increased the abilities of RCC cells colony formation and 
migration, which were key events of tumor growth and metastasis. Based on these findings, it was not surpris-
ing to see that cigarette smoke enhanced the malignant phenotypes of tumor cells to eventually promote KIRC 
progression.

There are multiple molecular events that cigarette smoke initiates and promotes the malignancy of RCC. 
Recently the relevance of cigarette smoke carcinogens with the inactivation of tumor suppressor genes or the 
activation of oncogenes has been validated for the development and progression of cancer23,24. Thus, further 
exploration of the molecular events involved in NNK-induced malignancy of RCC cells might provide new bio-
markers for progression of KIRC. Here, we performed the genome-wide sequencing to seek potential biomarkers 
and found fourteen cigarette smoke exposure-related genes showing NNK dose-dependent down-regulation or 
up-regulation. Moreover, the real time PCR validated the reliability of RNA-seq.

Therefore, we reasonably speculated that cigarette smoke exposure-related genes have broad prospects in 
progression evaluation of KIRC. Through compared the gene expression patterns in KIRC and normal kidney 
tissues, we found nine genes were not inconsistent with the findings in RCC cells with NNK exposure. Next, the 
survival analysis indicated that cigarette smoke exposure-reduced genes ANKRD12, CYB5A, ECHDC3, DCN, 
HOXC10 and cigarette smoke exposure-promoted gene AKT1S1 showed the positive and negative relationship 
with overall survival in KIRC, which was accord with some studies that decreased ANKRD12 and CYB5A and 
increased AKT1S1 expression show a higher frequency of tumor metastasis and are indicators of increased risk 
of tumor progression25–27. Though cigarette smoke exposure-reduced DCN was found to be negative prognostic 

Table 1.   Genes included in prognostic gene signature.

Gene Coefficient P value

ANKRD12 − 0.12685 0.46205

CYB5A − 0.29841 0.00180

ECHDC3 − 0.10969 0.20545

MT1E 0.04216 0.34586

AKT1S1 0.61537 0.00386

https://string-db.org/
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Figure 5.   Prognostic Value of Cigarette Smoke Exposure-related Gene Signature in TCGA-KIRC Cohort. (A) 
Violin plots of risk score in the groups of TNM stage (I/II vs. III/IV) (n = 323 and 205 for stageI/II and III/IV); 
invasion depth (T1/2 vs. T3/4) (n = 341 and 190 for T1/2 and T3/4), lymph node metastasis (N0 vs. N1) (n = 239 
and 16 for N0 and N1), and distant metastasis (M0 vs. M1) (n = 422 and 78 for M0 and M1), pathological grade 
groups (high vs. low) (n = 243 and 280 for high and low); (B) Time-dependent ROC curves of individual genes 
and gene signature for 1-year overall survival; (C) Kaplan–Meier curves showed that the overall survival of 
patients with high or low gene signature defined cutoff (< or ≥ median risk score) in TCGA-KIRC cohort; (D) 
Forest plot of hazard ratios of clinicopathological features and gene signature (risk score) for overall survival of 
KIRC in multivariate COX regression model. *P < 0.05, **P < 0.001.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2189  | https://doi.org/10.1038/s41598-022-06352-y

www.nature.com/scientificreports/

Figure 6.   Nomogram Construction and Validation. (A) The nomogram for quantitatively predicting 1-, 3-, and 
5-year overall survival of patients in TCGA-KIRC cohort (n = 531); (B–D) Calibration curve of the 1-, 3-, and 
5-year overall survival.
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Figure 7.   NNK Exposure promoted AKT1S1 expression and activated AKT/mTOR signaling pathway. (A) Real 
time PCR assay showed the relative mRNA expression levels of AKT1S1 in Ketr-3 and 786-O cells exposed to 
0.01, 0.1 μM NNK when compared with 0 (0.1% DMSO) exposure at passage 40; (B–C) The protein and relative 
expression levels of AKT1S1, p-AKT, AKT, p-mTOR, mTOR, GAPDH in Ketr-3 and 786-O cells exposed to 0 
(0.1% DMSO), 0.01, 0.1 μM NNK at passage 40. *P < 0.05, **P < 0.001.
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factor in KIRC, increasing evidences indicate that lack of DCN expression has been regarded as an indicator of 
tumor metastasis28.

However, cancer heterogeneity leads to unsatisfactory effects of individual genes on the progression judgment 
in KIRC patients. Therefore, new efforts are urgently required to develop comprehensive estimate for KIRC. 
Studies have found that the gene signature will be better than a single gene to judge prognosis of a variety of 
tumors16–18. In this study, Lasso regression was used to screen variables to establish the prognostic model to avoid 
extreme prediction. The new cigarette smoke-related five-gene signature was established using the multivariate 
COX regression model. To provide a clinically quantitative method for gene signature, we produced a risk score 
based on risk coefficient of each gene and the relevant mRNA expression level. This scoring approach and its 
cut-off value have been confirmed to be robust in some cancer-related studies, which may be readily translated 
to clinical practice29–31.

Our data showed that the gene signature with high-risk score was significantly associated with the increased 
tumor invasion depth, lymphatic node metastasis, and distant metastasis and advanced TNM stage. Using the 
time-dependent ROC curve, we found that the risk score had a better predictive value than individual genes in 
KIRC prognosis. More importantly, the risk score significantly stratified patient outcomes and high-risk score 
was a significantly more unfavorable factor for KIRC prognosis than any single gene, indicating that the risk 
score had a stronger prognostic power than single genes.

Considering that AKT1S1 was the most important component of the cigarette smoke exposure-related 
gene signature, here significantly up-regulated AKT1S1 expression was observed after NNK exposure, which 
was accord with some reports that elevated AKT1S1 expression in cancer cells and could contribute to tumor 
metastasis27,32. Studies have showed that AKT1S1 is involve in regulating cell growth, cell apoptosis, oxidative 
stress, autophagy and angiogenesis through various of signaling pathways such as AKT, mTOR, NF-κB and et al.; 
AKT1S1 phosphorylation state could predict hyperactivation of the AKT/mTOR pathway in multiple cancer cell 
types19,33. In this study, we found that NNK exposure activated AKT/mTOR signaling pathway. And the protein 
interaction network (PPI network) showed that the function and pathways of AKT1S1 were mainly enriched 
in mTOR and autophagy pathway. In addition, studies have identified AKT/mTOR signaling as important dys-
regulated pathways in KIRC, and some mTOR targeted inhibitors, such as everolimus and temsirolimus, have 
been validated to contribute to better clinical outcome of metastatic renal cell carcinoma34–36. Therefore, our 
data suggested that the up-regulation of AKT1S1, AKT/mTOR signaling pathway and autophagy might play an 
important role in cigarette smoke-induced KIRC metastasis and progression (Supplementary Fig. S5).

In summary, NNK exposure promoted the growth and migration abilities of RCC cells. Using RNA-seq, 
fourteen cigarette smoke exposure-related genes were obtained. The expression patterns showed that nine genes 
in KIRC when compared with normal kidney tissues were not inconsistent with the findings in RCC cells with 
NNK exposure, and their prognostic value were further analyzed. Five cigarette smoke-related gene signature 
was screened and integrated by Lasso regression analysis and multivariate COX regression model. The gene 
signature was more powerful than any signal gene for predicting the prognosis of KIRC patients. Moreover, 
NNK exposure-induced AKT1S1 and its related AKT/mTOR signaling pathway might play an important role in 
cigarette smoking-induced KIRC progression. Therefore, our findings provided a significant mechanistic insight 
into cigarette smoke-induced KIRC progression and supported that the cigarette smoke-related gene signature 
might serve as a highly efficient biomarker to identify metastasis and prognosis of KIRC patients.

However, a limitation is the lack of animal models of NNK-promoted KIRC progression and the validation 
of gene signature expression in NNK-promoted tumor tissues of animal models. In addition, this study is under-
powered to assess the role of AKT1S1 and its related AKT/mTOR signaling pathway in NNK exposure-induced 
KIRC progression unless AKT1S1 inhibitors were used in NNK-stimulated cell and animal models.

Methods
Cell lines and reagent.  Human KIRC cell line 786-O and another RCC cell line KETR-3 were purchased 
from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). 
786-O and KETR-3 cells were separately cultured in RPMI-1640 and DMEM medium supplemented with 10% 
fetal bovine serum (FBS), 100U/ml penicillin and 100 μg/ml streptomycin. Cells were grown at 37 °C in the 
presence of 5% CO2 in a humidified incubator. NNK was purchased from Sigma-Aldrich (CAS: 64091-91-4, St 
Louis, MO,).

Soft agar colony formation assay.  The 6-well plates were firstly coated with 0.60% agarose. Then 500 
cells per well were plated in triplicate in 1 ml of 0.35% agarose over 0.60% agarose. Cultures were fed every 
3 days. At 14 days, the 0.5% NBT was used to dye the colonies. Colonies which were dyed strongly brown were 
scored as “positive” and colony-forming number in each well was counted by Image J software.

Wound healing assay.  Cells were grown to 80% confluence into a 6-well plate in complete medium over-
night and converted to serum-free medium for another 12 h at 37 °C and 5% CO2. An injury line was made using 
a 2-mm-wide plastic pipette tip. Then the wells were rinsed with phosphate-buffered saline and covered with 
serum-free medium, and the photographs were acquired at 0 h and 24 h, respectively. Then the scratch width 
of every group at 0 h and 24 h were measured, and migration distance was calculated through subtracting the 
scratch width at 24 h from the scratch width of 0 h. Finally the relative ratio of migrating distance in NNK groups 
and DMSO group was calculated.

Transwell assay.  The transwell filter inserts with a pore size of 8 μm were used for the cell migration assay. 
2 × 104 cells (for 786-O) or 5 × 104 cells (for KETR-3) in serum-free medium were added in the upper chamber, 
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and placed in 24-well plate containing 500 μl complete medium. After 12 h incubation at 37 °C, cells in the upper 
chamber were carefully removed with a cotton swab and the cells that had traversed the membrane were fixed in 
methanol, stained with crystal violet (0.04% in water; 100 μl). Then these inserts were placed under the inverted 
microscope (100 ×), and five fields of each insert were photographed. The crystal violet positive permeating cells 
of each field were counted by Image J software, and the relative ratio of migrating cells number in NNK groups 
and DMSO group was calculated.

Transcriptome resequencing and quantitative analysis.  Human transcriptome resequenc-
ing (Vazyme, China) was used to analyze gene expressions collected from 786-O cells which were exposed 
0.1%DMSO, 0.01  μM, 0.1  μM NNK at 40 passages for 120  days. The Cufflinks (cufflinks-2.2.1) was used to 
perform the quantitative analysis of gene expression.

Western blot analysis.  Western blot was carried out as previously reported37. Total cell lysates were pre-
pared with a detergent lysis buffer (#P0013B, Beyotime Biotechnology, China) and the protein concentration 
was measured with BCA Protein Assay Kit (#P0010, Beyotime Biotechnology, China). Equal amounts of protein 
from cell lysates were separated by SDS-PAGE, and transferred by electroblotting to a polyvinylidene fluoride 
membrane. After blocked with 5% nonfat milk in TBST buffer for 2 h, the membranes were cut according to the 
molecular weight of the antibody specification and the PageRuler™ Prestained Protein Ladder (#26616, Thermo 
Scientific, USA) on the membrane, then the membranes were incubated with primary antibodies, including 
anti-AKT1S1 (1:1000; #ab151719, Abcam, USA), anti-AKT (1:1000; #9272, CST, USA), anti-pAKT (1:1000; 
#4060, CST, USA), anti-mTOR (1:1000; #2972, CST, USA), anti-p-mTOR (1:1000; #5536, CST, USA) and anti-
GAPDH (1:1000; #AF1186, Beyotime Biotechnology, China) overnight at 4 °C. Then, the membrane was incu-
bated with anti-rabbit immunoglobulin G conjugated to horseradish peroxidase (1:2000; #A0208, Beyotime 
Biotechnology, China) for 2 h. The anti-GAPDH was used for the protein loading control. The antigen–antibody 
complex was detected by an enhanced chemiluminescence system. All the blots were cut prior to hybridization 
with antibodies during blotting. Moreover, we checked these same molecules in 786-O, Ketr-3 and ACHN cells, 
and the results showed that the same molecule was displayed at the same location on the membrane and all the 
molecular weights were consistent with the antibody specifications. In addition, there were few or almost no 
non-specific bands in all blots. In the supplementary Fig. S6, we provided the images of all blots as they are, with 
membrane edges visible, all the experiments were repeated three times.

Real‑time PCR analysis.  Total cell RNA was extracted using TRIzol reagent (#R401-01, Vazyme, China) 
and the purity was checked by OD260/280 of RNA samples (> 1.8). Real-time PCR was carried out in triplicate 
with HiScript II one step qRT-PCR SYBR Green Kit (#Q221-01, Vazyme, China) according to the manufactory 
instruction. GAPDH mRNA was used as an internal control for each sample, and the Ct value for each sample 
was normalized to GAPDH mRNA. The complementary DNA was amplified with the following primers:

DCN Forward TCC​GCT​GTC​AAT​GCC​ATC​TTCG​

DCN Reverse GCA​GGT​CTA​GCA​GAG​TTG​TGT​CAG​

HOXC10 Forward CCG​CCT​ATC​GCC​TGG​AAC​AAC​

HOXC10 Reverse GCA​GCA​GAC​ATT​CTC​CTC​CTT​GAC​

AKT1S1 Forward GCC​GTT​GCC​TCC​ACG​ACA​TC

AKT1S1 Reverse TCA​TCC​TCG​TCC​TCC​TCG​TTGTC​

MAPK14 Forward GGC​TCC​TGA​GAT​CAT​GCT​GAA​CTG​

MAPK14 Reverse AGT​CAA​CAG​CTC​GGC​CAT​TATGC​

ZNF579 Forward AAG​GCC​GAG​CAG​GAG​GAA​GAAG​

ZNF579 Reverse AGG​CTG​AGT​GGT​CTT​GGC​TGTC​

TICAM2 Forward TCC​TGC​CCT​CTT​TCT​CTC​TCT​TGG​

TICAM2 Reverse CCC​CTC​TGT​TGT​ATT​GCT​GTG​CTC​

TGM2 Forward CAC​CAA​CAA​CAC​CGC​TGA​GGAG​

TGM2 Reverse CAG​GTT​GAG​GTT​GAG​CAG​GTA​CTT​G

MAGEB2 Forward AAC​GGC​CAC​ACT​TAC​ACC​TTC​ATC​

MAGEB2 Reverse ATC​ACA​CCC​AGG​AGA​GGC​ATCAG​

ANGPTL4 Forward AGA​CAC​AAC​TCA​AGG​CTC​AGA​ACA​G

ANGPTL4 Reverse TCT​AGG​TGC​TTG​TGG​TCC​AGGAG​

CYB5A Forward TCA​GAA​GCA​CAA​CCA​CAG​CAA​GAG​

CYB5A Reverse AGT​TCT​CAG​TAG​CGT​CAC​CTC​CAG​

TEN1 Forward TCC​AGC​ATC​AGC​AGG​ACA​GAGG​

TEN1 Reverse TGT​TCC​AAC​AAG​GGC​AGG​TTC​ATC​

MT1E Forward TCA​GGT​TGG​GAG​GGA​ACT​CAAGG​

MT1E Reverse GAG​AGG​GAA​TGA​CAC​GGG​CAATG​

ECHDC3 Forward GCT​AGG​AAG​ATC​GCA​TCG​CTGAG​

ECHDC3 Reverse CCT​GGG​AGG​TGA​GGT​AGT​AAGCC​
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ANKRD12 Forward CCA​GGA​AAC​TCT​TGT​GCT​CAG​GAT​C

ANKRD12 Reverse TCT​GAA​AGT​GAT​TGG​CTG​GGG​AAA​G

GADPH Forward GCC​GGT​- GCT​GAG​TAT​GTC​

GAPDH Reverse CTT​CTG​GGT​GGC​AGT​GAT​

Statistical analysis.  All the statistical analyses were performed by R (version 4.0.3) statistical software. The 
starBase project (http://​starb​ase.​sysu.​edu.​cn/​panCa​ncer.​php) was used to analyze the gene expression pattern 
in KIRC and kidney normal tissues. The univariate and multivariate COX proportional regression models were 
performed to estimate the crude hazard ratios (HRs), adjusted HRs and their 95% confidence intervals (CIs). 
Lasso regression analysis was used to screen the prognostic genes. Operating characteristic curve (ROC) was 
used to predict the prognostic value of genes. The Kaplan–Meier method and log-rank test were used to test the 
differences in survival as a function of time between the low and high risk score groups. The nomogram was 
developed to predict survival probability, and the fitting degree of the nomogram was evaluated by calibrations. 
The ANOVA analysis or Student t-test was used to evaluate the significance of quantitative data. P value < 0.05 
was deemed statistically significant, and all tests were two sided.

Data availability
The clinical features of KIRC patients can be obtained from TCGA database (https://​portal.​gdc.​cancer.​gov/, 
repository, cases: project (TCGA-KIRC)) and the corresponding RNA-sep data can be obtained downloaded 
from the UCSC Xena (https://​gdc-​hub.​s3.​us-​east-1.​amazo​naws.​com/​downl​oad/​TCGA-​KIRC.​htseq_​fpkm.​tsv.​gz). 
Z.L. and Y.C. had full access to all of the data in the study and take responsibility for the integrity of the data and 
the accuracy of the data analysis. The datasets generated and/or analysed during the current study are available 
from the corresponding author on reasonable request.
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