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Abstract: This paper presents the results of comparative research on materials used for a track
steering system in an abrasive soil mass. Two types of elastomer tracks were tested: a steel-rubber
stave from an asphalt paver and a rubber overlay used in vehicles with a steel track chain. The
results obtained were related to the wear of Hadfield steel. The tests were carried out on a “spinning
bowl” stand in a natural soil mass, which consisted of two types of soil: light and heavy. It was
shown that the resistance to abrasive wear depended on the grain size of the worked soil and the
chemical composition of the materials. Rubber overlay was found to have the highest resistance
index in all types of soils. It was made of high-density polyethylene, low-density polyethylene,
ethylene acrylate/ethyl copolymer (ethylene acrylate 18%) and ethylene/propylene copolymer with
an ethylene content of 60%. An analysis of the condition of the machined surfaces after friction tests
complements the results presented.

Keywords: steering system; abrasive wear; Hadfield steel; abrasive soil mass

1. Introduction

Due to the varied types of substrate on which a vehicle needs to travel, the traditional
wheeled chassis is very often replaced by a track system. Track vehicles can operate very
well in swampy, desert, or snowy terrain. This is because the weight of the vehicle is
distributed over a much larger area than in a wheeled chassis. This increases the vehicle’s
grip, generates more traction force and lowers individual pressures. The track transfers
longitudinal, vertical and lateral forces that emerge in contact with the ground. Bęben [1]
discussed the significance of the influence of environmental conditions on the values of
the coefficient of friction in elastomer tracks. For the same moisture content, the value of
the coefficient of friction was 0.9 in clay and 0.3 in the sand. This may be indicative of a
different friction behaviour in the soil conditions specified. With regard to the structure,
metal, rubber-metal and rubber tracks can be distinguished [2,3]. Among others, Hadfield
cast steel is used for the links [4]. According to [5,6], the wear resistance of a metal depends
on the grain refinement and the content of carbide needles (FeMn)3C, usually eliminated by
heat treatment. After heat treatment, typical manganese cast Hadfield steel has an austenitic
structure which, despite its low hardness, gives high abrasion resistance compared to other
engineering materials [7]. Elastomer is the basic component of rubber tracks, in which
polyethylene acts as a filler. Several types can be distinguished, depending on polyethylene
density. The most popular types include high-density polyethylene 0.935–0.965 g/cm3 (PE-
HD) and low density polyethylene 0.918–0.930 g/cm3 (PE-LD) [4]. The question thus arises
as to whether elastomer tracks exhibit a higher abrasion resistance compared to traditional
metal track systems. To date, little information has been provided in the literature on
the wear behaviour of materials used in track steering systems [3,8]. The complexity of
the polymer wear process, in terms of its chemical composition, type of wear and the
wear environment, has been presented, among others, in [9–19]. These papers do not take
into account wear interaction with the natural soil mass. It is characterised by peculiar
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wear properties, which were quite well described in terms of impact on metals [20–23]. In
this analysis, it was found that only a few works discussed the influence of soil mass on
polymer wear [24,25].

This paper analysed the wear resistance of materials used for a tracked chassis in an
abrasive soil mass with reference to Hadfield steel.

2. Research Methodology
2.1. The Test Procedure

Cuboids sized 30 mm × 25 mm × 10 mm were taken as samples of the tested materials
with a method ensuring the invariability of their structure. A high-energy abrasive water
jet cutting method was used to cut the samples.

The chemical composition of Hadfield cast steel was determined using a spectral
method with a GDS500A glow discharge spectrometer from Leco, using the following
parameters: U = 1250 V, I = 45 mA, argon. The arithmetic mean of five measurements
was taken as a result. Chemical components were identified in elastomeric materials
using infrared spectroscopy (IR) with the SHIMADZU ITRracer-100 apparatus and the
reflection method (ATR). This method does not allow the proportions of the components in
elastomers to be determined.

The hardness of Hadfield cast steel was measured using the Vicker’s method in
conditions compliant with PN-EN ISO 6507-1:1999. Zwick 32 hardness tester, with a load
of 1 kg (9.807 N) and operating for 15 s, was used for the measurements. The hardness of
elastomeric samples was measured with the Shore method according to PN-ISO 868. The
density of the elastomers tested was determined by comparing the mass and volume of the
prepared samples.

To implement the research objectives for macroscopic examination and evaluation of
surfaces after abrasion tests, a KEYENCE Digital Microscope (VHX-6000 series) was used.

Wear intensity tests were performed in laboratory conditions using the “spinning
bowl” method (Figure 1) [26]. The machine’s bowl was filled with an abrasive soil mass,
which successively consisted of two types of soil marked as light (loamy sand) and heavy
(ordinary clay). The tests were repeated five times. Each sample travelled a total friction
distance of 10,000 m at a speed of 1.66 m/s and a unit pressure of 67 kPa. The mass sample
was measured every 2000 m on a laboratory scale with an accuracy of 0.0001 g after cleaning
in an ultrasonic cleaner. The samples moved in an oscillatory motion along the friction
track. The pH of the abrasive masses ranged from 6.3 to 6.9 pH, and the moisture content
ranged from 11% for loamy sand to 14% for ordinary clay, which corresponds to moist
soil. Soil moisture content was determined by measuring the weight of the solid phase
dried at 105 ◦C. Grain size analysis was carried out by laser diffraction using a Mastersizer
2000 laser particle composition meter according to ISO 13320 (Table 1).

Table 1. Characteristics of the abrasive soil mass.

Granulometric
Groups

Fraction
Diameter (mm) Fraction Content (%)

Sand 2.0–0.05 67.17 16.20
Fines 0.05–0.002 31.03 77.30
Silt <0.002 1.80 6.50

Determined as per PN–EN ISO 14688–2(2006) Loamy sand–light soil Ordinary soil–heavy
soil
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Figure 1. The “spinning bowl” type laboratory wear testing stand: (a) fragment of the stand during the operation; arrow
(1) shows the direction of the arm movement, (2) shows the direction of the bowl rotation. (b) feet mounted on the stand
arms with a designated place for fixing the sample; (1) sample fixing place, (2) screws holding the sample, (3) front skid,
(4) side sample cover, (5) screw for changing the rake angles.

The mass wear of the sample and its mass wear intensity were determined from the
following relationships:
—sample mass wear;

Zpw = mw − mi [g], (1)

where:

mw—input sample mass before friction [g],
mi—sample mass after travelling the friction path S [g],
—mass wear intensity;

Ipw =
Zpw

S

[ g
km

]
, (2)

where:

S—friction path [km].

Based on the Kb wear resistance index from the formula [10], the wear resistance of
the tested materials was compared:

Kb =

ZVw
STw
ZVb
STb

=
ZWw × ρb × STb
ZWb × ρw × STw

, (3)

where:

ZVw—volumetric wear of the reference material;
ZVb—volumetric wear of the tested material;
ZWw—mass wear of the reference material;
ZWb—mass wear of the tested material;
STw—friction path of reference material;
STb—friction path of tested material;
ρw—density of the reference material;
ρb—density of the tested material.

2.2. Test Subject

Elastomer samples were taken from a tractor track, a mini-excavator track, a steel-
rubber stave of an asphalt paver, and a rubber boot used on steel track vehicles.

In the tractor and the mini-excavator track, samples were cut from seamless elas-
tomeric tracks. The test material was taken from the part of the component located outside
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the reinforcement. Figure 2 shows the surface view of the elastomers before the tribological
test. The obtained wear test results were related to Hadfield steel (Figure 3) (Table 2).
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Figure 3. (a) Microstructure of Hadfield steel. Coarse-grained structure of unbalanced pearlite with bright ferrite separations
at grain boundaries and within grains. Mi1Fe etching, light microscopy. (b) surface view of the sample before the tribological
test.
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Table 2. Chemical Composition of Hadfield Steel.

C Mn Cr Ni S D Si

(% mass)

1.27 13.15 0.67 0.42 0.03 0.07 0.44

The density of the tested elastomers was determined by the laboratory method based
on the comparison of the mass and volume of the prepared samples (Table 3).

Table 3. Properties of Materials Accepted for Testing.

Hardness Density
(g/cm3)

Track from a tractor 72 Shore scale A 1.1
Track from a mini excavator 66 Shore scale A 1.1

Steel-rubber stave 73 Shore scale A 2.3
Rubber pad 70 Shore scale A 1.2

Hadfield cast steel HV 281 7.2

Low-density polyethylene (PE-LD), ethylene/propylene copolymer with an ethylene
content of 60%, high-density polyethylene (PE-HD) were found in the chemical composition
of all the tested elastomers. Oxidized polyethylene, ethylene-acrylic acid, and Na- and
Zn-type ionomers were additionally identified in tracks from a tractor (Figure 4) and a
mini-excavator (Figure 5). Ethylene acrylate/ethyl copolymer (ethyl acrylate content 18%),
chlorinated polyethylene (chlorine content 25%) with talc, and polyethylene (PE), which is
also present in the rubber pad (Figure 6), were identified in the steel-rubber stave (Figure 7).
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Oxidised polyethylene is a component of aqueous emulsions with a wide range of
applications, from high abrasion resistance pastes for floor care, to the production of
polymeric plastics such as PVC, where it is used as a lubricating additive [26].

Talc Mg3(Si4O10)(OH)2 is a crystalline form of magnesium silicate. It is classed as a
soft mineral, characterised by the lowest hardness on the Mohs scale. It exhibits antistatic
and anti-adhesion properties. Due to its hydrophobic properties, it dissolves well in
polyolefins, e.g., polyethylene (PE), and is therefore used as a filler in the production of
polymer composite materials based on PE and PP. Because talc is cheaper than typical
polymers (PE or PP), it is often used in the production of polymeric products, mainly based
on hydrophobic polyolefins. [27].
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Chlorinated polyethylene is an elastomer that takes a form of a white powder. It
consists of high-density polyethylene and chlorine. The addition of such a compatibilizer
affects shear strength or stability in heat treatment. An increase in the modulus of elasticity
and strength of composites is observed [28].
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In the chemical industry, ethyl acrylate is commonly used as a monomer to obtain
various types of polymers, to produce plastics or synthetic rubbers. It is obtained by
propylene oxidation. Propylene oxidation results in acrolein, which is then oxidised to
acrylic acid. Ethyl acrylate is produced by reacting acrylic acid with ethanol.

Ethylene/propylene copolymer is produced during polymerisation in a solution using
Ziegler-Natta catalysts. With double bonds found inside groups, it is much less sensitive to
weathering and sunlight than polyethylene.

Low-density polyethylene (PE-LD) is called high-pressure polyethylene because of
the way it is produced in the gas phase under high pressure and at high temperatures. In
the presence of hydroxides or peroxides as catalysts, the polymerisation process results in
a product with the consistency of honey. After passing through a pressure-reducing tank, it
takes the form of a ribbon which granulates after cooling. PE-LD is obtained as a result of
free radical polymerisation at 150 ÷ 260 ◦C temperature without solvent, 150 ÷ 200 MPa
pressure, and oxygen or organic peroxide as reaction initiator. The maximum oxygen
content is 0.5% by volume. Exceeding this limit has an unfavourable effect on the polymer
structure. Ethylene meets stringent purity criteria (99.8 ÷ 99.9%) and does not contain
impurities such as hydrogen and acetylene. The polymer properties and quality depend not
only on the purity of the raw material but also on the parameters, especially temperature.

High-density polyethylene (PE-HD) is obtained at a temperature of 50–70 ◦C in the liq-
uid phase using Ziegler-Natta catalysts. Compared to the high-pressure method, the appa-
ratus is less complicated, but the use of a large number of solvents, organometallic catalyst,
and its leaching from the polymer creates many difficulties and increases the process cost. It
is produced under low pressure. In the low-pressure ethylene polymerisation, organometal-
lic catalysts, titanium tetrachloride—TiCl4, and triethylaluminium—Al(C2H5)3, are used
to form a complex to catalyse the reaction.

3. Analysis of the Results

Table 4 presents results for mass loss after a distance of 10,000 m, while Figures 8 and 9
show wear behaviour as a function of friction distance under varying soil conditions.

Table 4. Average mass wear of the tested materials.

Mass Wear [g]

Material Light Soil Standard
Deviation Heavy Soil Standard

Deviation

Track from a tractor 0.2313 0.0847 0.4661 0.1821
Track from a mini excavator 0.4797 0.1812 2.9085 1.0919

Steel-rubber stave 0.0315 0.0119 0.0391 0.0145
Rubber pad 0.0035 0.0013 0.0122 0.0047

Hadfield cast steel 0.0514 0.0197 0.0897 0.0339

Mass wear behaviour for the materials accepted for testing as a function of the friction
path travelled is described by linear equations (Figures 8 and 9). The wear values for the
tested materials change with the change in the soil grain size. The lowest wear values were
recorded for the rubber pad composed of high-density polyethylene, low-density polyethy-
lene, ethylene acrylate/ethyl copolymer (ethylene acrylate 18%), and ethylene/propylene
copolymer with an ethylene content of 60%, regardless of the soil type. The highest wear
values were obtained for a mini-excavator track containing low-density polyethylene,
high-density polyethylene, ethylene/propylene copolymer with an ethylene content of
60%, oxidised polyethylene, ethylene-acrylic acid, and Na and Zn type ionomers, also
regardless of the type of soil tested. The mini-excavator track, compared to the rubber pad,
exhibited more than 137 times greater wear in light soil and more than 234 times greater
wear in heavy soil. This is well illustrated by comparing the unit wear values in different
soil conditions (Figure 10).
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The obtained relations can be explained by the wear patterns of the tested materials.
For material wear in light soil, loosely bound sand grains (characterised by a high freedom
of movement) caused scratching, furrowing of the friction surface, as well as leaving indi-
vidual sand particles on the surface layer (Figures 11–15). This testifies to the point effect
of sand grains on the material surface. Fatigue wear, resulting from repeated application
of pressures on the friction surface of the rounded SiO2 grains (dark areas), dominated
on surfaces worn in light soils. The multi-cycle wear consisted of elastic deformation,
plastic deformation, micro-volume crushing, structure deformation and shearing of these
irregularities. Furrows formed from the cutting action of the sharp sand grain edges are
visible. This first phenomenon dominates in the friction process. With the increase of the
fine fractions in the soil, they penetrated the surface discontinuities, in a way acting as
a protection against the intense impact of the sand fractions. Hence, scratches and sand
particle residues occur on the surface worn in heavy soil.
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A different wear pattern can be observed in soils with a higher content of dust and clay
particles. Combined with the moisture, the clay in the heavy soil mass forms a binder that
holds the abrasive particles together, causing “tears” on the surface layer of the material.
Wear with reinforced abrasive grains occurs in this case. The soil mass contacts the material
discretely and the intensity of the impact depends on the fixation of the grains in the soil
mass. The nature of the wear changes and increases in value. The number of indentations
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increases, which confirms the different character of wear with a larger friction surface
(Figures 16–20).
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Based on the calculated Kb wear resistance index (Table 5), it can be concluded that in
both soil types, the wear resistance of the rubber pad was the best of all tested materials
compared to Hadfield steel. This material exhibited the highest strength highest (more than
2.4 times) in light soil. The lowest wear strength value (more than 217 times lower) was
recorded for the mini-excavator track in heavy soil. The other materials achieved lower
abrasive wear strength than Hadfield steel.
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Table 5. Summary of wear strength.

Light Soil Heavy Soil

Kb
Confidence

Interval Kb
Confidence

Interval

Track from a tractor 0.0339 0.0211 0.0294 0.0110
Track from a mini

excavator 0.0163 0.0218 0.0047 0.3273

Steel-rubber stave 0.5212 0.0047 0.7328 0.0020
Rubber pad 2.4476 0.0010 1.2254 0.0018

Hadfield cast steel 1.0000 0.0086 1.0000 0.0148

4. Conclusions and Discussion

The wear properties of the materials accepted for soil abrasive testing depend on the
grain size of the soil and the chemical composition of the material. Elastomers containing
low-density polyethylene (PE-LD) exhibit lower abrasion wear resistance compared to
elastomers containing high-density polyethylene (PE-HD). In light soils, local scratching
and furrowing occur due to the action of loosely bound sand particles.

In the heavy abrasive soil, the highest values of the wear intensity of the tested
materials were recorded. In the case of the track from the mini-excavator, this value was
more than six times higher in relation to the light soil. Loam occurring in heavy soil, in
combination with moisture, creates a binder, causing “tearing out” of the surface layer of
the tested materials, which increases the number of pits and changes the nature of wear.
Due to the fact that heavy soils also contain hard sand particles (approximately 1200 HV),
the wear process takes place with hardened abrasive grains.

The best wear-prevention properties, measured using the abrasion resistance index Kb,
were found in a rubber pad composed of high-density polyethylene, low-density polyethy-
lene, ethylene acrylate/ethyl copolymer (ethylene acrylate 18%), and ethylene/propylene
copolymer with an ethylene content of 60%. Its strength was more than 2.4 times that of a
comparable Hadfield steel. The worst wear parameters were obtained for a mini-excavator
track containing low-density polyethylene, high-density polyethylene, ethylene/propylene
copolymer with an ethylene content of 60%, oxidised polyethylene, ethylene-acrylic acid,
and Na and Zn type ionomers. The Kb value for Hadfield steel did not even reach 1%.

Further research should include tests to determine the proportions of the components
present in given elastomers.
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