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Abstract

Background: p38 MAPK activity plays an important role in several steps of the osteoblast lineage progression through
activation of osteoblast-specific transcription factors and it is also essential for the acquisition of the osteoblast phenotype
in early development. Although reports indicate p38 signalling plays a role in early skeletal development, its specific
contributions to adult bone remodelling are still to be clarified.

Methodology/Principal Findings: We evaluated osteoblast-specific deletion of p38a to determine its significance in early
skeletogenesis, as well as for bone homeostasis in adult skeleton. Early p38a deletion resulted in defective
intramembranous and endochondral ossification in both calvaria and long bones. Mutant mice showed reduction of
trabecular bone volume in distal femurs, associated with low trabecular thickness. In addition, knockout mice also displayed
decreased femoral cortical bone volume and thickness. Deletion of p38a did not affect osteoclast function. Yet it impaired
osteoblastogenesis and osteoblast maturation and activity through decreased expression of osteoblast-specific
transcription factors and their targets. Furthermore, the inducible Cre system allowed us to control the onset of p38a
disruption after birth by removal of doxycycline. Deletion of p38a at three or eight weeks postnatally led to significantly
lower trabecular and cortical bone volume after 6 or 12 months.

Conclusions: Our data demonstrates that, in addition to early skeletogenesis, p38a is essential for osteoblasts to maintain
their function in mineralized adult bone, as bone anabolism should be sustained throughout life. Moreover, our data also
emphasizes that clinical development of p38 inhibitors should take into account their potential bone effects.
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Introduction

During development, ossification depends on the activity of

osteoblasts that are derived from mesenchymal stem cells.

Throughout this process of osteoblastic differentiation, osteochon-

droprogenitors proliferate and go through a series of steps before

becoming mature osteoblasts [1,2,3]. Furthermore, osteocytes are

derived from terminally differentiated osteoblasts that remain

embedded in the bone-mineralized matrix. Later on in adulthood,

bone formation and remodeling remain very dynamic processes

that rely on a tight balance between osteoclast resorption and new

bone formation by osteoblasts. Any disparity between these two

activities causes pathological states such as osteoporosis [4].

Many extracellular stimuli, such as mechanical stress, inflam-

matory cytokines and growth factors, have been described as

regulators of osteoblast differentiation through p38 MAPK

signalling [5]. In mammalian cells, four isoforms of p38

Mitogen-Activated Protein Kinases (MAPKs) have been described:

p38a (MAPK14), b (MAPK11), c (MAPK12) and d (MAPK13)

[6]. Some differences in activation have been shown between

distinct isoforms, with p38a MAPK being one of the most

abundant isoform in osteoblasts and bone [7]. p38 MAPKs are

activated by MKK3 and MKK6, which are also downstream of

several MAPKKKs, including TAK1, ASK1 and MLKs [6].

p38 MAPK activity, known to play an important role in several

steps of the osteoblast lineage progression, is necessary but not

sufficient for BMP-induced acquisition of the osteoblast phenotype

[8,9,10]. Evaluation of these effects is often based on the

commonly used inhibitor, SB203580, which only inhibits p38a
and p38b isoforms. Biochemical analysis has identified key

osteogenic genes whose expression and/or function are regulated

by p38. Evidence shows that p38 activity is required for BMP-

induced Osx expression in calvaria, as well as bone-marrow-

derived mesenchymal stem cells [11,12,13]. Moreover, several

reports indicate that p38 phosphorylates critical transcription

factors involved in osteoblastogenesis such as DLX5, RUNX2 and

OSX [7,13,14,15,16]. Phosphorylation by p38 regulates their
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transcriptional activity by promoting association with transcrip-

tional coactivators and chromatin remodeling complexes

[7,13,14,17].

p38 signalling in early bone development has also been studied

in mouse models. Analyses of mice lacking TAK1, MKK3 or

MKK6 display profound defects in bone formation and develop-

ment. However, these defects differ depending on anatomical

location. For instance, only MKK6 contributes to calvarial

mineralization [5,7]. The study of developing long bones of mice

with specific deletion of p38a in osteoblasts showed a progressive

decrease in bone mineral density in cortical and trabecular bone

[18]. Although existing reports indicate the role of p38 signalling

in early bone formation and skeletogenesis, its specific contribu-

tions to adult bone remodelling are still to be clarified. In earlier

models p38 signalling was impaired in osteochondroprogenitors or

osteoblasts during early bone formation both in utero and

perinatally [7,18]. Furthermore, it has been hypothesized that,

whereas p38a is required for early osteoblast differentiation, p38b
is the main isoform involved in late maturation and postnatal

function [7].

Here, we evaluated osteoblast-specific deletion of p38a to

determine whether it is necessary in early skeletogenesis as well as

for bone homeostasis in adult bones. Early p38a deletion results in

defective intramembranous and endochondral ossification through

decreased expression and function of osteoblast-specific transcrip-

tion factors and their targets. More importantly, deletion of p38a
at three or eight weeks postnatally leads to significantly lower

trabecular bone volume at 30 weeks and lower cortical volume

and thickness at 60 weeks. These results demonstrate that p38a
plays an essential role in the maintenance of osteoblast function

during bone remodeling and that clinical development of p38

inhibitors should take into account their potential effect on bone.

Results

Osteochondroprogenitor-specific deletion of p38a in
mice

To determine the function of p38a MAPK, we generated mice

whose p38a was selectively disrupted in osteochondroprecursors

under the control of a tetracycline-responsive promoter (Osx1-

GFP::Cre) [19]. Osx1-GFP::Cre:p38aflox/flox mice, grown in the

absence of doxycycline treatment (hereafter referred to as p38a
knockout mice, KO), were born with the expected Mendelian

frequency. Their viability was indistinguishable from those of

control mice (p38aflox/flox; FF).

Efficiency of Cre activity, assessed by PCR analysis of calvarial

DNA, stood at 50% to 80% (Fig. 1A). Osx1::Cre-mediated floxed

recombination occurred exclusively in tissues that contain

osteoblasts, whereas other tissues of mesenchymal origin retained

intact floxed alleles (data not shown). In line with results from a

previous report, body weight in male Osx1GFP::Cre mice was

lower than in control littermates [20]. However, body weight of

knockout mice was significantly lower than that of either control

(FF) or Osx1-GFP::Cre mice (Figure S1). We further analyzed

p38a expression in calvaria and tibia, as well as osteoblasts isolated

from knockout mice and control littermates. In bone tissues and

cultured osteoblasts we obtained a 60% reduction in p38a mRNA

expression with no significant changes in the expression levels of

the other p38 MAPK isoforms (Fig. 1B–C). Reduction in the p38a
mRNA levels also resulted in decreased p38a protein expression in

the calvaria of p38a-deficient mice (Fig. 1D). Interestingly, when

phosphorylated levels of p38 isoforms or CREB (a target of p38

MAPK signalling) were analyzed, they had been reduced by about

the same extent as p38a protein levels (Fig. 1D). These data

suggest that the p38a isoform contributes to the total p38 MAPK

signalling in mature osteoblasts.

Figure 1. p38a specific-deletion in osteoblast progenitors. (A) PCR of calvarial bones of control (FF) and knockout (KO) mice using specific
primers against Mapk14 (p38a) demonstrate gene deletion in KO mice after Cre-mediated recombination. (B) qRT-PCR of mRNA from calvaria or tibia
displays p38a (MAPK14) reduced expression in knockout versus control littermates (n = 7 for KO and 13 for FF). (C) Expression of p38 isoforms in
primary osteoblasts (p38a/MAPK14; p38b/MAPK11; p38c/MAPK12; p38d/MAPK13) (n = 6 independent animals). (D) Calvarial protein levels of p38,
phospho-p38, Creb, and phospho-Creb show impaired MAPK signalling in knockout animals (n = 3 independent animals) (*p,0.05; **p,0.01; ***p,
0.001).
doi:10.1371/journal.pone.0102032.g001

p38a Is Required for Bone Homeostasis in Adult Mice
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Cranio-facial and skeletal alterations in p38a knockout
mice

Skeletal preparations of newborn knockout mice showed

hypoplastic cranio-facial bones compared to littermate controls

In particular, impaired mineralization of frontal and parietal bones

and delayed posterior fontanel ossification (Fig. 2A). Later, X-ray

images further confirmed a hypomineralization of the calvaria and

abnormal development of the maxilla and mandible in 8 week-old

mice (Fig. 2B). Skeletal preparations showed no other obvious

changes in the overall skeletal structure, although a small but

significant decrease in the length of long bones was observed in

knockout mice (femur length of knockout mice was 92% that of

control mice). Both male and female knockout mice similarly

displayed these cranio-facial phenotypes (data not shown).

Histological evaluation of calvaria from p38a knockout and

control mice at 12 weeks of age showed a substantially lower

thickness in knockout than in control mice (Fig. 3A). Similarly,

staining of proximal tibiae and distal femurs showed thinner

cortical bone and a significantly smaller trabecular area in tissues

from knockout than in tissues from control or Osx1-GFP::Cre

mice (Fig. 3B&C). These data indicate that deletion of p38a in

osteochondroprogenitors leads to a strong decrease in bone mass

of both intramembranous and endochondral origins. They also

corroborate previous reports showing that the bone phenotype in

young Osx1-GFP::Cre mice was overcome by 12 weeks of age,

with no differences observed between Osx1-GFP::Cre and control

mice [20,21]. There was no change in the number of osteocytes

per area but, since the cortical area in p38a-deficient tibiae was

lower, the total number of osteocytes was also lower in cortical

samples from knockout mice (Fig. 3C).

For more accurate measurements of bone structure, trabecular

and cortical bone architecture were assessed by micro-computed

tomography (mCT) in male mice. Collectively, the mCT quanti-

tative results confirmed histological images. p38a-deficient adult

mice at 12 weeks of age showed less trabecular bone volume in

distal femurs associated with low trabecular thickness (17% less)

and a significantly lower trabecular number (Fig. 4A). In addition,

knockout mice also displayed decreased femoral cortical bone

volume and thickness (30% and 19% reduction, respectively)

(Fig. 4B).

Disruption of p38a impairs osteoblast differentiation and
function

In order to discern if p38a affects osteoblastogenesis, we

conducted colony-forming assays from bone marrow cultures.

Undifferentiated mesenchymal cells from long bones did not show

differences in fibroblastic colony forming units. After culturing

them for 18 days in osteoblast differentiation medium, cell cultures

were stained for alkaline phosphatase activity, showing a

significant decrease (24% reduction) in KO alkaline phospha-

tase-positive colonies when compared to FF cultures (Fig. 5A). To

further characterize the osteoblastic role of p38a, RNA was

isolated from both the calvaria and bone marrow-flushed tibia of

mice at 12 weeks of age. Expression of osteoblast genes from p38a-

deficient mice and littermate controls was measured by qPCR

(Fig. 5B,C). Expression of the early osteoblast differentiation

marker Col1a1 was decreased in calvaria and tibia (reaching a

significantly lower value only in tibiae). In addition, expression of

the late osteoblast differentiation markers bone sialoprotein (Ibsp),

fibromodulin (Fmod) and osteoglycin (Ogn) [3,22] fell to a greater extent,

as did the known osteocyte markers Dkk1, Fgf23 and sclerostin (Sost)

[23] (Fig. 5B,C). These results indicate that progression of

osteoblast differentiation in vivo is defective in knockout mice,

beginning at an early stage and more dramatic at later stages.

To grasp the mechanisms for such transcriptional effects on

osteogenic markers, expression of osteoblast-specific transcription

factors was also analyzed at 12 weeks of age. Expression levels of

Dlx3, Dlx5 or Runx2 were, at most, only slightly lower in tibiae and

calvarial tissues of knockout mice and Msx2 was only significantly

lower in calvarial samples. However, Id1 or Osx, which are

induced later in development [13,24,25], showed significantly

lower expression in both calvaria and tibiae of knockout mice

(60% less than in control mice). Reduction in the Osx mRNA levels

also resulted in lower OSX protein levels in the calvaria of p38a-

deficient mice, whereas there was no change in RUNX2 protein

levels (Fig. 5D).

p38a-deficient mice did not show significant changes in the

serum alkaline phosphatase levels, a known marker of bone

formation [26]. Similarly, calcium and phosphate levels in serum

and urine remained unchanged between knockout and control

littermates (Figure S2). Rankl and Opg mRNA expression was

analyzed in tibiae from mice at 12 weeks of age to determine

whether increased osteoclastogenesis could also explain the lower

bone mass of knockout mice. Both Rankl and Opg expression were

lower in knockout mice. However, the relative Rankl/Opg ratio,

which determines osteoclast activation [27], was not significantly

altered (Fig. 6A,B).Similarly, expression of the osteoclast marker

Trap (tartrate-resistant acid phosphatase) was not modified

(Fig. 6A). To further explore changes in bone resorption, we

measured cross-linked N-terminal telopeptides of type I collagen

(NTX) levels in serum of fed and fasted mice [28]. NTX levels

were slightly lower in serum of p38a-deficient mice, although they

did not reach significant variation (p = 0.061) (Fig. 6C). Moreover,

specific staining for TRAP activity in tibiae preparations did not

show gross differences in the number of positive cells or in the ratio

between osteoclast surface and trabecular bone surface (Fig. 6D).

These results indicated that p38a inactivation in osteoblasts did

not increase osteoclast function, and that the reduced bone mass in

these mice was not due to increased bone resorption.

Figure 2. p38a deletion is associated with bone developmental
defects. (A) Alcian blue/alizarin red staining of P7 mice pups. Alcian
blue and alizarin red stain cartilage and calcified structures respectively
(FB: frontal bone; PB: parietal bone; PF: posterior fontanel) (B)
Radiographic lateral projections of 8-week old mice show maxilla and
mandible hypoplasia (# marks maxilla and * marks mandible).
doi:10.1371/journal.pone.0102032.g002

p38a Is Required for Bone Homeostasis in Adult Mice
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To further explore the cell mechanism involved in the bone

phenotype of p38a-deficient mice, we isolated and analyzed

primary osteoblasts in vitro from knockout and control littermates.

In isolated calvaria, as well as freshly isolated osteoblasts from

knockout mice, expression of the EGFP-Cre transgene was evident

in almost all osteoblasts (Fig. 7A). Once the osteoblasts were

cultured in vitro, EGFP-Cre expression declined over time.

Osteoblasts from knockout or control mice showed no significant

differences in their proliferation rate under media with or without

fetal bovine serum as mitogenic stimulus (Fig. 7B). Osteoblasts

from knockout and littermate controls were also cultured to

confluence in osteogenic media for 10 days and their RNA was

extracted and analyzed. As previously found for calvaria and tibia

samples, Runx2 expression was unaltered and Col1a1 expression

was slightly lower without reaching significance, whereas the

markers of late differentiation osteocalcin (Bglap) and Osx showed

significantly lower values than osteoblast cultures from control

animals (Fig. 7C). Taken together, these results indicate that p38a-

deficient osteoblasts have a cell-autonomous defect in differenti-

ation potential and further osteogenic function.

Skeletal alterations after deletion of p38a in adult mice
To evaluate the role of p38a in fully formed bones, doxycycline

was delivered in drinking water to pregnant mothers and to

newborn mice until 3 or 8 weeks of age. Doxycycline represses the

Osx1-GFP::Cre promoter and recombination at the p38a locus

(exons 2–3) is prevented until doxycycline is removed from

drinking water [19]. Mice that received doxycycline until 3 weeks

after birth were killed at 30 or 60 weeks of age and those that

received doxycycline until 8 weeks of age were killed at 60 weeks

(Fig. 8A). qRT-PCR analysis showed that p38a expression was

reduced (60% compared to control) in bones of mice at 30 or 60

weeks of age (Fig. 8D). mCT analysis was performed on distal

femurs of these mice. Whereas we found no major changes in

cortical parameters with age in control animals, there was an age-

dependent 42% decrease in trabecular bone volume accompanied

by a decrease in trabecular number in control animals by 31%

(Fig. 8B,C and Figure S3). These results fully corroborate previous

data on C57BL/6 mice [29]. Cortical analysis at the femoral mid-

shaft showed that deletion of p38a three weeks postnatally results

in minor differences in cortical bone parameters after 30 weeks.

However, 60 weeks after p38a deletion bone volume was lower

(16% reduction) due to a significant decrease in cortical thickness

(Fig. 8C and Figure S3). Similarly, deletion at 8 weeks after birth

and analysis at 60 weeks showed lower bone volume (9% less in

KO animals) and a reduction in cortical thickness (12% thinner).

These results suggest that postnatal deletion of p38a results in

cumulative effects over time on cortical bone turnover.

In contrast to the late effects (60 weeks) of p38a deletion on

femoral cortical thickness, the effects in trabecular bone were more

clearly seen at early ages. Deletion of p38a three weeks postnatally

led, after 30 weeks, to reduced bone volume and trabecular

number (20% and 16% reduction, respectively) but no changes in

trabecular thickness (Fig. 8B). However, after 60 weeks there were

Figure 3. Histological analysis of bones from control and p38a knockout mice. (A) Representative images of calvarial sections stained with
H&E. Right panel shows quantification of calvarial thickness (n = 5 independent animals). (B) Representative images of long bone sections stained
with H&E. Quantification of trabecular area and trabecular number from tibiae sections are shown in the right panel (n = 3 (KO) and 4 (FF)
independent animals). (C) Thickness and osteocyte count from cortical areas of long bone stained with toluidine blue (n = 3–6) (*p,0.05; **p,0.01;
***p,0.001).
doi:10.1371/journal.pone.0102032.g003

p38a Is Required for Bone Homeostasis in Adult Mice
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no significant changes in the trabecular bone parameters in

animals with p38a deletion at either 3 or 8 weeks (Fig. 8B and

Figure S3). These data suggest that the effects of age-dependent

reduction on trabecular bone could make it difficult to detect

differences between groups [30]. Alternatively, progressive age-

dependent reduction in trabecular number could dampen the

p38a deletion effects in order to maintain some biomechanical

competence. Moreover, our data reinforce the idea that bone

remodelling has different patterns on cortical and trabecular

surfaces [29,31,32]. We also analyzed the expression of osteoblast

markers in animals at 30 weeks of age and treated them with

doxycyline until 3 weeks of age. qRT-PCR data showed invariant

levels of Runx2 mRNA but a significant decrease in the late

osteogenic markers Ibsp, Osteocalcin and Osx (Fig. 8D)

Discussion

Recent studies have documented the importance of p38

signalling in skeletal development in vivo. Mice in which TAK1,

MKK3 or MKK6 were deleted in osteochondroprogenitors from

early development had low bone mass phenotype due to impaired

osteoblast differentiation [7]. Similarly, when p38a deletion in

osteoblasts occurred during late embryogenesis, mice developed a

progressive decrease in bone mineral density (BMD) [18]. These

effects also appeared with a different temporal pattern. For

instance, inactivation of p38 signalling in osteochondroprogenitors

(Osx1-GFP::Cre) (deletion around E14–15 [19]) resulted in

skeletal defects in newborn mice, whereas inactivation in late

embryogenesis (E-16.5–18.5) in Ocn-Cre showed no significant

alterations before five weeks of age [7,18,33].

Our results confirm that p38a is critical for early bone

formation and development; they also demonstrate this require-

ment for bone homeostasis in adulthood. We took advantage of an

inducible Cre system that controls the onset of p38a disruption

after birth by removing doxycycline from drinking water [19]. We

performed the deletion of p38a at 3 weeks of age, when the bone

architecture is already established, and BMD and cortical

thickness is about 60–70% of that of adult mice, or at 8 weeks

of age, when mineralization in cortical and trabecular bone has

already reached peak values [29,31,34,35]. Significant trabecular

bone loss was detected at 30 weeks of age. However, at 60 weeks of

age cortical bone volume and thickness were lower while

differences from control mice in trabecular bone volume and

number no longer persisted in p38a knockout animals. In

confirmation of our results, most previous studies in aged mice

in B6 background established that trabecular bone loss was mostly

dependent on complete elimination of individual trabeculae,

whereas trabecular thickness was not affected and sometimes even

increased [29,36,37]. This effect mirrors morphological traits of

osteoporosis in humans [38,39]. In our model, p38a had a

significant effect on bone remodelling after 30 weeks of age. One

can speculate that, later on, these effects could be tempered by the

age-dependent reduction in trabecular bone, to maintain some of

the latter’s biomechanical competence in face of decreasing

Figure 4. mCT evidences osteopenic bones in p38a deficient bones of 12-week-old mice. (A) The distal epiphysis of femurs from control
and knockout littermates were analysed by mCT. Trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) and
trabecular separation (Tb.Sp.) were determined (n = 8 (KO) and 12(FF)). (B) Femur cortical bone analysis of 12-week-old male mice revealed that
knockout mice had decreased cortical volume and thickness around the midshaft. Bone volume (BV), bone area (B.Ar), bone perimeter (B.Pm) and
cortical thickness (Ct.Th) were determined (n = 6 (KO) and 12 (FF)) (*p,0.05; **p,0.01; ***p,0.001). Differences between values from KO and FF mice
(expressed as %) are also included (C) Representative images of distal femur diaphysis and (D) femur cortical bone from control and knockout mice
are also shown.
doi:10.1371/journal.pone.0102032.g004

p38a Is Required for Bone Homeostasis in Adult Mice
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Figure 5. p38a deletion in osteoblasts affects the expression of osteogenic markers. (A) Graphs show fibroblast-colony forming units
(CFU-F) (upper panel) and osteoblast-colony forming units (Ob-CFU) of mesenchymal stem cells from bone marrow of FF and KO long bones (n = 9
per genotype). Representative images are also shown. (B&C) qRT-PCR of mRNA extracted from calvariae (B) and long bones (bone-marrow flushed out
tibiae and femurs) (C) of 12-week-old mice (n = 4 (KO) and 8 (FF) independent animals). (D) Protein levels of OSX and p38a were decreased in calvaria
from knockout mice. Left panel: western blot of calvarial bones showing Osterix (OSX), RUNX2, p38a and alpha-TUBULIN as control. Right panel:
graph depicting densitometric analysis of western blots (n = 3(KO) and 6(FF)) (*p,0.05; **p,0.01; ***p,0.001).
doi:10.1371/journal.pone.0102032.g005

p38a Is Required for Bone Homeostasis in Adult Mice
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cortical strength. Similar mechanisms of compensation in aged

mice have been suggested in different models of bone loss in

rodents [36,37,40]. When p38a was deleted after peak bone

values, the cumulative reduction in cortical bone volume and

thickness became apparent only after 60 weeks of age. Thus, in

addition to its role in early skeletogenesis and mineralization, p38a
is also essential for differentiation of osteoblasts and/or for

osteoblasts to maintain their function in mineralized adult bone.

As a result of this, our data also show that efficient bone

remodelling throughout life requires p38 function and that

inhibition of this signalling pathway would result in significant

osteoblast malfunction during chronic treatments. Several chem-

ical p38 MAPK inhibitors have been developed and envisaged as

potential autoimmune or anti-inflammatory drugs as well as

inhibitors of neuropathic pain [41,42]. Our data support the view

that osteoporotic side-effects should be taken into account, even

for highly selective p38 kinase inhibitors. Similarly, the effects of

p38 signalling on the bone resorption activity of osteoclasts should

also be analyzed. Inhibition of p38 signalling in osteoclasts has

been shown to reduce their resorptive activity and improve

trabecular bone loss induced by estrogen deficiency [10].

Bone remodelling depends on a highly coupled balance between

osteoblast and osteoclast functions. Even though osteoblast

function was defective, no significant differences in Rankl/Opg

ratio or in TRAP staining of tibiae were found and only a slight,

but not significant, decrease in serum NTX was obtained in p38a-

deficient mice. These results indicate that impaired osteoblast

function due to the lack of p38a did not severely modify osteoclast

function. Moreover, the effects of p38a deletion were also marked

during differentiation of osteoblast cultures in vitro or osteoblasto-

genesis from mesenchymal stem cells, confirming that changes in

osteoblast function are cell-autonomous and do not rely on

inaccurate osteoblast-osteoclast communication.

p38a activation is normally associated with anti-proliferative

functions, since negative regulation of proliferation has emerged as

a highly conserved function of p38a in various types of primary

cells [43]. We could not find changes in osteoblast proliferation

and/or apoptosis that could explain their lower function in vivo.

Similar absence of effects on proliferation and/or apoptosis has

Figure 6. p38a blockage does not affect bone resorption parameters. (A) Rankl, Opg and Trap mRNA levels in long bones from knockout and
control mice (n = 5 (KO) and 8 (FF) independent animals). (B) The Rankl/Opg expression ratio was not modified. (C) N-terminal telopeptides of collagen
from serum of 12-weeks-old mice do not display significant differences between control and knockout mice (n = 4 (KO) and 10 (FF) independent
animals). (*p,0.05; **p,0.01). (D) TRAP staining of proximal tibiae from FF and KO mice (n = 3 per genotype) showed no differences in osteoclast
parameters (N.Oc./B.S., numbers of osteoclast/Bone perimeter; Oc. S./B.S, osteoclast surface/Bone perimeter). Data is presented as means 6 SEM.
Image shows representative images counterstained with fast green (206 and 406magnification).
doi:10.1371/journal.pone.0102032.g006

p38a Is Required for Bone Homeostasis in Adult Mice
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been demonstrated in vitro in mesenchymal osteoblast precursors

[9,44]. Thus, our data imply that p38a-deficient osteoblasts have a

cell-autonomous defect in differentiation potential that impairs

their osteogenic and mineralizing function. Moreover, additional

effects of p38a deficiency in bone turnover could involve the

ability of p38 signalling to modulate the motility of osteoprecursors

and osteoblasts. Although not addressed in this report, migration

of mesenchymal stem cells in vitro has been shown to depend on

p38 kinase activity and mouse models of impaired motility of

osteoblasts also result in reduced bone mass [45,46,47]

It was previously suggested that, since only mice with deletion at

MKK6, and not MKK3, had calvarial hypomineralization,

signalling from distinct p38 isoforms could differently affect

intramembranous and endochondral ossification [5]. Further-

more, although whole-body deletion of p38b in mice was reported

to have no major phenotype, it was later shown that they had

osteopenia of long bones [7,48]. Our results indicate that p38a is

an indispensable isoform involved in both intramembranous and

endochondral bone development. Deletion of p38a during

embryogenesis affected intramembranous calvarial bone develop-

ment as early as on postnatal day 7. Similarly long bones arising

from endochondral ossification also showed an important reduc-

tion in both trabecular and cortical bone at very early

developmental stages. So far no major differences in substrates

and transcriptional targets activated by p38a or p38b have been

shown, suggesting their functional redundancy [49]. It could thus

be hypothesized that the relative role of these two subunits would

largely depend on their differential tissue expression and/or

activity in osteoblast cells.

Mechanistically, in our mice model, lack of p38a leads to similar

changes in the expression of osteoblast-specific transcription

factors in calvaria, long bone and in vitro osteoblast cultures.

Whereas expression levels of Dlx3, Dlx5 or Runx2 did not show

significant changes and Msx2 decreased only in calvaria, Osx levels

decreased in all three conditions. These results corroborate in vitro

data for which chemical inhibition of p38 signalling did not

change Dlx3, Dlx5 or Runx2 expression, but blocked the

transcriptional induction of Osx expression by BMP2 [13]. OSX

have been shown to regulate transcriptionally the expression of

Col1a1, Ibsp, Bglap and Dkk1 [14,15,50,51,52]. Lower levels of

OSX could account for impaired osteoblast maturation and

function, through decreased transcription of these osteoblast and/

or osteocyte genes. Furthermore, evidence demonstrates that

several osteoblast-determining transcription factors are substrates

of p38 and ERK MAPKs. It had previously been shown that

DLX5, RUNX2 and OSX are substrates of p38 and multiple

phosphorylated serines were identified [7,13,14,16]. Phosphoryla-

tion of these factors promotes increased transcriptional activities

for all of them through better recruitment of the transcriptional

cofactor p300/CBP or the SWI/SNF subunit Brg1 [7,13,15].

Therefore, phosphorylation of DLX5, RUNX2 and OSX by p38

signalling constitutes an integration point, at which extracellular

stimuli converge in the regulation of this MAPK. As a result, p38-

dependent phosphorylation promotes their transcriptional activity

and induces osteoblast maturation and function in bone remod-

Figure 7. In vitro analysis of primary cultures reproduces the gene expression disturbances seen in vivo. (A) Images show bone chips
and isolated osteoblasts from KO animals after collagenase treatment. From left to right: 1, 2, 3 and 5 days post-digestion. Endogenous GFP
expression from the Osx1-GFP::Cre transgene is lost as culture advances. (B) BrdU incorporation on primary osteoblasts cultures. (C) qRT-PCR reveals
the comparative mRNA expression levels of Col1a1, Bglap (OC), Osx and Runx2 in primary cultures of osteoblasts from control and knockout pups
(n = 6 independent animals per genotype). (*p,0.05; **p,0.01).
doi:10.1371/journal.pone.0102032.g007
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Figure 8. p38a is necessary for adult bone homeostasis. (A) Scheme of doxycyline (doxi) administration and sacrifice of the different mice
groups analyzed. (B) The distal femoral epiphysis of control and knockout mice after different time of doxycycline (doxi) treatments (3 or 8 weeks)
were analyzed by mCT at 30 or 60 weeks of age. Trabecular bone volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) and
trabecular separation (Tb.Sp.) were determined (n = 5 (KO) and 8 (FF)). (C) Cortical bone volume (BV), bone area (B.Ar), bone perimeter (B.Pm) and
thickness (Ct.Th) analysis was performed in femur midshafts from these animals (n = 5–8). Data are presented as means 6 SEM. (*p,0.05). Differences
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eling and homeostasis. Our results agree with previously demon-

strated requirements of OSX function for skeletal maintenance

and osteoblast and osteocyte function during adulthood [53].

In summary, our data demonstrate that p38a is necessary both

in early skeletogenesis, as well as in the maintenance of osteoblast

differentiation and function during bone remodeling in adult life.

Loss of p38a in osteoblasts impairs the expression and phosphor-

ylation of osteoblast-specific transcription factors, blocking further

osteoblast maturation and function. Our data also emphasize that

clinical development of p38 inhibitors should take into account

their potential effects on bone.

Materials and Methods

Generation of conditional Mapk14 knockout mice
To delete p38a (Mapk14) specifically in osteochondroprogeni-

tors, mice carrying loxP sequences flanking p38a alleles (a

generous gift from Drs. Nebreda and Dr Pasparakis [54]) were

crossed with Osx1-GFP::Cre (Osx:Cre) [19]. As the resulting Osx1-

GFP::Cre;Mapk14f/f (KO) were fertile and born in the anticipated

Mendelian ratio, they were crossed with Mapk14f/f (FF) to generate

sibling control and KO mice. The Osx-Cre mouse line contains a

tTA and a tetracycline-responsive element that allows the

expression of Cre recombinase only in the absence of doxycycline.

By maintaining the animals under a doxycycline regime (0.2 mg/

ml in drinking water) we were able to control the timing of p38a
excision. Three different regimes were examined: (1) doxycycline

during pregnancy; (2) either until 3 weeks or until 8 weeks of

postnatal life; (3) no doxycycline treatment to pregnant mothers or

newborns (Fig. 8A). The mice were housed under controlled

conditions (12 h-light/12 h-dark cycle, 21uC, 55% humidity) and

fed ad libitum with water and a 14% protein diet (Teklad 2014,

Harlan). Unless otherwise stated, all experiments were performed

in male mice. All animal protocols were approved by the Ethics

Committee for Animal Experimentation of the University of

Barcelona (Barcelona, Spain).

Genotyping (PCR)
Total DNA was extracted from a 3 mm piece of mouse tail. The

Osx1-GFP::Cre transgene was identified by PCR using the

following primers: OsxCre1: 59-CTC TTC ATG AGG AGG

ACC CT and OsxTGCK: 59-GCC AGG CAG GTG CCT GGA

CAT giving a resulting PCR band of 510 bp. The Mapk14 lox-P

cassette was identified by the primers FloxX: 59-CTACAGAATG-

CACCTCGGATG and FloxY: 59- AGAAGGCTGGATTTG-

CACAAG (resulting bands of 188 for the floxed allele and 121 for

the wild-type). Effective recombination was assessed by PCR of

bone samples using the Flox X primer and the FloxZ: 59-

CCAGCACTTGGAAGGCTATTC, resulting in a band of

411 bp.

Immunoblot analysis
Protein lysates were prepared from bone samples homogenized

with a Polytron device in 50 mM Tris, pH 6.8, 10% glycerol and

1% SDS, separated by SDS-polyacrylamide gel electrophoresis,

transferred to nitrocellulose and analyzed by immunoblotting.

Membranes were incubated with specific antibodies for p38a
(1:1000 Cell Signaling), p-p38 (Cell 1:1000 Cell Signaling), p-

CREB (1:1000 Cell Signalling), OSTERIX (1:1000 Abcam)

RUNX2 (1:1000 MBL) and a-TUBULIN (1:5000 Sigma).

Horseradish peroxidase-conjugated anti-rabbit and anti-mouse

secondary antibodies were used (GE).

Primary osteoblast cultures and CFUs
Primary osteoblasts were seeded in culture after collagenase

digestion of calvariae from P1–P4 mice pups. Bones were dissected

from euthanized pups and their sutures and soft tissue were

discarded. 8–12 calvariae were pooled per genotype and serially

digested in a trypsin (0.025%)/collagenase II solution (1 mg/ml).

The product of the first 5 minutes of digestion was discarded,

while the product of a double 40-minute digestion was centrifuged

(1200 rpm, 5 min.) and seeded on 60 mm culture plates. Primary

osteoblasts were cultured in a-MEM with10% Fetal Bovine Serum

(FBS) and penicillin-streptomycin (P-S). The cultures were

expanded and used between passages 2–3. For colony-forming

units (CFUs) assay bone marrow cells were flushed from tibiae and

femurs from 8-week old FF and KO mice. Cells were seeded in

DMEM with 10%FBS and the medium was replaced every 3 days.

When the cultures reached 70% of confluence, attached cells were

tripsinized for 3 minutes at room temperature and expanded.

Then 5000 cells were seeded per well (6-well plate). For CFU-

Fibroblasts, cultures were fixed and stained with crystal violet

solution (0.2% crystal violet, 2% ethanol) for 30 minutes at 37uC.

Then wells were washed with tap water and air-dried. Colonies

(greater than 50 cells) were counted. For CFU-Osteoblasts, cells

were grown in osteoblast differentiation medium (a-MEM,

10%FBS, 10 mM beta-glycerophophate, 50 mg/ml vitamin C,

1 nM dexamethasone and P-S) for 18 days. Colonies were stained

for alkaline phosphatase activity using alkaline phosphatase kit

from Sigma (86-R). Positive ALP colonies (bigger than 50 cells)

were counted.

Radiographic and mCT analysis
For conventional radiography 8 week-old mice were anesthe-

tized with isofluorane and lateral radiographies were taken with a

portable device. For mCT mice were euthanized at different ages

and their hind limbs were dissected and cleaned of soft tissue.

Femur and tibia were fixed in 4% PFA for 24 hours and stored in

PBS with sodium azide at 4uC until the analysis. The mCT image

was acquired through an aluminum filter of 1 mm, with the

samples in air in a SkyScan 1076 High resolution in-vivo micro-

CT scanner (SkyScan, Kontich, Belgium). Selection of the scan

energy and voxel size was based on optimizing the requirements of

scanning time and tissue detail. The following conditions were

used: 9 mm isotropic voxel size was used, at 50 kV, 200 mA with an

exposure time of 1600 ms and 180u rotation. Scans were

reconstructed using the Recon software provided by SkyScan. For

trabecular measurements, a 1 mm-diameter circular VOI was

employed, starting at 100 slices from the distal growth plate of the

femur and extending to the diaphysis for 150 slices. Cortical

measurements were computed manually delineating the femur

medial cortex for 100 slices around the femur midshaft. A

Gaussian noise filter was applied for the reconstruction. The

CTscan SkyScan software was used for image analysis A global

binary threshold was manually established at 25 for trabecular

analysis and 155 for cortical analysis.

between values from KO and FF mice (expressed as %) are also included. (D) qRT-PCR showing gene expression of calvariae from 30-week old FF and
KO mice treated with doxycycline until 3 weeks of age (Doxi 3–30). Graph shows levels of p38a (Mapk14), Runx2, bone sialoproteı̈na (Ibsp), osterix (Osx)
and osteocalcin (Oc) (FF n = 4, KO n = 5) (*p,0.05; **p,0.01).
doi:10.1371/journal.pone.0102032.g008

p38a Is Required for Bone Homeostasis in Adult Mice

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e102032



Histological preparations
For histological preparations, samples were fixed in 4%

paraformaldehyde for 24 h at 4uC, decalcified in EDTA and

HCl for 2–4 days at 4uC and processed for paraffin embedding.

Samples were cut in 4 mm sections and stained with toluidine blue,

Masson’s trichrome or hematoxylin/eosin. To reveal changes in

cartilage and bone of the entire skeleton, P7 newborn mice were

sequentially stained with alcian blue (0.015% alcian blue 8GX)

and alizarin red (0.005% alizarin sodium sulfate) after fixation with

95% ethanol. Samples were cleared with 1% KOH and

maintained in glycerol:ethanol (1:1). For TRAP staining, long

bone samples were decalcified in EDTA for 10 days and processed

for paraffin embedding. Deparaffinied slides were prewarmed with

basic incubation solution (sodium acetate, sodium tartrate and

glacial acetic acid) for 30 minutes at 37uC. Then, naphtol-ether

substrate (naphtol AS-BI phosphate, 2-ethoxiethanol) was added.

After 1 hour incubation at 37uC, slides were placed in a new

bucket containing basic incubation buffer plus sodium nitrite and

pararonsaniline dye (pararosaniline dye in 2 N HCl) in order to

develop specific osteoclast staining (5 minutes, 37uC). Preparations

were counterstained with 0.02% fast green for 45 seconds. 3

different sections from 3 independent animals were analyzed per

genotype.

qRT-PCR
Bone samples were dissected from euthanatized animals and

immediately frozen in liquid nitrogen. Prior to congelation bone

marrow was removed from long bones. For that purpose, epiphysis

were cut and discarded and, by means of a 26G-needle, PBS was

flushed through the diaphysis until bone marrow was removed.

Bone samples were individually homogenized using a Polytron

device and RNA was extracted from bone or cell samples by

TriSure (Bioline). RNA from tissue samples was extracted and

processed individually. A minimum of 4 samples (from different

animals) per group was considered for each experiment (n stated in

Figure Legends). At least 2 mg of purified RNA were retro-

transcribed using the High Capacity Retrotranscription Kit

(Applied Biosystems). Quantitative PCRs used an ABI Prism

7900 HT Fast Real-Time PCR System and a Taqman 59-nuclease

probe method or customized TLDA arrays (Applied Biosystems).

50 ng of cDNA were used per reaction (two replicates per sample)

on a 384-well plate. All transcripts were normalized to Gapdh

expression.

BrdU incorporation and serum analysis
For the BrdU incorporation assay 2000 cells per well were

seeded in a 96-well culture plate. 24 hours later, BrdU labeling

solution was added for 4 hours. BrdU incorporation into DNA

was quantified with the Cell Proliferation ELISA kit (Roche).

Blood was collected from posterior vena cava. It was left to clot for

1–2 h at room temperature and centrifuge at 1000G to obtain

blood serum, which was immediately frozen at 280uC for

posterior analysis. Cross-linked N-telopeptides of type I collagen

(NTX) in mouse serum were measured by ELISA kits (Cusabio

Biotec, CO). Alkaline Phosphatase (ALP) levels were determined

following the recommendations of the International Federation of

Clinical Chemistry. For calcium and phosphate concentration, the

arsenazo III and molibdate methods were applied respectively.

ALP, calcium and phosphate levels were analyzed at the Clinical

Biochemistry Service of the Faculty of Veterinary Medicine

(Universitat Autònoma de Barcelona) using an Olympus AU400

analyzer.

Statistical analysis
The Student’s t test was employed for statistical analysis.

Quantitative data were presented as means 6 SEM. Differences

were considered significant at p values of less than 0.05: *p,.05,

**p,.01, and ***p,.001.

Supporting Information

Figure S1 Weight progression curves show decreased weight

gain in knockout mice compared to control or Osx1-GFP::Cre

mice along 18 weeks (n = 9 (KO) and 18 (FF)).

(TIF)

Figure S2 Calcium and phosphate levels remain unchanged. (A)

Table shows blood serum levels of calcium (Ca), phosphate (Pi)

and alkaline phosphatase from 12 week-old FF and KO mice.

Data show no differences between FF and KO, either in fed (p.

0,05) or fasted state (p.0,05) (n = 13–16). (B) Urine levels of

calcium and phosphate are shown relative to creatinine (Cr)

excretion levels (n = 9–16). (*p,0,05; **p,0,01).

(TIF)

Figure S3 Representative images of distal femur diaphysis and

femur cortical bone from control and knockout mice subjected to

the distinct doxycycline administration and sacrifice regimes.

(TIF)

Acknowledgments
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