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Abstract

Introduction: Mounting evidence suggest that macrophages play crucial

roles in disease and tissue regeneration. However, despite much efforts

during the past decade, our knowledge about the extent of macrophages'

contribution to adult pancreatic regeneration after injury or during pan-

creatic disease progression is still limited. Nevertheless, it is generally

accepted that some macrophage features that normally would contribute

to healing and regeneration may be detrimental in pancreatic cancer.

Altogether, the current literature contains conflicting reports on whether

macrophages act as friends or foe in these conditions.

Methods and Results: In this review, we briefly review the origins of

tissue resident and infiltrating macrophages and the importance of cel-

lular crosstalking between macrophages and other resident cells in tissue

regeneration. The primary objective of this review is to summarize our

knowledge of the distinct roles of tissue resident and infiltrating macro-

phages, the impact of M1 and M2 macrophage phenotypes, and emerging

evidence on macrophage crosstalking in pancreatic injury, regeneration,

and disease.
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Conclusion: Macrophages are involved with various stages of pancreatic

cancer development, pancreatitis, and diabetes. Elucidating their role in these

conditions will aid the development of targeted therapeutic treatments.
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1 | INTRODUCTION

There are multiple subpopulations of macrophages
with distinct phenotypes dependent on the anatomical
location and microenvironment stimuli. The term
“macrophages” has been used to define a population of
cells descended from a mononuclear lineage specia-
lized for the identification, phagocytosis, and destruc-
tion of harmful biological agents, such as bacteria.
However, growing evidence suggests that cellular
crosstalk between macrophages and surrounding tissue
resident cells is an important aspect of tissue re-
generation. On the other hand, impaired macrophage
function, either due to inherent defects or abnormal
stimuli would instead contribute to disease progres-
sion. Here, we review an increasing body of literature

that describe the involvement of macrophages during
normal vs disease conditions.

2 | MACROPHAGE ORIGINS

Generally, there are three main populations of macro-
phages: yolk sac‐derived tissue resident macrophages,
fetal liver‐derived tissue resident macrophages, and bone
marrow–derived infiltrating macrophages (Figure 1).
Mounting evidence indicates that tissue resident macro-
phages and infiltrating macrophages arise from three
different waves of successive hematopoiesis that occur
throughout development and adulthood. Tissue resident
macrophages reside in the tissue and arise from the
embryonic precursors generated through the first two

FIGURE 1 Fetal hematopoiesis. There are three waves of successive hematopoiesis that occur throughout development and
adulthood: primitive, transient definitive, and definitive
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waves of successive hematopoiesis originating in the ex-
traembryonic yolk, whereas infiltrating macrophages
arise from common myeloid progenitor cells generated
during the third wave of hematopoiesis in
the bone marrow.1‐11 Briefly, the first wave is primitive
hematopoiesis and it arises from the extraembryonic
yolk sac and generates yolk sac progenitors that later
become primitive macrophages, erythroblasts, and
megakaryocytes.10‐13 The next wave is the transient de-
finitive wave that produces erythromyeloid precursors14

that remain locally and become yolk sac macrophages or
migrate to the fetal liver, upon establishment of fetal
blood circulation, and differentiate into other cell linea-
ges, such as monocytes.11,15,16 The third wave is definitive
hematopoiesis. Immature hematopoietic stem cells
(HSCs) emerge from the aorta‐gonad‐mesonephros and
not only migrate to the fetal liver to mature into fetal
HSCs, but also seed the fetal bone marrow to eventually
generate adult HSCs.10‐13,15,16 The HSCs eventually pro-
duce discrete intermediate progenitors, like common
myeloid progenitors that further differentiate into
monocytes17 (Figure 1). As such, HSCs from the defini-
tive wave are precursors to infiltrating macrophages;
however, the identity of tissue resident macrophage
precursors is still unclear. The current theories regarding
the origins of tissue resident macrophages has been ex-
tensively discussed elsewhere.11

Tissues are able to replenish their population of re-
sident macrophages through low‐level proliferation dur-
ing steady‐state, but this can be increased with bone

marrow–derived circulating monocytes that differentiate
into macrophages during pathologies.3,9,18‐21 Several
studies have shown that macrophage accumulation in
tissue after injury is due to the recruitment of circulating
monocytes, rather than the expansion of resident mac-
rophages.22‐26 Circulating monocytes are categorized into
two groups based on expression of the Ly6C marker.
Ly6C+ monocytes directly originate from the bone mar-
row progenitors, whereas Ly6C− monocytes are derived
from the Ly6C+ monocytes.6 The two types of blood
circulating monocytes also have different functions.
Ly6C− monocytes patrol the vasculature to remove da-
maged endothelial cells. On the other hand, Ly6C+

monocytes in the vasculature sense tissue damage, in-
filtrate the injury site, and differentiate into macro-
phages.27‐29 These infiltrating macrophages become
polarized (or activated) in response to signals associated
with pathogens or present in injured tissue. In fact, In-
filtrating macrophages exist across a dynamic M1‐M2
polarization spectrum with an array of intermediate
phenotypes in between.30 Stimulation from macrophage
colony stimulating factor 1, interferon‐γ (IFN‐γ), and
lipopolysaccharide (LPS) induces monocyte differentia-
tion into M1‐like (classic) macrophages, whereas other
factors such as interleukin‐4 (IL‐4), and IL‐13 induces
monocyte differentiation into M2‐like (alternatively acti-
vated) macrophages.19,31‐33 M1 cells are implicated in
initiating and sustaining inflammation through produc-
tion of high levels of proinflammatory cytokines, reactive
nitrogen and oxygen intermediates, while the more

FIGURE 2 Tissue regeneration. Upon injury, monocyte‐derived macrophages are recruited to the injury site and stimulated to
adopt a M1 phenotype. M1 macrophages are involved with clearing necrotic cells and tissue debris from the site, and inducing
cytotoxic processes, initiate the inflammatory response and secrete pro‐inflammatory cytokines (e.g. TNF‐a, IL‐1b, and IL‐6). During
the later stages of inflammation, there is a switch from the proinflammatory M1 to the prorepair M2 phenotype. M2 macrophages
promote tissue repair through the secretion of proangiogenic and growth factors (e.g. IL‐10, TNF‐a, IL‐1b, and IL‐6) and stimulation
of fibroblast deposition of granulation tissue. The macrophages predominantly involved with the initial inflammation response are
monocyte‐derived macrophages, whereas macrophages involved in inflammation resolution and tissue repair are tissue resident
macrophages in origin

CRUZ ET AL. | 809



heterogeneous M2 cells are characterized by alternative
arginine metabolism, exhibit a different chemokine ex-
pression profile and are associated with resolution or
smoldering chronic inflammation.32,34 In addition to
many immune‐related cytokines, macrophages also pro-
duce numerous effector molecules such as platelet‐
derived growth factor (PDGF), hepatocyte growth factor,
fibroblast growth factor, transforming growth factor
(TGF), and Wnt ligands.35 While macrophages can
broadly be described as having an M1 or an M2 pheno-
type, it is important to keep in mind that these segrega-
tions were defined in vitro, under well‐defined stimuli
and may not necessarily represent what happens in vivo.
Several studies have shown the fate and phenotype of
monocytes and macrophages are not as easily shaped by
external stimuli as once believed. In addition to the Ly6C
marker, monocytes can be further distinguished apart
with the expression of surface receptors C‐C motif che-
mokine receptor 2 (CCR2) and C‐X3‐C motif chemokine
receptor 1 (CX3CR1). Rodent studies have shown that
CCR2+CX3CR1

+Ly6Chi and CCR2−CX3CR1
++Ly6Clo

monocytes, upon appropriate stimulation, more readily
and specifically differentiate into M1 and M2 macro-
phages, respectively.36‐39 Furthermore, macrophages may
display the same M1 or M2 phenotype, but exhibit dif-
ferent expression profiles with respect for regenerative
factors such as Wnt ligands or growth factors.40

Altogether, the current literature highlights the ne-
cessity of a revision in how we define different macro-
phage polarization phenotypes, at least in studies
exploring the regenerative properties of macrophages.

3 | MACROPHAGES AND TISSUE
REGENERATION

Tissue regeneration is defined as the process in which
damaged or diseased tissue is renewed and regrown or
replaced, respectively. There are several types of tissue
injury that can occur, such as pathogen entry, oxidative
stress, or mechanical damage.41,42 On the other hand,
some tissues like the gut have constant low levels of
inflammation to maintain intestinal homeostasis.43

Regardless of the type of insult, cell death induces the
release of damage‐associated molecular patterns
(DAMPs) or pathogen‐associated molecular patterns
(PAMPs), which activate a number of receptors and re-
lease cytokines and chemokines to induce an in-
flammatory response and leukocyte recruitment to the
site of injury.41,42,44 The initiated tissue regeneration
process can be categorized into three different stages:
inflammation, proliferation, and restoration/remodeling.
A successful tissue regeneration process relies on a

complex interaction between cells that provide necessary
regenerative signals and cells that are receptive to those
signals. Several studies have shown how macrophages
provide and orchestrate the cues necessary for re-
generation after injury.22,35,45‐55 In general, infiltrating
monocyte‐derived macrophages are more involved with
the early inflammatory response, from clearing necrotic
cells and tissue debris from the site, inducing cytotoxic
processes, and promoting inflammation. On the other
hand, tissue resident macrophages hold a greater role
during inflammation resolution and tissue repair by
producing proangiogenic and growth factors and stimu-
lating fibroblast deposition of granulation tissue.9,41,42

Throughout tissue regeneration, there is a general pattern
of monocyte‐derived macrophages infiltrating the injury
site, adopting a proinflammatory M1 phenotype in the
early stages, and shifting to an anti‐inflammatory, pro-
repair M2 phenotype in the later stages56,57 (Figure 2).
The role of M1 and M2 macrophages in tissue re-
generation of liver, skeletal muscle, kidney, and nerves
are reviewed in depth elsewhere.56

The sequential occurrence of M1 and M2 macrophage
phenotypes is crucial for normal tissue regeneration57;
however, the mechanism underlying the phenotypic
switch is unclear. One theory is that the microenviron-
ment of some tissues, like the central nervous system, li-
ver, skeletal muscle, heart, and pancreas, produce
temporally dynamic and transient signals that induce in
situ M1 to M2 macrophage phenotype conversion. An in
situ conversion would explain why infiltrating macro-
phages are seen to possess both proinflammatory and anti‐
inflammatory/prorepair roles.22,58‐64 Signals that induce an
in situ conversion can be an increase/decrease in specific
factors, activation of a signaling pathway, or crosstalk
between macrophages and other cells. To begin with, a
reduction in DAMPs, PAMPs, and apoptotic neutrophils
has been shown to induce the switch in macrophage
phenotype from proinflammatory to anti‐inflammatory.41

In addition, during skeletal muscle regeneration, the
phagocytosis of cellular debris and the expression of se-
cretory leukocyte peptidase inhibitor and peroxisome
proliferator‐activated receptor γ (PPAR‐γ) promote con-
version of inflammatory CX3CR1

lo/Ly6C+ macrophages
into anti‐inflammatory CX3CR1

hi/Ly6C− macrophages.
CX3CR1

hi/Ly6C− macrophages promote myogenic differ-
entiation and myofiber growth and protection of myotube
differentiation, which is crucial for proper fiber membrane
repair.22 Moreover, in the kidney, the Wnt/β‐catenin sig-
naling pathway via Wnt3a‐induced upregulation and ac-
tivation of signal transducer and activator of transcription
3 (STAT3) has been shown to induce M2 macrophage
polarization.65 Finally, there is evidence of crosstalk
playing a role in the phenotypic switch in macrophages
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during tissue regeneration. In the heart, the switch from
inflammatory to anti‐inflammatory macrophages is medi-
ated by bone marrow–derived mesenchymal stromal cells
via IL‐10 secretion.66,67 However, an alternative theory is
that there is a sequential recruitment of macrophages and
expression of specific cell surface receptors at the injury
site. A study on myocardial infarction in mice showed that
the expansion of circulating Ly6Chi monocytes and ex-
pression of receptor CCR2 led to the migration of proin-
flammatory Ly6Chi monocytes to the injury site. Later,
expression of receptor CX3CR1 led to the preferential re-
cruitment of circulating Ly6Clo monocytes to the site.
Anti‐inflammatory Ly6Clo monocytes express vascular
endothelial growth factor (VEGF) and begin granulation
tissue formation. Therefore, it is the expansion of circu-
lating monocytes and specific CCR2 or CX3CR1 receptor
expression that drives a preferential recruitment and
phenotype of infiltrating macrophages, respectively.47

All in all, macrophages play numerous and crucial roles
during tissue regeneration. Upon injury, monocyte‐derived
macrophages infiltrate the site and the predominant phe-
notype is M1, which secrete proinflammatory factors to
activate various signaling pathways. At some point, the
dominant macrophage phenotype switches to M2, which
are anti‐inflammatory and prorepair. There is a dispute over
the mechanism behind the phenotypic switch; it could ei-
ther be driven by an in situ conversion of M1 to M2 or a
selective, sequential recruitment of macrophages. The
monocyte‐derived macrophage populations are part of the
initial inflammatory response, whereas tissue resident
macrophages appear to be more involved with the resolu-
tion of inflammation and tissue repair.

4 | MACROPHAGES CROSSTALK
DURING TISSUE REGENERATION

Cellular crosstalk describes how one or more components
of a signaling pathway affects another signaling pathway
either directly or indirectly to produce a specific biological
response.68 Several studies have shown that macrophages
crosstalk with endothelial cells, smooth muscle cells, me-
senchymal stem cells, and stellate cells to support different
aspects of tissue regeneration, such as macrophage re-
cruitment, macrophage polarization, cell proliferation, and
angiogenesis. For example, macrophages express Wnt
ligands and respond to Wnt signaling to promote
endothelial cell proliferation and migration, which is
important for angiogenesis.69 In particular, proin-
flammatory factors IFN‐γ and LPS upregulate Wnt5a ex-
pression in macrophages.70 Wnt5a is then able to regulate
angiogenesis at multiple levels, which in turn can directly
induce the expression of additional proangiogenic

cytokines such as IL‐6, IL‐8, and IL‐1β.71‐74 Wnt5a also
indirectly induces the proliferation and migration of en-
dothelial cells and increase in Tie‐2 expression in en-
dothelial cells and macrophages.69,75 Macrophages are
then further stimulated by angiopoietin 2 to become
proangiogenic.76 In addition, Wnt5a upregulates CCL2
expression in endothelial cells to indirectly recruit more
macrophages.77 Moreover, the crosstalk between macro-
phages and smooth muscle cells promotes angiogenesis
during atherogenesis. Coculture of smooth muscle cells
and macrophages lead to an increase in tumor necrosis
factor‐α (TNF‐α), IL‐6, IL‐1β, and toll‐like receptor
2 (TLR2) levels, which altogether increases secretion of
angiogenic factors VEGF and IL‐8 likely through TLR
signaling pathways.78 Another study found that trans-
forming growth factor‐β1 (TGF‐β1) can also stimulate
VEGF production and angiogenesis via the TGF‐β signal-
ing pathway.79 Furthermore, the crosstalk between mac-
rophages and mesenchymal stem cells is crucial for bone
healing.80‐82 Macrophages release chemokines (CCL2,
stromal cell‐derived factor 1, C‐X‐C motif ligand 8
[CXCL8)], proinflammatory cytokines (TNF‐ɑ, IL‐1β,
IL‐6), and osteoinductive factors (oncostatin M, bone
morphogenetic protein 2, prostaglandin E2 [PGE‐2])
which are received by mesenchymal cells. In response to
these signals, mesenchymal cells direct osteoprogenitor
differentiation into osteoblasts, and release im-
munosuppressive signals, like CCL2, VEGF‐A, PGE‐2, and
nitric oxide (NO), that regulate macrophage recruitment
and activity.82,83 In addition, the crosstalk between mac-
rophages and hepatic stellate cells, a liver‐specific pericyte
that behaves like mesenchymal stem cells, is important for
macrophage polarization and progression of liver
repair.84‐88 Following liver injury, injured parenchymal
cells release PAMPs and/or DAMPs, which bind to TLR4
receptors on hepatic stellate cells or other pericytes.
Hepatic stellate cells secrete chemoattractants like mac-
rophage migration inhibitory factor, CXCL1, CCL2, IL‐6,
and IL‐8, to recruit neutrophils and monocytes to the
site.89‐95 Monocyte‐derived M1 macrophages and neu-
trophils secrete amphiregulin and IL‐17a, respectively, and
these two proteins convert TGF‐β to its active form so it
can activate hepatic stellate cells and pericytes.96‐100 Over
time the number of activated pericytes and activated
TGF‐β levels increase. Increasing levels of TGF‐β stimulate
a M1 to M2 polarization shift via Akt/SNAIL and Akt/
FoxO1 signaling pathways, and secretion of MMP‐7 by
scar‐associated macrophages to promote differentiation of
hepatocyte‐produced pro‐NGF into nerve growth factor
(NGF). NGF binds to p75 NGF receptor on activated
pericytes and induces apoptosis and fibrosis.101‐107 Fur-
thermore, macrophages crosstalk with satellite cells to
regulate the myogenesis process.108 Not only do
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macrophages secrete proinflammatory cytokines, such as
IL‐6, TNF‐α, and PGE‐2, but also the enzyme ADAMTS1,
which induces satellite cell activation and proliferation
and promotes muscle regeneration.60,61,109 Moreover, anti‐
inflammatory macrophages secrete cytokines, such as IL‐4
and insulin‐like growth factor 1, that induces myoblast
differentiation and myofiber growth.41,108

To sum up, there is increasing evidence that crosstalk
between macrophages and other resident cells help drive
tissue regeneration.

5 | MACROPHAGES IN THE
REGENERATING PANCREAS

The origins and phenotypes of resident macrophages
differ within the intrapancreatic microenvironment. One
study describes a single population of resident macro-
phages residing in the islets of Langerhans that arose
from definitive hematopoiesis, remained locally in the
islets since birth, proliferate in situ slowly, and display
the M1 phenotype.110 However, another study found two
separate subsets of resident macrophages, using surface
markers CD11c and F4/80, residing within the islets.
CD11c− [R1] and CD11c+ [R2] resident macrophages
reside in the peri‐ and intraislets, respectively, and are
not derived from circulating monocytes.111 There are two
populations of resident macrophages in the interacinar
stroma, which are distinguished apart by CD206 (man-
nose receptor) and CD301 (CLEC10A) expression. The
CD206/CD301+ resident macrophages arise from

primitive hematopoiesis, concentrate around the pan-
creatic ducts, and display an M2 phenotype. On th eother
hand, the CD206/CD301− resident macrophages arise
from definitive hematopoiesis, replenished by circulating
monocytes, and display an M2 phenotype (Figure 3).110

Since fetal macrophages are thought to contribute to
pancreatic islet morphogenesis and remodeling during the
fetal and neonatal stages, it is also possible that macro-
phages play a role in adult pancreatic regeneration.112‐114

In fact, there is emerging evidence showing that macro-
phages crosstalk with resident cells via release of factors
like IL‐1β, epidermal growth factor (EGF), TGF‐β1, and
Wnt3a to promote β‐cell proliferation and pancreas re-
generation.55,115‐118 To begin with, islet macrophages re-
lease low levels of IL‐1β, which enhances β‐cell insulin
secretion especially during periods of acute stress.119 In
addition, macrophage crosstalk with β‐cells assist in β‐cell
proliferation and regeneration following pancreatic injury.
During the inflammation resolution phase, M2 macro-
phages release EGF and TGF‐β1 and these signals are
received by β‐cells. EGF acts on epidermal growth factor
receptor (EGFR) to inhibit SMAD2 nuclear translocation,
thereby inhibiting TGF‐β signaling. TGF‐β1 acts on TGF‐β
receptor to upregulate SMAD7, which not only causes
nuclear exclusion of cell cycle regulator p27 but also
increases cell cycle activators cyclin D1 and cyclin D2.
Altogether, this promotes β‐cell proliferation.120,121 More-
over, in a diabetic phenotype mouse model, M2 macro-
phages release Wnt3a and this signal is received by
receptors at the surface of β‐cells. This leads to inhibition
of glycogen synthase kinase 3 and subsequent β‐catenin

FIGURE 3 Diagram of proposed tissue resident macrophages in the pancreas: CD11c− [R1] peri‐islet (orange), CD11c+ [R2]
intraislet (green), CD206/CD301+ (blue), and CD206/CD301− (purple)
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translocation into the nucleus. There is also a marked
increase in cyclin D2 in the nucleus. Altogether, the acti-
vation of the β‐cell Wnt/β‐catenin signaling pathway
promotes β‐cell replication.122 Moreover, in a mouse
model with VEGF‐A overexpression‐induced β‐cell loss,
macrophage crosstalk with islet endothelial cells was im-
portant for β‐cell proliferation.123 These reports indicate
M2 macrophages crosstalk with multiple cell types in islets
is important to β‐cell regeneration following pancreatic
injury (Figure 4). Furthermore, the origins of M2 macro-
phages responsible for β‐cell proliferation have been
identified as resident tissue macrophages.63 In fact, both
the peri‐ and intraislets resident macrophages are found to
promote β‐cell proliferation.111

6 | MACROPHAGES IN
PANCREATIC DISEASE

6.1 | Diabetes

There is much evidence showing that prolonged macro-
phage activation causes β‐cell death during type 1 and type
2 diabetes mellitus via the release of cytokines and nu-
trients, respectively. The onset of type 1 diabetes is marked
by the infiltration of macrophages and T cells in the islets
of Langerhans.124‐126 In type 1 diabetes, macrophage se-
cretion of cytokines IL‐1β and/or TNF‐α+ IFN‐γ activates
nuclear factor kappa B (NF‐κB) and STAT1.127‐129 NF‐κB
activation then leads to NO production and chemokines as
well as endoplasmic reticulum (ER) calcium production.
ER stress and mitochondrial death signals subsequently
induce β‐cell death.129

On the other hand, β‐cell death in type 2 diabetes is
caused by chronic elevation of glucose and free fatty
acid levels and crosstalk with islet M1 macro-
phages.116,117,129 The free fatty acids force β cells to
produce islet amyloid polypeptide (IAPP). The release of
IAPP and adenosine triphosphate from β cells signals for
the recruitment of bone marrow–derived monocytes and

M1 macrophage accumulation to the islets. The elevated
levels of glucose lead to activation of the NLRP3‐
dependent inflammasomes and processing and produc-
tion of proinflammatory factor IL‐1β in M1 macro-
phages. M1 macrophages also release TNF‐α and the
increased levels of both TNF‐α and IL‐1β crosstalk with
β cells and cause β‐cell dysfunction and eventual cell
death. β‐cell death releases more chemokines and cy-
tokines, thereby creating a feedback loop that continues
to drive inflammation and the β‐cell failure that is
characteristic of type 2 diabetes.116,117

Although there is significant evidence that shows
macrophages cause β‐cell death during type 1 and type
2 diabetes, there is evidence that suggests that macro-
phages are also involved with pancreas and β‐cell
regeneration.

6.2 | Pancreatitis

In the healthy pancreas, acinar cells and ductal cells are
responsible for the production of digestive enzymes and
transportation of enzymes to the gut, respectively. During
acute pancreatitis, there is the premature activation of
trypsinogen in acinar cells, leading to autodigestion of the
pancreas, stimulation of M1 macrophages, and release of
proinflammatory factors. Proinflammatory factors TNF‐
α, IL‐1β, IL‐6, and monocyte chemoattractant protein 1
can recruit neutrophils and more monocytes to the pan-
creas and increase the release of proinflammatory med-
iators.130,131 More importantly, the release of cytokines
TNF‐α and RANTES by macrophages stimulates the
activation of NF‐κB in acinar cells to induce acinar
cell transdifferentiation into a duct‐like progenitor cell
types, which is termed acinar‐to‐ductal metaplasia
(ADM).131,132 Notch receptors133,134 and EGFR135,136

have also been shown to induce ADM in acinar cells. M2
macrophages are recruited to help the cells revert back to
acinar cells and initiate tissue remodeling and repair.136‐139

Ultimately, ADM decreases the production of digestive
enzymes, mitigates the inflammatory response, and sets
the stage for tissue repair. Recurrent pancreatic injury
can eventually lead to the development of chronic
pancreatitis, which is characterized by chronic in-
flammation, irreversible fibrosis, acinar cell atrophy and
contorted ducts.140 Unlike acute pancreatitis, most
macrophages in chronic pancreatitis display a M2 phe-
notype.141 The infiltrating macrophages crosstalk with
and activate nearby pancreatic stellate cells (PSCs) via
the TGF‐β/PDGF signaling pathway. PSCs are periaci-
nar stromal cells, which are present in a quiescent state
in healthy pancreas. PSCs are activated during initial
phases of pancreatic injury and play a key role in

FIGURE 4 M2 macrophages crosstalk with β cells to
promote β‐cell proliferation and insulin secretion. EGF,
epidermal growth factor; IL‐1β, interleukin‐1β; TGF‐β1,
transforming growth factor‐β1
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pancreatitis and pancreatic cancer as the predominant
source of collagen in the fibrotic pancreas. Activated
PSCs release IL‐4 and IL‐13, which promotes M2 mac-
rophage polarization. In fact, inhibition of IL‐4 and IL‐
13 in ex vivo human tissue and mice has been shown to
lead to a decrease in M2 macrophages levels and fibrosis
progression.141 Most notably, chronic pancreatitis is
strongly associated with the development of pancreatic
ductal adenocarcinoma (PDAC).142

To sum up, there is a heterogenous population of
macrophages in the pancreas that differ in origin and
function. Recent studies show that macrophages cross-
talk with other cells present in the pancreas to promote
β‐cell proliferation and pancreatic regeneration follow-
ing injury. M1 macrophages play a dominate role in
resolving acute pancreatitis and M2 macrophages play a
dominate role in the chronic pancreatitis and β‐cell
proliferation.

6.3 | Pancreatic cancer

Patients with pancreatic cancer have a poor prognosis
and a survival rate of about 6% within 5 years of initial
diagnosis. The most common type of pancreatic cancer is
PDAC.143 The late detection and aggressive nature of
PDAC makes it notoriously difficult to treat, therefore,
understanding the drivers of PDAC initiation, progres-
sion, and metastasis is imperative to developing therapy
treatments.144 Nearly 95% of all pancreatic cancers have
one of three different proto‐oncogene mutations of Kras
within the pancreatic acinar cells.145‐147 Therefore, the
general steps toward the development of PDAC is as
follows: acquirement of a Kras mutation in an acinar cell,
ADM, formation of pancreatic intraepithelial neoplasia
(PanIN) lesions or other lesions, progression from lesion
to PDAC, and continued promotion of tumor growth and
metastasis. Interestingly, macrophages have been shown
to play a role at each of these steps toward PDAC. In-
flammatory macrophages promote the formation of pre-
cursor PanIN lesions or other lesions by crosstalking with
acinar cells carrying a Kras mutation to induce in-
appropriate activation of signaling pathways that bring
on ADM, and secreting factors that promote tissue re-
modeling. Alternatively activated macrophages drive the
development of PanIN lesions to PDAC. In addition, al-
ternatively activated tumor‐associated macrophages
(TAMs) promote further tumor growth and PDAC me-
tastasis. We do acknowledge that there is still an ongoing
debate on which cells contribute to the pancreatic cancer,
and while other cell types such as duct cell cannot be
ruled out, the current review focuses on acinar origin of
the PDAC.

To begin with, inflammatory M1 macrophages are sti-
mulated by KrasG12D‐acinar cells to release factors that
cause inappropriate activation of signaling pathways, such
as the NF‐κB, Notch, EGFR/mitogen‐activated protein ki-
nase (MAPK), Wnt/β‐catenin, and STAT3/suppressor of
cytokine signaling 3 (Socs3), to stimulate ADM.148 Acinar
cells with the KrasG12D mutation upregulate ICAM‐1 ex-
pression and a fraction of it is shed as a soluble form
(sICAM‐1), which acts as a chemoattractant and recruits
M1 macrophages. The M1 macrophage interacts with the
KrasG12D‐acinar cell and secretes MMPs, like MMP‐9, to
degrade the extracellular matrix and promoting tissue re-
modeling. M1 macrophages also secrete inflammatory cy-
tokines, such as TNF, that induce activation of the NF‐κB
signaling pathway to drive ADM in acinar cells.131,145 The
KrasG12D mutation stimulates production of activator pro-
tein 1 (AP1), which induces IL‐1a overexpression. IL‐1a
activates downstream inhibitor of nuclear factor kappa B
kinase subunit β (IKK2/β), which then activates NF‐κB.
NF‐κB promotes transcription of IL‐1a and p62, and these
two factors act on IKK2/β to establish an autoregulatory
feedback loop for constitutive activation of the NF‐κB sig-
naling pathway.149 In addition, there is crosstalk between
the NF‐κB and Notch signaling pathways in KrasG12D‐
acinar cells. IKK2 from the NF‐κB pathway synergizes with
basal Notch to transcribe Notch target genes, one being a
suppressor of anti‐inflammatory transcription factor
PPAR‐γ. As such, this helps to maintain the inflammatory
response initiated by KrasG12D‐acinar cells.150 Moreover, the
KrasG12D mutation activates the MAPK signaling pathway.
Kras upregulates EGFR expression and enhances EGFR
activity via EGFR ligand sheddase, ADAM17.151 An ex-
ample of crosstalk between TAM and the epithelium is the
stimulation of EGFR expression in neoplastic epithelium by
macrophages and stimulation of macrophages to secrete
EGFR ligands by KrasG12D‐acinar cells.136,152 Some ligands
bind to EGFR on KrasG12D‐acinar cells and activate the
MAPK signaling pathway and repress acinar‐specific tran-
scription factors,136,153,154 whereas other ligands stimulate
stromal fibroblasts to produce collagen.136 Interestingly, low
levels of Wnt signaling in cell lines with Kras mutations
crosstalk with the MAPK signaling pathway to also promote
ADM and PanIN formation.146 Furthermore, myeloid cell
secretion of IL‐6 induces the activation of the STAT3/Socs3
signaling pathway in KrasG12D‐acinar cells. The signaling
pathway is continuously activated in a feed‐forward re-
sponse loop.155 STAT3 signaling has also been shown to
help KrasG12D‐acinar cells maintain a proliferative, ded-
ifferentiated state and contribute to inflammation. IL‐6 is
not the only pathway that promotes STAT3 activation. It
was recently reported that extracellular high mobility group
box 1, either passively released by damaged/dying neo-
plastic cells, or actively secreted by TAMs stimulates
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prolactin expression by macrophages. The macrophage‐
derived prolactin binds to its cognate receptor on PanIN
cells, where it maintains focal adhesion kinase 1 and STAT3
activity. In addition, prolactin may promote fibrosis through
PRLR‐expressing resident macrophages.156

In addition, Stat3 signaling controls MMP‐7 expres-
sion, which regulates tumor size and metastasis, in
KrasG12D‐acinar cells.157 Ultimately, the KrasG12D muta-
tion continuously promotes crosstalking with macro-
phages that secrete factors that activate signaling
pathways in acinar cells that not only induces ADM but
also maintains the dedifferentiated cellular state.148 In
addition, the KrasG12D mutation sustains, rather than
directly causes, cell proliferation,158 thereby allowing
for the formation of intraepithelial neoplastic lesions
(PanINs) or other lesions (Figure 5).136,145

Next, the role of macrophages during the progression
from PanIN lesion to PDAC is still largely unknown.
However, a recent study shows that the inflammatory
M1‐like macrophages switch to tumor‐promoting, alter-
natively activated M2‐like macrophages at ADM/PanIN
lesions (Figure 6). In particular, IL‐13, which is likely
produced by PSCs, binds to receptor IL‐13‐Rα1 on in-
flammatory macrophages to initiate the polarization
switch towards an alternatively active macrophage.
Alternatively activated macrophages then secrete factors
such as CCL2 and IL‐1ra to drive fibrogenesis and PanIN
lesion growth.159

Lastly, circulating monocytes and macrophages are
recruited to the stromal compartment of the tumor mi-
croenvironment (TME), henceforth known as TAMs,
where they secrete factors to alter the TME and drive

FIGURE 5 Schematic of proposed macrophage crosstalk and subsequent signaling cascades initiated by the Kras mutation
(Kras*) in an acinar cell to induce acinar‐to‐ductal metaplasia (ADM). The Kras* acinar cell recruits M1 macrophages through the
release of chemoattractants (blue circles). The macrophage subsequently releases proinflammatory cytokines (purple triangles) that
activate various signaling pathways, such as nuclear factor kappa B (NF‐κB), Notch, mitogen‐activated protein kinase (MAPK), Wnt/
β‐catenin, and STAT3/Socs3, in acinar cells. The activation of these signaling pathways leads to the transcription of target genes that
ultimately suppress acinar‐specific transcription factors and/or anti‐inflammatory transcription factors, thereby inducing ADM. The
NF‐κB and Notch signaling pathways and the MAPK and Wnt/β‐catenin signaling pathways also participate in crosstalk.
Macrophages also secrete extracellular matrix (ECM) degradation enzymes, which promotes tissue remodeling. The combined
actions of irreversible ADM, continuous macrophage secretion of inflammatory cytokines and ECM degradation enzymes, and
sustained cell proliferation is permissive for precursor intraepithelial neoplastic lesions (PanINs) or other lesions formation. Socs3,
suppressor of cytokine signaling 3; STAT3, signal transducer and activator of transcription 3
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PDAC progression and metastasis.160 The stroma is com-
prised of many different cell types,161 but this review will
only focus on TAMs. TAMs found in PDAC can be either
resident macrophages or monocyte‐derived macrophages
in origin. Resident‐derived TAMs undergo in situ pro-
liferation and are responsible for the fibrotic response
and tumor progression, whereas monocyte‐derived TAMs
help with antigen presentation and immune response.160

All tumors have M1‐like and M2‐like TAMs, but the
amount of each phenotype changes over the course of
tumorigenesis.162,163 During the beginning stages of
PDAC, M1‐like macrophages are found in abundance at
sites of chronic inflammation and tumors. As tumor in-
vasion and vascularization begins, the macrophages switch
to the M2‐like phenotype (Figure 6).164,165 Most TAMs
have a M2‐like phenotype and their presence in PDAC is
associated with poor outcomes.166,167 The mechanism be-
hind TAM polarization to an M2‐like phenotype is still
unclear, but there is growing evidence that the activation
of signaling pathways via crosstalk can induce repolar-
ization. In cell lines, cancer cells secrete regenerating islet‐
derived regenerating islet‐derived protein 4 (REG4). REG4
activates the EGFR/AKT/cAMP response element‐binding
protein signaling pathway and this may, in part, induce
M2 polarization.168 In addition, in cell lines, tumor and
other stromal cells secrete TGF‐β, which induces homeo-
box transcription factor CUX1 and the NF‐κB signaling
pathway via acetylation, thereby repressing NF‐κB‐
regulated proinflammatory cytokines and antagonizing

TAM M1‐like phenotype.169 Furthermore, crosstalk be-
tween pancreatic tumor cells and macrophages via exo-
somal miRNA is thought to also induce M2 polarization.
The hypoxic microenvironment of solid tumors promotes
pancreatic tumor cells to release miR‐301a‐3p‐rich exo-
somes. These exosomes activates the phosphatase and
tensin homolog/PI3Kγ pathway to induce M2 macrophage
polarization.170 Crosstalk with cancer stem cells (CSCs)
have also been shown to induce an M2‐like phenotype in
macrophages via Nodal/Activin A and TGF‐β1 secretion
and activation of STAT3 signaling.171,172 Ultimately, the
M2‐like TAMs are responsible for promoting PDAC tu-
morigenesis and metastasis.

Interestingly, TAMs create an immunosuppressive
microenvironment early on in tumorigenesis, hence the
disabled cancer immunosurveillance system allows for
unhindered disease progression.173 It is hypothesized that
TAMs inhibit natural killer T cell response by: (a) de-
pleting the pool of metabolites necessary for T cell pro-
liferation, (b) producing anti‐inflammatory cytokines, (c)
inducing expression of inhibitory receptors and other
immune checkpoint ligands, and/or (d) producing che-
mokines and cytokines that recruit and sustain, respec-
tively, Tregs in the TME.174 Moreover, TAM secretion of
cytokines and factors, activation of various molecular
signaling pathways, and subsequent promotion of cancer
cell proliferation, angiogenesis, vascularization, and ma-
trix remodeling is well‐known and extensively covered in
other reviews.163,175‐177 Furthermore, there is emerging

FIGURE 6 Diagram of the appearance of macrophages during the development and progression of pancreatic ductal
adenocarcinoma (PDAC). Inflammatory M1 macrophages are stimulated by acinar cells carrying a Kras mutation (Kras*) to release
factors that activate various signaling pathways to induce acinar‐to‐ductal metaplasia (ADM). Inflammatory macrophages undergo
repolarization and become alternatively activated M2 macrophages. Without Kras*, M2 macrophages would assist with the
redifferentiation of acinar cells and initiate tissue remodeling and repair. However, with Kras*, factors secreted by the M2
macrophages drive PanIN growth and progression instead. Ultimately, PDAC develops and the tumor‐associated macrophages
(TAMs) in the tumor microenvironment (TME) promote tumor growth, progression, and metastases of PDAC. M1‐like TAMs are
observed in the beginning stages of PDAC and are involved with inflammation. On the other hand, M2‐like TAMs are in greater
abundance during the later stages of PDAC and reinforce tumor growth, invasion, vascularization, and metastasis
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evidence that shows cellular crosstalking plays a role in
PDAC progression.178‐180 In particular, crosstalk between
macrophages and CSCs enhances tumorigenesis.181 For
example, reduction in the number of infiltrating macro-
phages resulted in a significant decline of CSCs. In ad-
dition to controlling the number of CSCs, TAM can also
increase the tumor‐initiating capacity of CSCs through
STAT3 signaling pathway.182 In vitro primary human
pancreatic cancer spheres show CSCs secrete IFN‐β
and, in turn, stimulates TAMs to secrete IFN‐stimulated
factor 15 (ISG15). ISG15 is shown to enhance CSC
self‐renewal and tumorigenic properties.183 Moreover,
polarized TAMs are also shown to secrete antimicrobial
peptide human cathelicidin 18/LL‐37, which binds to
CSC receptors and enhance their stemness and tumori-
genic properties.172 Finally, binding of CD47, which is
expressed by CSCs, to SIRPα on macrophages leads to
prevention of CSCs phagocytosis by macrophages.184

Altogether, TAM‐mediated paracrine signaling promotes
the stem‐like features of CSCs, thereby enhancing tumor
progression, metastasis, and chemoresistance in PDAC.
Interestingly, there is also evidence that liver macro-
phages play a role in promoting pancreatic cancer‐related
illnesses, such as cachexia (wasting syndrome). In PDAC
patients, there is an increase in peripheral blood mono-
nuclear cells.185‐187 It is hypothesized that the monocytes
infiltrate the liver, triggering activation of liver par-
enchymal cells, and inducing the release of proin-
flammatory cytokines, like TNF‐α, IL‐6, and IL‐8.187‐190

In turn, this activates NF‐κB and STAT3 transcription
factors and hepatocytes for additional release of proin-
flammatory cytokines.190

In summary, the Kras mutation and inflammation
activates additional signaling pathways that not only in-
duces ADM, but also prevents redifferentiation back to
acinar cells and subsequently leads to the formation of
precursor PanIN lesions. In the ADM/PanIN lesions,
macrophages undergo a phenotypic switch from in-
flammatory to alternatively activated. The alternatively
activated macrophages continue to drive the progression
from PanIN lesion to PDAC. M2‐like TAMs continue to
drive tumor growth, progression, and metastases of
PDAC via activation of various molecular signaling
pathways. Notably, there is emerging evidence that
shows crosstalk between macrophages and CSCs in the
TME play a role in supporting tumorigenesis and me-
tastasis of PDAC. Given the involvement of macrophages
in general, and M2 macrophages in particular in various
stages of PDAC development, targeted therapeutic treat-
ments aiming to reduce the number of M2 subtype either
through inhibition of recruitment, specific ablation or
conversion to M1 phenotype has shown promising results
in numerous clinical trials.191

7 | CONCLUSION

Macrophages are indispensable not only for fighting
harmful biological agents but also for healing and tissue
regeneration. In that regard, M1 and M2 phenotypes play
separate, yet equally important roles. Macrophages are like
good Samaritans, always ready to help, but sometimes they
unwillingly help the wrong side. In other words, they are
villains by circumstances, not necessarily by actions.
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