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The link between microbiota and gastric cancer (GC) has attracted widespread
attention. However, the phylogenetic profiles of niche-specific microbiota in the tumor
microenvironment is still unclear. Here, mucosa-associated microorganisms from 62
pairs of matched GC tissues and adjacent non-cancerous tissues were characterized
by 16S rRNA gene sequencing. Functional profiles of the microbiota were predicted
using PICRUSt, and a co-occurrence network was constructed to analyze interactions
among gastric microbiota. Results demonstrated that mucosa-associated microbiota
from cancerous and non-cancerous tissues established micro-ecological systems
that differed in composition, structure, interaction networks, and functions. Microbial
richness and diversity were increased in cancerous tissues, with the co-occurrence
network exhibiting greater complexity compared with that in non-cancerous tissue.
The bacterial taxa enriched in the cancer samples were predominantly represented by
oral bacteria (such as Peptostreptococcus, Streptococcus, and Fusobacterium), while
lactic acid-producing bacteria (such as Lactococcus lactis and Lactobacillus brevis)
were more abundant in adjacent non-tumor tissues. Colonization by Helicobacter pylori,
which is a GC risk factor, also impacted the structure of the microbiota. Enhanced
bacterial purine metabolism, carbohydrate metabolism and denitrification functions were
predicted in the cancer associated microbial communities, which was consistent with
the increased energy metabolism and concentration of nitrogen-containing compounds
in the tumor microenvironment. Furthermore, the microbial co-occurrence networks in
cancerous and non-cancerous tissues of GC patients were described for the first time.
And differential taxa and functions between the two groups were identified. Changes in
the abundance of certain bacterial taxa, especially oral microbiota, may play a role in the
maintenance of the local microenvironment, which is associated with the development
or progression of GC.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignant
cancers and the third leading cause of cancer-associated death
worldwide (Ferlay et al., 2015; Torre et al., 2015). The incidence
of GC varies by region and race, with a high rate in East
Asia. Both host factors (such as genetic susceptibility) and
environmental factors (such as microbial infections) play crucial
roles in gastric tumorigenesis (Compare et al., 2010). It is
widely accepted that chronic Helicobacter pylori infection, which
leads to enhanced inflammation and disorders of epithelial
structure and function, is closely related to precancerous
lesions such as atrophic gastritis. Nevertheless, only 1–3%
of H. pylori-infected patients develop GC, and GC could
not be completely prevented by the eradication of H. pylori
(Wroblewski et al., 2010). Additionally, during the progression
of GC, H. pylori colonization gradually decreases and even
disappears (El-Omar et al., 1997). Therefore, biological factors
other than H. pylori colonization may play an important role
in the development of cancer and the maintenance of the local
lesion microenvironment.

In recent years, the development of culture-independent
technologies for characterizing microbiota composition has
shed light on the profile of gastric microbiota. Studies have
demonstrated the significant role played by non-H. pylori
microbiota in gastric carcinogenesis in mice (Lofgren et al.,
2011; Lertpiriyapong et al., 2014). In human studies, chronic
H. pylori infection or the use of drugs such as omeprazole
resulted in an elevated intragastric pH level by reducing the
secretion of gastric acid, which allowed the proliferation and
colonization of other bacteria (Mowat et al., 2000; Plottel
and Blaser, 2011). As a result, the microbial balance of the
gastric mucosa ecological niche was disrupted, and increased
nitrosating species raised nitrite and N-nitrosamine levels in the
stomach (Leach et al., 1987). Together, these findings highlighted
the potential role of microbiota other than H. pylori in the
development of GC.

Thus far, our understanding of the complex gastric flora in
human is still limited. A few studies have revealed differences
in the composition and function of the gastric microbiota
between GC patients and control groups. However, there is
no consensus on specific microbial taxa that play important
roles in the pathogenesis of GC. In addition, microbial
changes in the tumor microenvironment remain unclear.
Unlike most previous studies that compared two groups of
individuals, our research focused on the microbiota in the
tumor microenvironment by comparing matched samples from
GC patients. In this condition, the influence of the external
environment and the genetic effects of the host would be
controlled to some extent. We characterized the variations
in the composition, interaction network and functions of
gastric microbiota in cancerous and patient-matched non-
cancerous tissues, aiming to explore the differential distribution
profile of microbiota in the tumor microenvironment. Our
findings will help to explore the role of mucosa-associated
microbiota in carcinogenesis and in the maintenance of the local
microenvironment in GC patients.

MATERIALS AND METHODS

Study Population and Specimen
Collection
A total of 124 gastric tissue samples, consisting of cancerous
and paired non-cancerous tissues, were obtained from 62
GC patients who underwent subtotal gastrectomy at The
First Hospital of China Medical University between 2012
and 2014. Patients who had received medical treatment
(including probiotics, proton pump inhibitors, antibiotics,
and H2 receptor antagonists) within 1 month, or those
who had received chemotherapy or radiotherapy prior to
the surgery were excluded. Gastric mucosa tissues, collected
from the cancerous lesions and neighboring noncancerous
sites (at least 5 cm away from the tumor site), were
immediately frozen after surgical resections and stored at−80◦C
until further use. Epidemiologic information was obtained
through questionnaire.

DNA Extraction, PCR Amplification, and
16S rRNA Gene Sequencing
Total DNA was extracted using methods as previously
described (Chen et al., 2017). After treating the mucosal
samples with lysozyme, proteinase K, and SDS, we purified
the DNA through multiple steps with phenol-chloroform-
isoamylalcohol, then precipitated the DNA with glycogen,
sodium acetate, and cold isopropanol, followed by cleaning
the DNA with 70% ethanol. Finally, the DNA was dissolved
in TE buffer and stored at −20◦C. The V4–V5 regions of the
16S rRNA gene were amplified by primers 515F, 5′-barcode-
GTGCCAGCMGCCGCGGTAA-3′ and 907R, 5′-barcode
CCGTCAATTCMTTTRAGTTT-3′ (Liu et al., 2018), using
the PCR kit (TransGenAP221-02, Peking; containing the high
fidelity enzyme). PCR was performed as follows: 95◦C for
5 min, followed by 34 cycles of 94◦C for 60 s, 57◦C for 45 s,
and 72◦C for 60 s, with final extension at 72◦C for 10 min.
In order to avoid possible contamination, DNA extraction
and PCR set up were performed in a laminar air flow bench,
illuminated with a UV lamp before use. Two negative controls
(containing DNA extraction reagents and PCR kit reagents)
were amplified and sequenced to assess contamination. The
concentration and length of the PCR amplicons were detected
by 2% agarose gel electrophoresis. PCR products with bright
main strip (approximately 400–450 bp) were chosen for further
experiments. The amplicons in the target region were purified
with Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing
libraries were generated by using DNA PCR-Free Sample
Preparation Kit (Illumina, San Diego, CA, United States)
following manufacturers recommendations and index codes
were added. The library quality was assessed on the Qubit@2.0
Fluorometer (Thermo Scientific) and Agilent Bioanalyzer
2100 system. The libraries were sequenced on the Illumina
Hiseq 2500 platform and 250 bp paired-end reads were
generated. The sequence data have been deposited in the NCBI
Sequence Read Archive (SRA) database with the accession
number PRJNA532731.
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Processing of Sequencing Results and
Taxonomical Annotation
The sequencing data were processed using the Quantitative
Insights Into Microbial Ecology (QIIME, V1.9.1) pipeline as
previously reported (Caporaso et al., 2010). Raw sequencing
reads were assigned to each sample based on the unique
barcode and identified as valid sequences. The low quality
and short sequences were filtered out with the following
criteria (Gill et al., 2006; Fadrosh et al., 2014): sequence
reads with average Phred score ≤19, length less than
150 bp; paired reads having at least one with length less
than 75% of their original length; reads with ambiguous
bases; reads containing mononucleotide repeats more
than 8 bp. Paired-end reads were assembled using FLASH
(version 1.2.7) (Magoč and Salzberg, 2011). Chimeras were
filtered out using UCHIME (v4.2.40) (Edgar et al., 2011).
Sequence clustering analysis was performed using UPARSE
pipeline (Edgar, 2013). Tags with at least 97% identity
were clustered into the same operational classification
unit (OTU; Supplementary Table S1). The Silva Database
was used to annotate taxonomic information for OTU
representative sequences by the ribosome database project
(RDP) Classifier v.2.2.

Microbial Diversity Analysis and Network
Construction
QIIME (V1.9.1) was used to calculate diversity parameters.
Alpha diversity analysis was performed to describe the
richness and diversity of the microbiota in each sample. The
Chao1 and ACE indices were used to estimate community
richness, and the Shannon and phylogenetic diversity
(PD) whole tree indices were applied to measure microbial
diversity. Good’s coverage was used to evaluate the coverage
quality of sequencing results. Beta diversity was measured
by weighted UniFrac distance matrices and Bray–Curtis,
and visualized via principal coordinate analysis (PCoA)
and non-metric multidimensional scaling (NMDS) plots.
Co-occurrence networks were structured by Spearman’s
correlation analysis and visualized using the Cytoscape software
(V.3.0.2., United States).

Functional Prediction of
Mucosal-Associated Microbiota
Functions of mucosal-associated microbiota were predicted
using PICRUSt (Langille et al., 2013). Accuracy of the
predicted metagenomes was evaluated by the nearest
sequenced taxon index (NSTI; Langille et al., 2013). The
enrichment analysis of pathways was performed based
on Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. Additionally, predicted functional genes were
also categorized into clusters of orthologous groups
(COG), and compared across cancer and non-cancer
groups by STAMP (Parks et al., 2014) to identify gene
functions that differentiated bacterial communities in the
two-group comparison.

Statistical Analysis
Continuous variables that were not normally distributed
were represented by inter-quartile range (IQR). Mann–
Whitney U test was used to examine the correlation
between alpha diversity parameters and epidemiological
risk factors of GC. Tests were performed with SPSS 22.0
software (SPSS Inc., Chicago, IL, United States). Analysis
of similarity (ANOSIM) and permutational multivariate
analysis of variance (PERMANOVA) were performed to
test the dissimilarity of beta diversity between groups by
using ANOSIM and Adonis functions of vegan package
in R (version 3.4.1). Linear discriminant analysis effect
size (LEfSe) algorithm (Segata et al., 2011) was used to
identify specific microbial taxa and functions that differed
significantly between groups. Differences with linear
discriminant analysis (LDA) scores >2.0 were considered
significant. The analysis of differences in the abundance of the
microbiota between two groups were also performed using
the DESeq. 2 package in R (Weiss et al., 2017). The White’s
non-parametric t-test was applied to determine statistical
differences of COG between groups by STAMP. P-values
were adjusted by Benjamini-Hochberg false discovery rate
correction for multiple comparisons. P < 0.05 was considered
statistically significant.

RESULTS

Sequencing Results and Basic
Characteristics of the Study Subjects
After PCR amplification, no bands were observed in the
negative controls on the gel. The negative controls both
had <130 reads, and the sequences could not be assembled.
After sequencing and quality control, libraries of 16S rRNA
gene V4–V5 region amplicon sequences from 61 cancerous
and 62 adjacent non-cancerous tissue samples were used
for further analysis, with an average of 67,958 effective tags
per sample. The number of raw reads and effective tags
for each sample are shown in Supplementary Table S2.
At the 3% dissimilarity level, the number of OTUs were
152 (119-200) [median (IQR)] for the non-cancer group
and 221 (177-350) for the cancer group. Good’s coverage
was estimated to ensure quality assessment. All samples had
a value >0.99, suggesting that the sequencing results were
sufficient to represent the bacterial diversity of the bacteria in
the gastric mucosa.

Detailed information regarding individuals included
in the study is provided in Table 1. All cases were
diagnosed as gastric adenocarcinoma. The median age
of the patients was 60 years old. Samples with relative
abundance of H. pylori more than 1% were identified as
H. pylori sequencing positive, while others with relative
abundance less than 1% were identified as H. pylori
sequencing negative as previously proposed (Kim et al.,
2015). Among the patients, H. pylori sequencing-positive cases
accounted for 29%.
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Characteristics of Mucosa-Associated
Microbiota in Cancerous Tissues
Microbial Community Profile of Cancerous Tissues
Proteobacteria was the predominant phylum in the cancerous
samples, followed by Firmicutes, Bacteroidetes, Actinobacteria,
Acidobacteria, and Fusobacteria (Table 2). Overall, 90%
of cancerous samples were dominated by Proteobacteria,
with relative abundance >50% in each case. Four samples
were dominated by Firmicutes or Bacteroidetes, while the
remaining two samples had no obviously dominant phylum
(Supplementary Figure S1).

Correlation Between Cancerous Tissue Microbiota
and GC Risk Factors
We next analyzed the association between GC-related
epidemiological risk factors (such as age, gender, smoking,
alcohol consumption, family history, and H. pylori colonization
status) and the microbiota. Results showed that in tumor tissues,
the alpha diversity of the microbiota, estimated by Shannon index
and PD whole tree, was significantly increased in GC patients

TABLE 1 | Baseline characteristics of the study subjects (n = 62).

Characteristics Median (IQR)/number (%)

Age (years) 60 (52–68)

<60 26 (42%)

≥60 36 (58%)

Gender

Male 46 (74%)

Female 16 (26%)

Family history

Yes 20 (32%)

No 42 (68%)

Drinking

Nondrinker 38 (61%)

Drinker 24 (39%)

Smoking

Never smoker 32 (52%)

Ever smoker 30 (48%)

H. pylori colonization status

Sequencing positive 18 (30%)

Sequencing negative 44 (70%)

IQR, inter-quartile range.

TABLE 2 | The relative abundances of major bacterial phyla in cancerous and
adjacent non-cancerous tissues.

Taxonomy Non-cancer group (%) Cancer group (%) P

Proteobacteria 83.691 78.434 0.084

Firmicutes 1.907 5.568 0.000

Bacteroidetes 0.518 2.339 0.000

Actinobacteria 0.080 0.741 0.000

Fusobacteria 0.041 0.257 0.000

Acidobacteria 0.004 0.314 0.000

The P-value is calculated using Wilcoxon signed-ranks test.

aged over 60 years old compared with that of younger patients
(P = 0.043, 0.022, respectively, Supplementary Table S3). No
significant differences in the microbial richness or community
structure were discovered in relation to the other risk factors.

Ecological Network of Gastric Microbiota in
Cancerous Tissues
Co-occurrence network analysis was used to describe the
interactions among the microbiota in the complex gastric
microbial population. As shown in Figure 1A, the interactions
across the mucosa-associated microbiota mainly occurred among
taxa belonging to the phyla Firmicutes and Proteobacteria, the
two predominant phyla in the taxonomic profiles. Collectively,
co-occurrence interactions dominated in the networks. In
addition, co-occurrence interactions between Helicobacter and
Lachnoclostridium and between Helicobacter and Ezakiella
were also observed in the cancer tissue network. No co-
exclusion interaction was identified in strong correlations
(r > 0.6 or <−0.6).

Characteristics of Mucosa-Associated
Microbiota in Non-cancerous Tissues
Microbial Community Profile of Non-cancerous
Tissues
The gastric microbiota in non-cancerous tissues was also
dominated by Proteobacteria and consisted mainly of the
six main phyla observed in the cancer group. However,
the ranking of phyla differed slightly (Table 2), with a
decreased abundance of Firmicutes, Bacteroidetes, Actinobacteria,
Acidobacteria, Fusobacteria (all P < 0.01), but an increased
abundance of Proteobacteria (P = 0.084) when compared with
the cancer group.

Correlation Between Non-cancerous Tissue
Microbiota and GC Risk Factors
Unlike the cancer group, H. pylori colonization significantly
impacted the composition of the microbiota in the non-
cancerous samples. The H. pylori sequencing-positive group
showed greater bacterial diversity (Shannon index) than the
sequencing-negative group (P = 0.022, Supplementary Table S4).
The differences in microbial structure were assessed by Bray–
Curtis and weighted UniFrac distance matrices. PERMANOVA
showed significant differences between H. pylori sequencing
positive and negative group (Bray–Curtis, P = 0.001; weighted
UniFrac distance matrices, P = 0.004). No significant association
was found between microbial richness or community structure
and the other risk factors.

LEfSe analysis (Segata et al., 2011) was conducted to further
explore the taxa correlated with H. pylori colonization status
in non-tumor tissues (Supplementary Figure S2). In the
H. pylori sequencing-positive group, the enrichment of 15 genera
was observed other than Helicobacter. Among them, Serratia,
Lactobacillus, and Streptococcus were abundant in all non-
cancerous tissues, ranking in the top 20 abundant genera. In
comparison, Pseudomonas aeruginosa and its higher level taxa
from genus to phylum were significantly more abundant in the
H. pylori negative group. In summary, H. pylori colonization
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FIGURE 1 | Co-occurrence network analysis of gastric bacterial genera with correlation coefficient >0.6 or < –0.6 (A) in cancer tissues and (B) non-cancer tissues.
The nodes represent different genera, whose colors indicates different phyla. The size of node shows relative abundance of the genus. Positive and negative
correlations are drawn in red and blue, respectively.

status, which is a well-known epidemiological risk factor for GC,
was closely associated with the composition and structure of the
gastric microbiota.

Ecological Network of Gastric Microbiota in
Non-cancerous Tissues
As observed in the cancerous tissue samples, the interactions
within the microbiota of the non-cancerous samples also

occurred mainly in the two taxonomically dominant phyla,
Firmicutes and Proteobacteria; however, fewer phyla were
involved. The network diagram revealed denser and more
complicated co-occurrence interactions across the microbiota in
the cancerous tissues compared with the non-cancerous tissues,
especially with regard to oral bacteria (such as Streptococcus,
Peptostreptococcus, Fusobacterium, Dialister, and Prevotella)
(Figures 1A,B). However, several co-exclusion interactions
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FIGURE 2 | (A–D) The alpha diversity of the microbial communities in cancer and non-cancer groups. The global microbial structure differs between the two groups
in (E) PCoA plot and (F) NMDS plot. C, cancer group; N, non-cancer group.
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FIGURE 3 | Differential bacteria between the two groups by LEfSe analysis
(LDA scores >3.0). Green indicates taxa enriched in non-cancerous tissues
and red indicates taxa enriched in cancerous tissues. C, cancer group; N,
non-cancer group.

were observed in the non-cancerous tissue network, with
Pseudomonas as the interaction node. These interactions
occurred among Pseudomonas and Serratia, Lactobacillus,
Lactococcus, Staphylococcus, as well as Leuconostoc.

Differential Microbial Taxa of the GC
Tissues Compared With the
Non-cancerous Tissues
Bacterial Taxonomic Richness and Diversity
The cancerous tissues had a significantly higher number of OTUs
than the non-cancer tissues (219 versus 148 OTUs; P < 0.05).
In terms of alpha diversity (Figures 2A–D), compared with
non-cancerous tissues, cancer samples had significantly increased
community richness, which was estimated by Chao1 and ACE
index (both P < 0.001), and diversity, which was estimated by
Shannon index and PD whole tree (both P < 0.001).

Bacterial Community Structure
To analyze differences in microbial community structure between
groups, we assessed the beta diversity (Figures 2E,F). The overall
differences were visualized using PCoA and NMDS plots. The
diversity described in the PCoA plots by the top two principal
coordinates was 75.86% based on weighted UniFrac phylogenetic
distance matrices. The non-cancerous and cancerous samples
were clustered separately, with a significant difference confirmed
by ANOSIM (P = 0.017, Figure 2E). The results of NMDS
analysis based on OTU level also divided samples into two
separate clusters (Figure 2F), suggesting significant differences
in the overall community structure of mucosal microorganisms
between the cancer and non-cancer groups.

Specific Microbial Taxa Associated With GC in the
Cancer Microenvironment
We sought to identify the differential microbiota between the
two sample groups, using two different methods. First, the
LEfSe analysis (Segata et al., 2011) was conducted to identify
the specific taxa responsible for the statistically significant
differences (Figure 3). Overall, 49 taxa were identified as being
differentially abundant between the cancer and non-cancer
samples at the phylum, class, order, family, genus, and species
levels (LDA = 3). 33 of them were enriched in the cancer
group, including the genera Streptococcus, Peptostreptococcus,
Prevotella, Prevotella_7, Acinetobacter, Bacillus, Selenomonas,
Lachnoanaerobaculum, and Sphingomonas and the species
Acinetobacter baumannii, P. aeruginosa, Prevotella oris, and
Prevotella denticola, most of which were oral microbiota. 16 taxa
were enriched in the non-cancer group, including the genera
Serratia, Helicobacter, Niveispirillum, and Lactococcus, and the
species H. pylori, Serratia marcescens, Lactococcus lactis, and
Lactobacillus brevis.

Then, we used the DESeq. 2 package to calculate and compare
the top 20 abundant genera with a median relative abundance
>0.1% between the two groups. In addition to the eight genera
(Peptostreptococcus, Streptococcus, Acinetobacter, Bacillus,
Bacteroides, Sphingomonas, Prevotella_1, and Prevotella_7)
described above as being enriched in the cancer group,
Fusobacterium was also shown to be significantly more abundant
in cancerous tissues. On the other hand, Helicobacter and
Lactobacillus showed significant increase in the adjacent
non-cancerous tissues (Supplementary Table S5).
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FIGURE 4 | Correlation networks of differential bacteria (A) in cancer and (B) non-cancer tissues. A subset of significant correlations with strengths of at least 0.2
were selected for visualization. The size of the nodes correspond to weighted node connectivity (WNC) scores.

To explore the interactions among these differential bacteria,
the network within each group was constructed (Figures 4A,B).
We found that co-occurrence and co-excluding interactions
were significantly different between the two groups. Oral
microbiota including Prevotella, Prevotella_7, Peptostreptococcus,
Streptococcus, and Fusobacterium had higher weighted node
connectivity (WNC) scores in cancerous tissues (Figure 4A),
while Serratia, Lactococcus, and L. brevis, which were identified
above as being enriched in non-cancer group, had higher
WNC scores in non-cancer tissues (Figure 4B). Higher WNC
scores indicated centralities and their important roles in the
interaction network.

Functional Prediction of
Mucosal-Associated Microbiota
Based on 16S rRNA gene sequencing data, PICRUSt was
performed to predict the functional profiling of microbial
communities using the KEGG databases (Langille et al.,
2013). The NSTI scores (0.02–0.13) (Langille et al., 2013)
demonstrated a reasonable prediction accuracy (Supplementary
Table S6). The LEfSe algorithm was used to detect differences
in the functional pathways of the microbiota between the
cancer and non-cancer groups. Several metabolic pathways
were enriched in the cancerous samples, including those
involved in nucleotide metabolism (pyrimidine and purine
metabolism), energy metabolism (methane metabolism),
carbohydrate metabolism (e.g., glycolysis and gluconeogenesis),
etc. (Supplementary Figure S3), while other predicted
pathways were significantly increased in the non-cancerous
samples, such as bacterial motility (motility proteins and
chemotaxis), membrane transport (e.g., secretion system and
phosphotransferase system), lipopolysaccharide biosynthesis
and signal transduction (two component system), etc.
(Supplementary Figure S3).

Given that the accumulation of nitrogen-containing
compounds such as nitrate and nitrite in the stomach can increase
the risk of GC and promote the malignant transformation of
cells in the stomach (Correa, 1992; Alarcon et al., 2017), we
focused on the microbial functions relevant to the metabolism
of nitrogen-containing compounds in the cancerous and
non-cancerous tissues. Compared with the non-cancer group,
metabolic enzymes related to denitrification, including nitrate
reductase (COG1116) and nitrous oxide reductase (COG4263),
were enriched in the gastric microbiota of the cancer group
(Supplementary Table S7).

DISCUSSION

Microbial communities have been universally considered as an
important biological factor in the occurrence and development
of GC. Recent studies have shown the changes in the
microbial populations of GC patients compared with control
groups (Eun et al., 2014; Coker et al., 2018; Ferreira et al.,
2018; Hsieh et al., 2018). However, microbial profiles in
the tumor microenvironment were still unclear. Our findings
confirmed that gastric mucosa-associated microbiota from
cancerous and adjacent non-cancerous tissues established
distinct micro-ecological systems. We observed significant
microbial community disturbances in the cancer lesions, where
the richness and diversity of the microbial communities
increased significantly, the interaction network exhibited greater
complexity, and the relative abundance of H. pylori decreased
compared with non-cancerous tissues. The bacterial taxa
enriched in the cancer group mostly consisted of oral bacteria
(such as Peptostreptococcus, Streptococcus, and Fusobacterium),
while lactic acid-producing bacteria (such as L. lactis, and
L. brevis) were more abundant in the adjacent non-tumor tissues.
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These results suggest that the occurrence and development of GC
disturbs the structure of the endogenous bacterial community,
and that H. pylori might play a limited role in the development
and/or progression of malignant tumors.

Characteristics of Mucosal-Associated
Microbiota in GC and Non-cancerous
Tissues
Changes in localized niches in GC patients result from long-
term interactions among microorganisms, the host, and the
environment. Shifts in gastric acidity and nutrient availability,
as well as the innate immune response all contribute to the
disruption of the microbial ecological balance in GC patients,
leading to the colonization and overgrowth of non-H. pylori
bacteria (Brawner et al., 2014). Gastric microbiota in cancerous
and adjacent non-cancerous tissues were both dominated by
Proteobacteria at the phylum level. The significant differences
between the two groups mainly occurred at the genus and
species level. Oral bacteria such as Fusobacterium, Streptococcus,
Peptostreptococcus, and Prevotella were enriched in cancerous
tissues. On the other hand, Serratia and lactic acid producing
bacteria such as Lactococcus and Lactobacillus were more
abundant in non-cancer group. Importantly, we identified some
differential taxa that have not been reported in gastric microbiota
studies before, such as P. denticola, P. aeruginosa, and Serratia.
Although Streptococcus, Peptostreptococcus, Fusobacterium, and
Lactobacillus have been discussed in recent studies of GC
(Castano-Rodriguez et al., 2017; Hsieh et al., 2018), our research
is the first to identify their abundance differences in the
tumor microenvironment.

Our results highlight the possible pathogenic role of oral
microbiota in GC. The changed acidity environment of GC may
provide increased opportunities for oral bacteria to colonize
the gastrointestinal tract. Previous studies have shown that
oral bacteria were associated with colorectal cancer (CRC;
Nakatsu et al., 2015) and pancreatic cancer (Michaud, 2013),
which attracted widespread attention. Patients with certain oral
pathogens had a higher risk of developing pancreatic cancer
(Ertz-Archambault et al., 2017). There has been no studies
directly analyzing changes in the oral microbiota of GC patients.
A more in-depth investigation is needed to characterize its role as
a driver or passenger in carcinogenicity. Whether oral microbes
could be used as a non-invasive diagnostic marker for GC
requires further studies.

It is noteworthy that Fusobacterium was more abundant in GC
specimens than non-cancerous tissues. Fusobacterium is a genus
of anaerobic bacteria closely related to CRC. Increasing evidence
has shown its roles in carcinogenesis, diagnosis, progression and
prognosis of CRC (Zhang et al., 2018). A recent report revealed
that Fusobacterium species were over-represented in GC patients,
and that it could be used as a diagnostic marker for GC. It
supported our findings, despite being based on a relatively small
cohort (11 GC patients vs. 16 controls) (Hsieh et al., 2018).

Previous reports had shown the significant increase in
the abundance of Lactobacillus species in GC compared
with the control population (Aviles-Jimenez et al., 2014;

Eun et al., 2014; Wang et al., 2016; Castano-Rodriguez et al.,
2017). However, changes in lactic acid producing bacteria in
the tumor microenvironment were previously unknown. We
observed an obvious enrichment of lactic acid producing bacteria
(such as L. lactis and L. brevis) in non-cancerous tissues
compared with cancerous tissues. Lactococcus and Lactobacillus
species are generally thought of as probiotics and considered
beneficial to the host. Reports show that lactic acid production
has immunomodulative, anti-cancer and anti-inflammatory
activities, and is conducive to the eradication therapy of H. pylori
(Kim et al., 2014; Han et al., 2015; Kanayama et al., 2018). Another
noteworthy taxon enriched in the non-cancer tissues here was
S. marcescens, which has not been reported in cancer-related
microbiota research before. Prodigiosin, a secondary metabolite
of S. marcescens, could induce GC cell apoptosis and inhibit
human oral squamous carcinoma cell growth in vitro (Diaz-Ruiz
et al., 2001; Cheng et al., 2017).

Correlation Between Microbial Community
Characteristics and GC Risk Factors
Results of association analyses between epidemiological risk
factors and gastric microbiota revealed an increased Shannon’s
diversity in the older patients (≥60 years old). This may be due
to the overall decline in immunity associated with age, and the
elevated pH caused by local mucosal atrophy, both of which
are conducive to bacterial growth (Sheh and Fox, 2013). We
also showed that sex, smoking, drinking, and family history of
upper gastrointestinal cancer were not significantly associated
with microbial community characteristics. In addition, H. pylori
colonization changed the microbial community structure, with
a significant increase in alpha diversity, which was observed
in H. pylori sequencing-positive group compared with negative
group. This finding is supported by a previous report showing
that the abundance ofH. pylori can remarkably affect the diversity
of the gastric microbiota (Wang et al., 2016). How H. pylori
impacts on the diversity and structure of the gastric microbiota
is not yet understood. Nevertheless, it is plausible that changes
in the gastric niche induced by H. pylori may influence the
colonization and growth of other microbes.

Ecological Networks of Microbial Taxa in
Cancer and Adjacent Mucosal Tissues
The microbiota inhabiting the mucosal surface affects the
development of cancer by altering the metabolome and
regulating cell proliferation and tumor growth (Johnson
et al., 2015). A niche-specific microbial network could
affect the disease-associated microenvironment. A study
has shown stronger interactions among differential OTUs in
the microbiota of GC patients compared with those in patients
with precancerous lesions (superficial gastritis, atrophic gastritis,
intestinal metaplasia) (Coker et al., 2018). We extended previous
work by delineating the interaction networks of microbiota
in cancerous and adjacent non-cancerous tissues. Our results
revealed that the distribution of microbial interactions differed
between cancerous and adjacent non-cancerous mucosae.
In the strong correlation network (r > 0.6 or r < −0.6),
compared with the non-cancer group, more microbial taxa
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were involved in the cancer group. And they formed a denser
and more complex association network, in which only co-
occurrence interactions were observed. This may be due to the
decrease in abundance of H. pylori, the increased abundance
of other microbes in cancerous tissues, and shifts of the
local pathogenic microenvironment. The enrichment of a
larger number of microbial taxa, particularly oral microbes,
in the cancerous samples contributed to the formation of a
disease-specific interaction network. Further, the markedly
increased symbiotic interactions in the cancer group might also
contribute to the maintenance of the tumor microenvironment
and even affect further disease development. Interestingly,
strong co-occurrence interactions formed by Streptococcus,
Peptostreptococcus, Fusobacterium, Dialister, and Prevotella,
showed the centralities of these taxa in the whole cancer group
network. They also played significant roles in the network
constructed of the differentially abundant bacteria. These
results suggest that these oral microbiota may have major
impact on the structure of the microbiota in GC patients,
which deserves further investigations. On the other hand,
several co-exclusion interactions presented in the whole non-
cancer group network, occurred separately between Serratia,
Lactobacillus, Lactococcus with Pseudomonas (as the interaction
node). Moreover, Serratia, Lactobacillus, and Lactococcus
exhibited their centralities in the network constructed of the
differentially abundant bacteria. These findings show their
potential protective effects.

Functional Analysis of
Mucosal-Associated Microbiota in GC
and Non-cancer Tissues
Our work showed differences in the predicted microbiota
functions in cancerous and adjacent non-cancerous tissues.
Purines are rich in the cancer microenvironment, with
the capability of regulating immune cell responses and the
release of cytokines (Di Virgilio, 2012). In this study, the
purine metabolism pathways were enriched in the cancer
group, indicating the metabolism of released purines in
tumor microenvironment by GC microbiota (Coker et al.,
2018). In addition, the microbiota in cancerous tissues had
an increase in denitrification functions compared with non-
cancerous tissues. The abundant nitrate reductase (COG1116)
is associated with bacterial-mediated N-nitrosylation (Hillman,
2004), while the N-nitroso compound is a causative factor in
carcinogenesis. Additionally, several pathways that facilitated
host cell recognition were decreased in the microbiota of
cancerous tissues, such as bacterial movement (bacterial motor
proteins and chemotaxis) and bacterial signal transduction
(membrane transport, etc.). To develop a deeper understanding
of gastric carcinogenesis, further studies are needed to
examine the significance of microbial functional variations
in the GC microenvironment.

Advantages and Limitations
In this study, gastric mucosa samples were obtained from
GC patients undergoing surgical treatment, thus avoiding

possible oral microbial contamination that may occur during
upper digestive endoscopy sampling. Our work provided
insights into the composition, function and interaction
network of the mucosa-associated bacterial community in
the tumor microenvironment, and its links with GC risk
factors. We identified specific genera and species that may
be involved in gastric carcinogenesis and the maintenance
of the tumor microenvironment. However, this study had
several limitations. Firstly, PICRUSt, which was used for
microbial functional assessment, is a predictive method by
nature. Although it has been widely applied in studies of
disease-associated microorganisms, this approach may not
fully reflect the biological functions of the microorganisms.
Furthermore, this study did not include gastric tissues
from individuals without GC for comparison. However,
to a certain extent, this reduced the impact of inter-
subject dissimilarity. In addition, our DNA extraction
protocol did not include a bead-beating step, which was
an extra cell lysis process to destroy the hard-to-break
cell membranes of certain species. A previous study had
compared DNA extraction methods with and without
a bead-beating step. The result demonstrated that the
extraction method without a bead-beating step inevitably
missed some taxa with hard-to-break cell membranes,
however, these taxa were exceedingly rare and would not
have a detrimental impact on the final results (Yu et al.,
2017). The research revealed the correlation between gastric
microbiota and GC, but could not determine the causal
relationship. This will require follow-up animal models and cell
culture experiments.

CONCLUSION

Compared with non-cancerous tissues, mucosa-associated
microbiota in cancer tissues showed significant differences in
distribution profile. The alterations in microbial community
composition, function and ecological network in GC tissues
may be involved in carcinogenesis and the maintenance
of local microenvironment of GC. In future studies, we
would focus on verification using a larger number of
samples and multicentric populations, and extend our work
into cell culture systems and animal models to examine
the pathogenic roles of microorganisms in GC. These
investigations into the mucosa-associated microbiota of
GC patients may contribute to the development of new
strategies for prevention, diagnosis, early intervention, and
treatment of GC.
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