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Background: The potential use of a patellar tendon allograft for superior capsular reconstruction has
been demonstrated biomechanically; however, there are concerns regarding compromised fixation
strength owing to the longitudinal orientation of the fibers in the patellar tendon. Therefore, the purpose
of this study was to compare the fixation strength of superior capsule reconstruction using a patellar
tendon allograft to the intact superior capsule.
Methods: The structural properties of the intact native superior capsule (NSC) followed by superior
capsular reconstruction using a patellar tendon allograft (PT-SCR) were tested in eight cadaveric speci-
mens. The scapula and humerus were potted and mounted onto an Instron testing machine in 20 degrees
of glenohumeral abduction. Humeral rotation was set to achieve uniform loading across the recon-
struction. Specimens were preloaded to 10 N followed by cyclic loading from 10 N to 50 N for 30 cycles,
then load to failure at a rate of 60 mm/min. Video digitizing software was used to quantify the regional
deformation characteristics.
Results: During cyclic loading, there was no difference found in stiffness between PT-SCR and NSC (cycle
1 e PT-SCR: 12.9 ± 3.6 N/mm vs. NSC: 22.5 ± 1.6 N/mm; P ¼ .055 and cycle 30 e PT-SCR: 27.3 ± 1.4 N/mm
vs. NSC: 25.4 ± 1.7 N/mm; P ¼ .510). Displacement at the yield load was not significantly different be-
tween the two groups (PT-SCR: 7.0 ± 1.0 mm vs. NSC: 6.5 ± 0.3 mm; P ¼ .636); however, at the ultimate
load, there was a difference in displacement (PT-SCR: 20.7 ± 1.1 mm vs. NSC: 8.1 ± 0.5 mm; P < .001).
There was a significant difference at both the yield load (PT-SCR: 71.4 ± 2.2 N vs. NSC: 331.6 ± 56.6 N;
P ¼ .004) and the ultimate load (PT-SCR: 217.1 ± 26.9 N vs. NSC: 397.7 ± 62.4 N; P ¼ .019). At the yield
load, there was a difference found in the energy absorbed (PT-SCR: 84.4 ± 8.9 N-mm vs. NSC:
722.6 ± 156.8 N-mm; P ¼ .005), but no difference in energy absorbed was found at the ultimate load.
Conclusions: PT-SCR resulted in similar stiffness to NSC at lower loads, yield displacement, and energy
absorbed to ultimate load. The ultimate load of the PT-SCR was approximately 54% of the NSC, which is
comparable with the percent of the ultimate load in rotator cuff repair and the intact supraspinatus at
time zero.

© 2021 Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The superior capsule of the glenohumeral joint is a distinct
anatomic structure that is essential for function and classified as a
passive soft stabilizer of the shoulder.1,9 In shoulders with massive
irreparable rotator cuff tears, the superior capsule is disrupted and
the checkrein function of the passive soft-tissue stabilizer is absent.
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This results in increased superior translation of the humerus
compromising the abduction capability of the shoulder.24,25,29

Superior capsule reconstruction (SCR) was first introduced by
Mihata et al24 in 2012 using a fascia lata autograft to treat irrepa-
rable massive rotator cuff tears. These authors first demonstrated
the effectiveness of the SCR in biomechanical studies which were
followed by clinical studies with outcomes up to five years after
surgery.21,22,24 Specifically, SCR depresses the humeral head and
restores the superior stability of the shoulder as well as the deltoid
function. A variety of graft sources have been proposed for SCR.
Initially, Mihata et al21,22,24 used a tensor fascia lata (TFL) autograft
that is folded over to reach 6- to 8-mm thickness. While supported
with clinical outcomes,21 the harvest of the TFL autograft is
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associated with increased donor site morbidity and is difficult to
perform if the patient is positioned beach chair. In the United
States, human dermal allograft has been used extensively for SCR
because of its handling characteristics, strength, and inherent
convenience of allograft application.2 While functional outcomes
have been encouraging, healing of the dermal allograft has been
variable.3,6,14,15

Since the introduction of SCR with TFL autograft, many new
graft options have been proposed to avoid donor site morbidity,
with the human dermal allograft being the most popular graft
currently used for SCR. However, some of the challenges with the
human dermal allograft are the thickness of the graft which is
typically 3 mm or less and that the human dermal allograft is more
flexible and has lower stiffness than that of the TFL. Mihata
et al20,23 showed that thicker fascia lata autograft SCR resulted in
lower subacromial contact pressure and decreased superior
translation than thinner FL grafts and human dermal allografts.
Other autograft options include using the biceps tendon in a
looped manner7 or “snake” configuration.11 In addition, hamstring
autografts have been reported as being used for SCR28; however,
this comes with obvious donor site morbidity. Patellar tendon,5

folded TFL34 and Achilles allografts13 have also been introduced
as an option for graft source. Of these, the patellar tendon allograft
has structural characteristics that are advantageous; however,
patella tendon grafts have relatively parallel fibers as opposed to a
random fiber orientation. A previous biomechanical study showed
favorable results using a patellar tendon allograft for SCR,5 but
there are some concerns over a potential risk of decreased fixation
strength owing to the predominantly parallel fibers in the patellar
tendon. Although the understanding of the importance of the
superior capsule is growing, little is known about its function and
biomechanical properties. Because the goal of SCR is to recreate
the biomechanical function of the superior capsule, the load-to-
failure properties of the native superior capsule (NSC) were
evaluated and compared with the superior capsular reconstruc-
tion using a patellar tendon allograft (PT-SCR). Therefore, the
purpose of this study was to quantify the fixation strength of the
PT-SCR and compare with the intact NSC in cadaver shoulders
without rotator cuff pathology.

Materials and methods

Specimen preparation and testing setup

Eight nonmatched fresh frozen cadaveric shoulders (mean age
62.4 ± 7.7 years, 6 men and 2 women) were used. The specimens
were thawed overnight before dissection. The specimens were
completely stripped of skin, soft tissue, and muscle except for the
superior glenohumeral joint capsule. All specimens were kept
moist with normal saline during dissection and testing to prevent
tissue desiccation. During dissection, the specimens were exam-
ined to determine if there was any evidence of underlying rotator
cuff disease or any other gross abnormalities. One specimen had a
complete supraspinatus rotator cuff tear including the superior
capsule, so the native capsule could not be tested leaving 7 speci-
mens (mean age 61.1 ± 7.4 years, 5 men and 2 women) for the
native vs. PT-SCR analysis with 8 specimens remaining for com-
parison of PT-SCR fixation displacement. The humerus was trans-
ected 8 cm distal to the inferior articular surface of the humeral
head.

Experimental conditions

The following two experimental conditions were tested: intact
NSC and PT-SCR.
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Intact superior capsule

To prepare the NSC, the supraspinatus was reflected from the
fossa of the scapula to expose the capsule. The supraspinatus and
infraspinatus were then bluntly dissected from the capsule as far
laterally as possible to the tuberosity and then transected. The
anterior border was sharply defined medial to lateral just posterior
to the coracohumeral ligament. The posterior border of the superior
capsule was defined as 30 mm posterior to the anterior border. The
biceps was then carefully removed from the undersurface of the
superior capsule. The labrum was then transected at the anterior
and posterior borders on the glenoid. Using a digital caliper and
area micrometer, the anterior-to-posterior widths and thickness of
the superior capsule were measured at the medial, middle, and
lateral aspects.

After preparation and careful dissection of the superior capsule,
the specimen was tested in the manner as described in the
following text. Once the capsule was loaded to failure, the
remaining capsulewas sharply transected from the cadaver to leave
room for the PT-SCR (Fig. 1, A and B).

PT-SCR technique

Eight patellar tendon grafts from 6 donors (mean age 46.3 ± 24.1
years, 5 men and 1 woman) were used for PT-SCR. The grafts were
obtained from JRF Ortho (Centennial, CO, USA) and Community
Tissue Services (Dayton, OH, USA) and were irradiated with low-
dose gamma 10.5 kGy. To prepare the patellar tendon allograft,
bonewas removedwith a burr from the tibial tubercle to create a 1-
cm-wide and 1-mm-thick enthesis. To determine the length of the
patellar tendon graft, the medial-to-lateral distance between the
glenoid anchors and the medial humeral row anchors with the
specimen in 20� abduction was measured. Fifteen millimeters was
then added to this measurement to allow for 5 mm medial and 10
mm lateral overlap from the anchor location (Fig. 2). Using a digital
caliper and area micrometer, the anterior-to-posterior widths and
thickness of the patellar tendon allograft were measured at the
medial, middle, and lateral aspects before implantation.

The tibial bone enthesis was placed on the glenoid side for PT-
SCR. On the glenoid, fixation was performed using three 3.9-mm
Knotless Corkscrew PT anchors (Arthrex, Naples, FL, USA) (Fig. 2).
For the humerus, a double-row transosseous-equivalent technique
was performed (see Figs. 3 and 4). For the medial row, two 5.5-mm
biocomposite Corkscrew FT anchors (Arthrex, Naples, FL, USA) with
SutureTape (Arthrex, Naples, FL, USA) were used. For the lateral
row, two 4.75-mm biocomposite SwiveLock anchors (Arthrex,
Naples, FL, USA) were used.

According to Schon et al,31 the first glenoid anchor was
inserted 5 mm medial to the glenoid face at the 12 o’clock
position. The second and third anchors were placed at the 2
o’clock and 10 o’clock positions, respectively, in the same
manner at the appropriate angles to ensure adequate anchor
fixation within the bone. The first medial-row humerus anchor
was placed 5 mm posterior to the posterior edge of the bicipital
groove right at the humeral head articular margin. The second
anchor was placed 15 mm posterior to the first anchor at the
articular margin. The specimen was placed at 20 degrees of
glenohumeral abduction. The distance between the glenoid an-
chors, the anteroposterior distance of the medial row humerus
anchors, the mediolateral distance between the anterior glenoid
anchor and the anterior medial row humerus anchor, and the
mediolateral distance from posterior glenoid anchor to posterior
medial row humerus anchor were measured.

The suture limbs of the glenoid knotless suture anchors were
passed through the graft in a mattress configuration at the middle



Figure 1 Native superior capsule after dissection (A) superior view and (B) anterior view.

Figure 2 Patellar tendon allograft after preparation.
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of the enthesis at the anterior, middle, and posterior portions cor-
responding to the location of the glenoid anchor. The sutures were
then passed through the looped end of the shuttle suture and
pulled through the locking mechanism of the anchor. The graft was
then cinched down to the glenoid using a Knot Pusher (Athrex,
Naples, FL, USA) for counterforce. The SutureTape of the medial row
humerus anchors was passed through the lateral aspect of the graft
in a horizontal mattress fashion at predefined points and were tied
with a surgeon’s knot with 3 reversing half-hitches on alternating
post knots. Once the glenoid and the medial row humerus anchor
sutures were passed and knots were tied, the suture limbs from the
humerus anchors were placed in a transosseous-equivalent fashion
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into the 2 SwiveLock anchors 1 cm lateral to the lateral edge of the
graft in line with the respective medial row anchors.
Biomechanical testing

The scapula was potted in a metal box with the glenoid parallel
to the face of the box and the humerus was potted in 1.5-inch PVC
pipe with plaster of paris. Specimens were then mounted onto an
Instron material testing machine in 20 degrees of glenohumeral
abduction (Fig. 3, A and B). Humeral rotation was set such that
visually equal tensionwas placed on both the anterior and posterior
borders of the native capsule or SCR. Acrylic paint was used tomark
the anterior and posterior borders of the specimen for video digi-
tizing analysis of deformation. Specimens were then preloaded
with 10 N followed by cyclic loading from 10 N to 50 N for 30 cycles,
then loaded to failure at a rate of 60 mm/min. A testing protocol
similar to rotator cuff repair protocols performed in our laboratory
was used. The peak cyclic load was chosen to be lower than the
yield load of the PT-SCR construct based on pilot studies performed.
Thirty cycles were chosen as the amount of creep and hysteresis by
this number of cycles had stabilized.26 WINAnalyze software was
used to digitally track the markers for measuring displacement.
This displacement was then matched with the Instron load to
generate the load-displacement curve. Displacement with cyclic
loading, yield load, yield displacement, ultimate load, ultimate
displacement, and energy absorbed to failure were analyzed. The
modes of failure were also recorded.
Statistics

Data were averaged for the eight specimens, and the standard
error was calculated. All data are presented as mean ± standard
error. Statistical analysis was performed using a paired t-test with a
P < .05 to represent statistical differences.



Figure 3 Photograph of a specimen mounted on the Instron material testing machine for (A) native superior capsule and (B) after patella tendon superior capsule reconstruction.

Figure 4 The average load-to-failure curves for both the native superior capsules and
after patella tendon superior capsule reconstruction. Note the displacement data from
the cyclic loading were subtracted from the start value to start both curves at zero
displacement. PT-SCR, superior capsular reconstruction using a patellar tendon
allograft.
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Results

Specimens

The NSC average thickness was 2.4 ± 0.1 mm which was
significantly less than the thickness of the PT-SCR which was
5.3 ± 0.5 mm (P ¼ .002). There was no significant difference in the
average length of the NSC (54.5 ± 1.5 mm) compared with the
average length of the PT-SCR (52.1 ± 0.8 mm) (P ¼ .2); however, the
width of the NCS (26.2 ± 1.0 mm) was significantly smaller than
that of the PT-SCR (32.5 ± 0.7 mm) (P ¼ .001).

Modes of failure

The NSC modes of failure were as follows: medial þ lateral (1),
midsubstance (2), lateral (3), and medial only (1). The PT-SCR
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modes of failure were as follows: lateral and medial suture slip
(8), lateral suture cut through (8), medial suture cut through (2),
and medial anchor pullout (1).

Cyclic loading

All load-to-failure characteristics are presented in Table I.
During cyclic loading, there was no difference found in stiffness

between PT-SCR and NSC (at cycle 1 e PT-SCR: 12.9 ± 3.6 N/mm vs.
NSC: 22.5 ± 1.6 N/mm; P¼ .055 and at cycle 30 e PT-SCR: 27.3 ± 1.4
N/mm vs. NSC: 25.4 ± 1.7 N/mm; P ¼ .510). Conversely, there was a
difference found with hysteresis between the two groups, at both
cycle 1 and cycle 30 (at cycle 1e PT-SCR: 78.4 ± 13.9 N-mmvs. NSC:
8.3 ± 1.4 N-mm; P¼ .002 and at Cycle 30 e PT-SCR: 5.9 ± 0.9 N-mm
vs. NSC: 3.0 ± 0.5 N-mm; P ¼ .014).

Load to failure

The average load-to-failure curves for both groups are shown in
Figure 4. During load to failure of the specimens, the linear stiffness
of the NSC was significantly greater than that of the PT-SCR
(84.0 ± 13.7 N/mm vs. 30.4 ± 1.3 N/mm; P ¼ .009). Displacement
at the yield load was not significantly different between the two
groups (PT-SCR: 7.0 ± 1.0 mm vs. NSC: 6.5 ± 0.3 mm; P ¼ .636);
however, at the ultimate load, there was a difference in displace-
ment (PT-SCR: 20.7 ± 1.1mmvs. NSC: 8.1 ± 0.5mm; P < .001). There
was a significant difference at both the yield load (PT-SCR:
71.4 ± 2.2 N vs. NSC: 331.6 ± 56.6 N; P¼ .004) and the ultimate load
(PT-SCR: 217.1 ± 26.9 N vs. NSC: 397.7 ± 62.4 N; P ¼ .019). At the
yield load, there was a difference found in the energy absorbed
(PT-SCR: 84.4 ± 8.9 N-mm vs. NSC: 722.6 ± 156.8 N-mm; P ¼ .005),
but no difference in the energy absorbed was found at the ultimate
load (PT-SCR: 2350.6 ± 437.8 N-mm vs. NSC: 1317.1 ± 283.3 N-mm;
P ¼ .080).

PT-SCR fixation displacement

There were no significant differences between medial and
lateral PT-SCR fixation displacement for cyclic loading or load to
failure (Fig. 5).



Table I
Cyclic loading and load-to-failure characteristics of the native superior capsule and after patella tendon superior capsule reconstruction.

Biomechanical parameter Native superior capsule Patella tendon SCR P value

Cyclic loading
Linear stiffness (N-mm)
Cycle 1 22.5 ± 1.6 12.9 ± 3.6 .055
Cycle 30 25.4 ± 1.7 27.3 ± 1.4 .510

Hysteresis (N-mm)
Cycle 1 8.3 ± 1.4 78.4 ± 13.9 .002
Cycle 30 3.0 ± 0.5 5.9 ± 0.9 .014

Load to failure
Linear stiffness (N-mm) 84.0 ± 13.7 30.4 ± 1.3 .009
Yield load (N) 331.6 ± 56.6 71.4 ± 2.2 .004
Yield displacement (mm) 6.5 ± 0.3 7.0 ± 1.0 .636
Energy absorbed to yield (N-mm) 772.6 ± 156.8 84.4 ± 8.9 .005
Ultimate load (N) 397.7 ± 62.4 217.1 ± 26.9 .019
Ultimate displacement (mm) 8.1 ± 0.5 20.7 ± 1.1 <.001
Energy absorbed to ultimate (N-mm) 1317.1 ± 283.3 2350.6 ± 437.8 .080

Figure 5 Medial and lateral fixation displacement after patella tendon SCR (PT-SCR). PT-SCR, superior capsular reconstruction using a patellar tendon allograft.
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Discussion

One of the biggest findings from the present study was that
there was no difference in the stiffness during cyclic loading. Hys-
teresis was larger for PT-SCR vs. the NSC for cycle 1, most likely
owing to elongation of the fixation of the graft-suture/anchor
interface. By cycle 30, the hysteresis for the PT-SCR had decreased
by 92%. In addition, there was no difference in displacement at the
yield load or the energy absorbed at the ultimate load even though
yield and ultimate loads were higher for the NSC. These loads
occurred at displacement values greater than those that would
represent clinical failure.

With the introduction of the SCR by Mihata et al24 in 2012,
shoulder surgeons now have a more viable treatment option for
irreparable rotator cuff tears in younger patients who do not have
advanced arthritis. Recently, Mihata et al21 showed favorable five
year outcomes for patients who had SCRwith a fascia lata autograft.
This treatment option is a much more viable option than reverse
total shoulder arthroplasty for younger patients with this shoulder
pathology. While the results for SCR by Mihata et al21 were ach-
ieved with a fascia lata autograft, there are some concerns of donor
site morbidity.

While the original graft choice was a fascia lata autograft, there
are many other options that exist. One commonly used allograft for
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SCR is an acellular human dermal graft.2,6,8,32 One issue is that this
graft is typically thinner than the originally described fascia lata
autograft.21,22,24 Mihata et al23 previously showed that thicker
fascia lata autografts had lower subacromial contact pressure and
superior translation than thinner grafts. With the intent of using a
thicker graft and prevent autograft harvesting complications, the
patellar tendon has also been described.5 These grafts are thicker
than the typical acellular human dermal allograft.

SCR failure is as high as 65% in some articles when using acel-
lular dermal allograft.35 Woodmass et al35 showed that the failure
rate was 44% at the 1-year follow-up and 64% at the 2-year follow-
up. Despite an initial increase in acromiohumeral distance at the 2-
week follow-up, Denard et al6 showed no improvement in the
acromiohumeral distance at the final follow-up with healing rates
of 45%.

One previous study evaluated the elongation of a dermal allo-
graft with and without suture reinforcement during cyclic loading
from 10 N to 100 N.16 From this study, the native dermal graft
stiffness for cycle 1 was 17.69 N/mm and 25.72 N/mm for cycle 30,
which corresponds with the PT-SCR in this study at cycle 30. This
was a saw bone model that sought to only evaluate the graft tissue,
not the entire repair construct, and they did not test load to failure.
The authors also reported an increase in graft length and decrease
in thickness with cyclic loading.16 In addition, the dermal allograft
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has been shown to elongate by approximately 15% and decrease in
thickness by approximately 20% after rotational range of motion
and kinematic testing.20 Conversely, a fascia lata allograft20 and
patellar tendon allograft5 demonstrated minimal deformation. The
patellar tendon has a Youngs modulus and ultimate strain that is
more comparable with fascia lata than to a dermal allograft.4,5 The
results of the present study also showed deformation characteris-
tics similar to the inferior glenohumeral ligament.18,19

Tendon repairs are never as strong as their native tissues. The
tensile strength of the native supraspinatus tendon has been re-
ported to be from 652 N to 1114 N in cadaveric studies10,17,27 with
two of these authors evaluating different regions of the tendon
reporting that the anterior portion alone has a tensile strength
greater than 400 N.10,17 With the invention of rotator cuff repair
anchors, rotator cuff repair has evolved from transosseous bone
tunnels to single-row, double-row, and transosseous equivalent
repair. The time-zero repair strength of transosseous repairs,
single-row repairs, and all suture anchor repairs has been reported
to be around 300N12,30,33; whereas double row repairs and trans-
osseous equivalent repairs have been reported as high as
500N.12,26,30 Using a midrange of tensile strength from the litera-
ture for the native cuff (870N), these percentages range from34% to
57%. The ultimate load of the PT-SCR was approximately 54% of the
NSC which is comparable with the percent of the ultimate load in
rotator cuff repair and the intact supraspinatus at time zero.

The present study has some limitations. The most obvious
limitation of the present study is the time-zero nature that is found
in all biomechanical studies. While the superior capsule was
reconstructed using a patellar tendon allograft, this cadaveric
model did not account for graft healing. In addition, only the NSC
and PT-SCR were tested without the presence of any other static
and dynamic stabilizers around the shoulder. Without other tissues
present, this could have altered how the graft behaves in a clinical
setting. This study also fails to biomechanically compare different
graft options when performing SCR. Because the goal of the SCR is
to recreate the biomechanical function of the superior capsule, the
load-to-failure properties of the NSC were evaluated and compared
with PT-SCR. Future studies are planned for further comparison of
PT-SCR with other graft materials.

Conclusion

PT-SCR resulted in similar stiffness to NSC at lower loads, yield
displacement, and the energy absorbed to the ultimate load. The
ultimate load of the PT-SCR was approximately 54% of the NSC,
which is comparable with the percent of the ultimate load in ro-
tator cuff repair and the intact supraspinatus at time zero.
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