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Abstract

Background and Aims: In biliary atresia, serum bilirubin is commonly used

to predict outcomes after Kasai portoenterostomy (KP). Infants with

persistently high levels invariably need liver transplant, but those achieving

normalized levels have a less certain disease course. We hypothesized that

serum bile acid levels could help predict outcomes in the latter group.

Approach and Results: Participants with biliary atresia from the Childhood

Liver Disease Research Network were included if they had normalized

bilirubin levels 6 months after KP and stored serum samples from the 6‐

month post‐KP clinic visit (n = 137). Bile acids were measured from the

stored serum samples and used to divide participants into ≤40 μmol/L

(n = 43) or >40 μmol/L (n = 94) groups. At 2 years of age, the ≤40 μmol/L

compared with >40 μmol/L group had significantly lower total bilirubin,

aspartate aminotransferase, alanine aminotransferase, gamma‐glutamyl-

transferase, bile acids, and spleen size, as well as significantly higher

albumin and platelet counts. Furthermore, during 734 person‐years of follow‐

up, those in the ≤ 40 μmol/L group were significantly less likely to develop

splenomegaly, ascites, gastrointestinal bleeding, or clinically evident portal

hypertension. The ≤ 40 μmol/L group had a 10‐year cumulative incidence of

liver transplant/death of 8.5% (95% CI: 1.1%–26.1%), compared with 42.9%

(95% CI: 28.6%–56.4%) for the >40 μmol/L group (p = 0.001).

Conclusions: Serum bile acid levels may be a useful prognostic biomarker

for infants achieving normalized bilirubin levels after KP.

INTRODUCTION

Biliary atresia (BA) is a serious liver disease of infancy
characterized by extrahepatic bile duct obstruction. As a
result, bile flow is impaired, which leads to bile retention,
liver injury, and end‐stage liver disease typically within
the first year of life.[1] The Kasai portoenterostomy (KP)
can be performed to try to restore bile flow and slow
BA's rapid course.[2] This operation removes the
obstructed extrahepatic bile ducts, connects the liver
hilum directly to the intestine, and attempts to create a
conduit for bile to flow.

Clinicians often follow serum levels of bilirubin, an
important component of bile, to predict disease pro-
gression after KP.[3–12] High serum bilirubin levels
reliably predict poor outcomes, including complications
from progressive liver disease and the invariable need
for liver transplant. Normalized serum bilirubin levels, in
contrast, do not reliably predict good outcomes. For
example, of the infants with normalized serum bilirubin
levels after KP, approximately 71% still develop
splenomegaly, 45% develop thrombocytopenia, 18%
develop ascites, and 18% need a liver transplant in the
first 2 years of life.[13] An additional 50% of infants

require liver transplant before adulthood.[14] To address
the limitations of bilirubin measurements, we hypothe-
sized that serum levels of another component of bile—
bile acids—could help predict near‐term and long‐term
outcomes in infants who achieve normalized bilirubin
levels after KP.

METHODS

Participant selection

Participants in this study were enrolled in one of two
prospective observational studies supported by the
National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK)–sponsored multicenter Childhood
Liver Disease Research Network (ChiLDReN) after
parental/guardian written informed consent was
obtained. The first, Prospective Database of Infants
With Cholestasis (PROBE; NCT00061828), enrolls
infants with neonatal cholestasis ≤ 180 days old. The
second, Biliary Atresia Study in Infants and Children
(BASIC; NCT00345553), enrolls participants with BA >
180 days old. Both studies collect clinical data,
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laboratory results, and biological specimens at enroll-
ment, throughout the first 2 years of life (for PROBE
participants), and annually afterward until liver trans-
plant, death, age > 20 years, or loss to follow‐up. These
studies have been approved by a single institutional
review board that covers all ChiLDReN sites and the
ChiLDReN Scientific and Data Coordinating Center.
Each site conforms to the ethical guidelines of the 1975
Declaration of Helsinki and does not obtain donor
organs from executed prisoners or other institutional-
ized persons.

Of the PROBE and BASIC participants with BA,
those included in this analysis met two criteria. The first
criterion was achieving normalized serum bilirubin
levels by the 6‐month post‐KP study visit (which
occurred within a 4.5–9.0‐month postoperative window
in study participants). “Normalized” serum bilirubin
levels were defined as total bilirubin level < 1.5 mg/dl
or, if total bilirubin was not drawn, conjugated
bilirubin ≤ 0.2 mg/dl. Bilirubin levels were not included
for analysis if they were total bilirubin estimates (by
summing conjugated and unconjugated levels) or direct
bilirubin levels (which have reference intervals that vary
across sites).[15] The second criterion was having
nonfasting serum samples from the 6‐month post‐KP
study visit available for analysis. These samples were
collected as part of PROBE and BASIC protocols and
stored at −70°C in an NIDDK biosample repository.

Data collection

Clinical data, laboratory results, and medication use
were collected from PROBE and BASIC case report
forms. Baseline information included race and ethnicity
as reported by parents, whether BA was accompanied
by splenic malformations, and participation status in the
Steroids in Biliary Atresia Randomized Trial (START;
NCT 00294684).[16,17] Laboratory results at 2 years of
age included total bilirubin, aspartate aminotransferase
(AST), alanine aminotransferase (ALT), and gamma‐
glutamyltransferase (GGT), albumin, internationalized
normal ratio, total bile acids, platelets, and 25‐hydroxy
(OH) vitamin D levels. Liver parameters included spleen
size (measured by ChiLDReN investigators during the
physical examination and recorded as centimeters
below the left costal margin) and height/weight meas-
urements (which were used to obtain age‐adjusted and
sex‐adjusted z scores, using SAS macros provided by
the Centers for Disease Control and Prevention).[18]

Sentinel events were recorded at study visits using
definitions specified in the PROBE and BASIC proto-
cols. Cholangitis was defined as fever > 38°C with
elevation in total or conjugated bilirubin, new‐onset
acholic stools, right upper quadrant pain, and/or liver
enzyme elevations. Thrombocytopenia was defined as
a platelet count < 150,000/μl, splenomegaly defined as

spleen palpable > 2 cm below the left costal margin,
and ascites defined as peritoneal fluid accumulation
requiring diuretics. Gastrointestinal (GI) bleeding was
defined as hematemesis, hematochezia, or melena with
endoscopic confirmation of varices. Clinically evident
portal hypertension (CEPH) was assessed as probable
or definite using a previously published ChiLDReN
definition, which includes at least one of the following:
thrombocytopenia, splenomegaly, ascites, and/or
esophageal or gastric varices.[19]

Bile acid measurements

Serum bile acid concentrations were measured from
nonfasting samples collected at the 6‐month post‐KP
visit and stored for 2–174months at −70°C. An
enzymatic immunoassay was used to quantify total bile
acids, and stable‐isotope dilution liquid
chromatography–tandem mass spectrometry was used
to quantify individual bile acid species.[20]

Statistical analysis

For all analyses, participants were divided into two
groups using the measured 6‐month post‐KP measured
total serum bile acid levels (≤ 40 μmol/L and >40 μmol/
L groups). The 40‐μmol/L cutoff was based on an earlier
listing of reference intervals for infants at various ages
in the first year of life, in conjunction with inspecting the
range of nonfasting values measured in the study (see
Discussion).[21] Clinical data at baseline (6 months after
KP) and concentrations of bile acid species were
compared using Fisher exact tests for discrete variables
and Wilcoxon rank‐sum tests for continuous variables.
To obtain CIs, Spearman correlations were calculated
using Fisher's z transformation. The 2‐year physical
exam and laboratory outcomes were analyzed with
univariate linear regression models. Variables with
nonnormal distributions, including total bilirubin, AST,
ALT and GGT, were modeled on the log scale and then
reverse‐transformed into fold‐change for interpretation.
Time to transplant or death and time to CEPH (starting
from the 6‐month post‐KP sample collection) were
compared between bile acid groups using Kaplan–
Meier curves, and significance was assessed using the
log‐rank test. For other sentinel events, in which there
was a competing risk of transplant or death, analyses
were performed using Gray's test to account for the
competing risk. Event‐free survival and cumulative
incidence curves were graphed starting at date of KP
for ease of interpretation; p values were calculated
using the 6‐month post‐KP sample date as time 0. For
all analyses, there was no imputation of missing data
and therefore analyses were limited to complete cases
(the number of cases in each analysis is listed in the
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tables and figures; “n/N" indicates cases affected/total
cases available for analysis). Calculations were per-
formed using SAS version 9.4.

RESULTS

Between the years 2004 and 2019, 756 children with
BA were enrolled in ChiLDReN studies by the 6‐month
post‐KP time point (Figure 1). Of these, 279 children
did not have a 6‐month post‐KP serum bilirubin value
due to already undergoing liver transplantation
(n = 118), death (n = 16), or missing data (n = 145).
Another 232 children failed to achieve normalized
serum bilirubin levels by 6 months following KP. Of the
remaining 245 children, 137 children had serum
samples available from the 6‐month post‐KP visit
and were included in this study. The study group was
51.8% female (n = 71), 56.7% White (n = 76), and
32.8% Hispanic (n = 45). Ursodeoxycholic acid
(UDCA) was administered in 61.5% (n = 83) of study
participants at the time of serum sample collection
(Table 1).

The concentrations of total bile acids measured from
the stored serum samples ranged from 2 to 322 μmol/L
(median 70 μmol/L) and were distributed with a positive
skew (Figure 2). The levels varied even in samples from
participants with a conjugated bilirubin of 0.0 mg/dl
(Figure S1A). Importantly, bile acids did not appear to
degrade appreciably with storage, because the con-
centrations measured from stored samples correlated
with levels that were obtained in a subset of patients at
time of blood draw as part of routine clinical care
(r = 0.94, 95% CI 0.89–0.96, p < 0.001, n = 49)
(Figure S1B).

The measured total serum bile acid levels were then
used to dichotomize participants into ≤40 μmol/L
(n = 43) and > 40 μmol/L (n = 94) groups. These
groups did not differ in sex, race, ethnicity, presence of
splenic malformation, or UDCA use (Table 2,
Figure S2). The groups were also similar in previous
occurrence of cholangitis, fractures, ascites, or GI
bleed. The groups differed in age at KP (median age
57 vs. 69 days in the ≤40 μmol/L and >40 μmol/L
groups, respectively; p = 0.009) and development of
CEPH by the 6‐month post‐KP time point (37.2% vs.

F IGURE 1 Participant flow. There were 756 participants in Childhood Liver Disease Research Network (ChiLDReN) with biliary atresia (BA)
enrolled in Prospective Database of Infants With Cholestasis (PROBE) or Biliary Atresia Study in Infants and Children (BASIC) before or at the 6‐
month post–Kasai portoenterostomy (KP) visit. Of these, 137 had (i) a total bilirubin level < 1.5mg/dl or, if total bilirubin was not drawn, conjugated
bilirubin ≤0.2 mg/dl by 6months after KP; and (ii) stored serum from the 6‐month post‐KP visit.
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63.8% in the ≤40 μmol/L and > 40 μmol/L groups,
respectively; p = 0.005). The ≤ 40 μmol/L group also
had a higher proportion of participants receiving
steroids versus placebo in the START trial, although
this difference was not statistically significant.

To determine whether serum bile acid levels at
6 months following KP were associated with future
events, liver parameters at 2 years of age were studied
first. The ≤ 40 μmol/L group had significantly lower total
bilirubin, AST, ALT, GGT and spleen size, as well as
significantly higher albumin and platelet counts at
2 years of age (Table 3). In addition, infants with bile
acid levels > 40 μmol/L had 4.9‐fold (95% CI 2.8–8.7)
higher total serum bile acid concentrations at 2 years
compared to those with bile acids levels ≤ 40 μmol/L.
Serum bile acid levels at 6 months following KP
accounted for 47% of the variation in serum bile acid
concentrations at 2 years, which was reflected by the
high correlation between bile acid levels at the two time
points in individual patients (r = 0.79, 95% CI 0.63–0.89,
p < 0.001, n = 35) (Figure S3).

The occurrence of sentinel events was then exam-
ined over 734 person‐years of follow‐up (median
4.7 years/participant, range 0–13.9 years). New‐onset
splenomegaly, new‐onset ascites, GI bleeding, and
new‐onset CEPH were significantly less common in the
≤ 40 μmol/L group (Table 4, Figure S4, Figure 3). In
addition, 2 participants underwent liver transplant or

died before liver transplant in the ≤ 40 μmol/L group
(4.7%) compared with 30 participants (31.9%) in the
>40 μmol/L group (log‐rank p = 0.002). The 10‐year
cumulative incidences of liver transplant/death before
liver transplant were 8.5% (95% CI 1.1–26.1%) and
42.9% (95% CI 28.6–56.4%) in the ≤40 μmol/L and >
40 μmol/L groups, respectively (Gray's test p = 0.001).

Finally, to identify differences in bile acid composi-
tion, the concentrations of individual bile acid species in
the stored samples were determined. For the primary
bile acids cholic acid (CA) and chenodeoxycholic acid
(CDCA), as well as for UDCA, concentrations of the
unconjugated forms were similar in the ≤40 μmol/L
and >40 μmol/L groups (Table 5). In contrast,
concentrations of conjugated CA, CDCA, and UDCA
were significantly lower in the ≤ 40 μmol/L group
compared with the >40 μmol/L group (3.5 μmol/L vs.
45.3 μmol/L, 7.2 μmol/L vs. 39.9 μmol/L, and 6.9 μmol/L
vs. 28.0 μmol/L, respectively; p < 0.001 for all compar-
isons). Furthermore, of the conjugated bile acids, there
were significantly lower ratios of taurine‐conjugated
versus glycine‐conjugated CA, CDCA, and UDCA in
the ≤40 μmol/L group. The secondary bile acids were
not studied further, because their unconjugated and
conjugated concentrations were too low for additional
analyses (see Discussion).

DISCUSSION

This study examines whether serum bile acid levels are
associated with outcomes in infants achieving normal-
ized serum bilirubin levels after KP. Infants with total
serum bile acid levels ≤ 40 μmol/L 6 months after KP
had better liver parameters at 2 years of age, including
significantly lower markers of liver injury such as AST,
ALT, and GGT. Infants with total serum bile acid levels

TABLE 1 Demographic and clinical features of participants

All participants
(n = 137)

Sex, % (n/N)

Female 51.8 (71 of 137)

Male 48.2 (66 of 137)

Race, % (n/N)

Asian 9 (12 of 134)

Black 10.4 (14 of 134)

Multiraciala 14.2 (19 of 134)

White 56.7 (76 of 134)

Otherb 9.7 (13 of 134)

Hispanic, % (n/N) 32.8 (45 of 137)

BASM, % (n/N) 8.8 (12 of 137)

KP age (days), median (range) [n] 64 (17, 133) [137]

START arm, % (n/N)

Placebo 46.9 (23 of 49)

Steroid 53.1 (26 of 49)

Ursodeoxycholic acid use, % (n/N) 61.5 (83 of 135)

Total serum bile acids (μmol/L),
median (range) [n]

70 (2, 322) [137]

Abbreviations: BASM, biliary atresia splenic malformations; START, Steroids in
Biliary Atresia Randomized Trial.
aMore than 1 of American Indian or Alaska Native, Asian, Black or African
American, Native Hawaiian or Other Pacific Islander, White, or Other.
bAmerican Indian or Alaska Native, Native Hawaiian or Other Pacific Islander,
or Other.

F IGURE 2 Total serum bile acid levels varied widely despite
normalized serum bilirubin levels 6 months after KP. x‐axis: bile acid
concentrations grouped in 20‐μmol/L bins; y‐axis: number of
measurements.
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≤ 40 μmol/L 6 months after KP were also significantly
less likely to experience sentinel events during child-
hood, such as development of splenomegaly, ascites,
GI bleeding, and CEPH. Most importantly, their 10‐year
cumulative incidence of liver transplant/death was only
8.5%, compared with 42.9% in infants with total serum
bile acids levels > 40 μmol/L 6 months after KP.

Our findings begin to address two gaps in the field.
First, they provide a practical tool for clinicians to predict
which infants will have the best outcomes after a
“successful KP”, i.e., those who achieve normalized
bilirubin levels. Clinicians can potentially incorporate the
40‐μmol/L cutoff into routine clinical care, without
requiring infants to be fasting or to stop UDCA therapy
before blood draws (nonfasting samples from infants
both taking and not taking UDCA were used in this
study). In addition, clinicians may not need to order
specialized tests measuring concentrations of individual
bile acids species. Instead, testing only for total bile
acids may be sufficient, because serum CA, CDCA, and
total bile acid levels behaved similarly in this study.

Second, the findings provide a surrogate endpoint for
investigators to consider when conducting therapeutic
clinical trials in BA. The most commonly used endpoints
currently are bilirubin normalization and transplant‐free
survival. Bilirubin normalization is assessed in a timely

manner (by 3–6months after KP), but it is limited
because it does not necessarily predict good
outcomes.[13] In contrast, transplant‐free survival may
be the most important clinical outcome, but it is limited
because it requires years of follow‐up to assess. As
suggested by results from this study, serum bile acids
potentially address both limitations, because bile acid
levels not only associate with transplant‐free survival
and other important outcomes but also can be assessed
quickly at the 6‐month post‐KP time point.

From a mechanistic perspective, infants with serum
bile acid levels > 40 μmol/L had significantly higher
levels of conjugated versus unconjugated bile acids. In
addition, the conjugated bile acid species were more
likely to be conjugated with taurine versus glycine,
suggesting that hepatocytes were in a more fetal, less‐
developed state.[22–24] One explanation for high‐serum
conjugated bile acids is hepatocyte adaptation to
cholestasis. For example, with cholestasis, hepatocytes
down‐regulate the sodium‐taurocholate cotransporting
peptide (NTCP), which would limit uptake of conjugated
bile acids from the blood.[25] Hepatocytes also up‐
regulate the organic solute and steroid transporter
(OSTα/β), which would promote efflux of conjugated
bile acids into the blood.[26] Importantly, hepatocytes
may maintain these changes in NTCP and OSTα/β even

TABLE 2 Demographic and clinical features of participants based on bile acid group

Six‐month post‐KP bile acid group

p≤40 μmol/L (n = 43) > 40 μmol/L (n = 94)

Sex, % (n/N)

Female 44.2% (19 of 43) 55.3% (52 of 94) 0.270

Male 55.8% (24 of 43) 44.7% (42 of 94)

Race, % (n/N)

Black 9.5% (4 of 42) 10.9% (10 of 92) 0.769

Multiraciala 9.5% (4 of 42) 16.3% (15 of 92)

White 64.3% (27 of 42) 53.3% (49 of 92)

Otherb 7.1% (3 of 42) 10.9% (10 of 92)

Hispanic, % (n/N) 25.6% (11 of 43) 36.2% (34 of 94) 0.245

BASM, % (n/N) 9.3% (4 of 43) 8.5% (8 of 94) 1.000

KP age (days), median (range) [n] 57 (17, 117) [43] 69 (25, 133) [94] 0.009

START arm, % (n/N)

Placebo 28.6% (4 of 14) 54.3% (19 of 35) 0.125

Steroid 71.4% (10 of 14) 45.7% (16 of 35)

Ursodeoxycholic acid use, % (n/N) 58.1% (25 of 43) 63% (58 of 92) 0.705

History of cholangitis, % (n/N) 41.9% (18 of 43) 27.7% (26 of 94) 0.116

History of fracture, % (n/N) 0% (0 of 43) 1.1% (1 of 94) 1.000

Ascites, % (n/N) 11.6% (5 of 43) 14.9% (14 of 94) 0.791

History of GI bleed, % (n/N) 0% (0 of 43) 5.3% (5 of 94) 0.325

CEPH, % (n/N) 37.2% (16 of 43) 63.8% (60 of 94) 0.005

Abbreviation: GI, gastrointestinal.
aMore than 1 of American Indian or Alaska Native, Asian, Black or African American, Native Hawaiian or Other Pacific Islander, White, or other.
bAmerican Indian or Alaska Native, Native Hawaiian or other Pacific Islander, or other.
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after cholestasis resolves, which could explain why
serum bile acid levels can remain high even after
bilirubin levels normalize in BA.[27,28] Persistent changes
in NTCP and OSTα/β could also explain why bile acid
levels fluctuated little between the 6‐month post‐KP and
2‐year time points in individual patients.

In contrast to conjugated bile acids, unconjugated
bile acids were not increased in the >40 μmol/L group.
One explanation is that intestinal bacteria were

disrupted, from oral antibiotics routinely given for many
months following KP as cholangitis prophylaxis.[29,30]

Normal intestinal bacteria are required to deconjugate
the conjugated bile acids secreted by the liver. Normal
intestinal bacteria are also required to metabolize
primary bile acids into secondary bile acids, and their
disruption could account for the lack of deoxycholic and
lithocholic acid detected in this study.[31] An alternative
explanation for normal serum unconjugated bile acid

TABLE 3 Liver parameters at 2 years of age in each bile acid group

Two‐year liver parameter Value, median (range) [n] Estimate > 40 vs. ≤ 40 μmol/L (95% CI) p R2

Total bilirubin (mg/dl)

≤40 μmol/L group 0.3 (0.1, 0.8) [30] 2.1‐fold (1.6, 2.8) <0.001 0.22

>40 μmol/L group 0.6 (0.2, 6.0) [66]

AST (U/L)

≤40 μmol/L group 58 (28, 218) [34] 1.8‐fold (1.4, 2.3) <0.001 0.18

>40 μmol/L group 106 (40, 860) [72]

ALT (U/L)

≤40 μmol/L group 45 (8, 392) [34] 1.9‐fold (1.4, 2.6) <0.001 0.13

>40 μmol/L group 114 (17, 828) [72]

GGT (U/L)

≤40 μmol/L group 44 (7, 331) [29] 3.7‐fold (2.3, 5.9) <0.001 0.26

>40 μmol/L group 187 (17, 2608) [57]

Albumin (g/dl)

≤40 μmol/L group 4.4 (3.6, 5.0) [34] −0.3 (−0.5, −0.2) <0.001 0.14

>40 μmol/L group 4.1 (3.0, 5.0) [71]

INR

≤40 μmol/L group 1.0 (0.9, 1.2) [31] 0.009 (−0.038, 0.057) 0.704 0.00

>40 μmol/L group 1.0 (0.8, 1.6) [62]

Total bile acids (μmol/L)

≤40 μmol/L group 12 (5, 44) [14] 4.9‐fold (2.8, 8.7) <0.001 0.47

>40 μmol/L group 59 (9, 330) [21]

Spleen size (cm below costal margin)

≤40 μmol/L group 0.0 (0.0, 7.0) [32] 2.2 (1.2, 3.2) <0.001 0.16

>40 μmol/L group 3.0 (0.0, 10.0) [69]

Platelet count (109/L)

≤40 μmol/L group 275 (107, 440) [31] 0.7‐fold (0.6, 0.9) <0.001 0.11

>40 μmol/L group 178 (68, 579) [69]

Weight z score

≤40 μmol/L group −0.06 (−2.86, 2.36) [35] 0.047 (−0.418, 0.513) 0.843 0.00

>40 μmol/L group 0.16 (−3.04, 2.13) [75]

Height z score

≤40 μmol/L group −0.24 (−4.29, 2.22) [34] 0.002 (−0.466, 0.470) 0.994 0.00

>40 μmol/L group −0.48 (−3.25, 2.45) [76]

25‐OH vitamin D (ng/ml)

≤40 μmol/L group 37.0 (16.0, 62.3) [21] 3.7 (−5.4, 12.8) 0.433 0.01

>40 μmol/L group 38.0 (3.2, 110.0) [41]

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma‐glutamyltransferase; INR, internationalized normal ratio; OH, hydroxy.
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levels is that unconjugated species are hydrophobic
and do not require membrane transporters such as
NTCP for clearance from the blood. Instead, uncon-
jugated bile acids are passively absorbed into the
intestine, travel through the portal blood, and passively
enter the hepatocyte for conversion into conjugated bile
acids.[32]

One strength of this study is that serum bile acids
levels were unlikely to have confounded key outcomes
such as liver transplantation. This is because bile acid
levels for this study were measured from stored
samples and compared retrospectively to clinical out-
comes. In most cases, clinicians were unaware of 6‐
month post‐KP bile acid levels, as bile acids were not
routinely measured in the clinical setting. In contrast,
other commonly used biomarkers can be confounding
because they not only predict but also may influence
outcomes in BA. For example, markers such as high
total bilirubin, ascites, and GI bleeding are strong
prognostic markers for need for liver transplant, but this
is at least partly because clinicians may use them as
indications for transplant listing.[13,33]

This study has important limitations. First, it does not
measure samples across time to describe how serum
bile acid levels change at different points in the disease
course. Instead, the 6‐month post‐KP time point was
chosen, because this is the same time point used in a
previous ChiLDReN study (START) to assess bilirubin
normalization.[17] However, by 6months after KP, 64%
of participants with serum bile acid levels > 40 μmol/L
had already developed CEPH. This suggests that
additional studies examining serum bile acid levels at
earlier time points could be informative.

Second, the study does not adjust cutoffs for feeding
and routine UDCA use following KP, both which may be
predicted to increase serum bile acid levels.[30,34] Instead,
a single cutoff of 40 μmol/L was used, based on a
previous report as well as inspecting the distribution of
levels in this study.[21] The 40 μmol/L is higher than the
20–30 μmol/L cutoffs derived from healthy fasting infants
not taking UDCA, as well as the 10‐μmol/L cutoff used for
healthy older children and adults (only 3 participants in
this study had bile acid levels ≤10 μmol/L).[35–37]

Prospective studies controlling for feeding and UDCA

TABLE 4 Occurrence of sentinel events in each bile acid group

Sentinel event Frequency overall follow‐upa, % (n/N) Ten‐year cumulative incidence (95% CI) p

Cholangitis

≤40 μmol/L group 34.9% (15 of 43) 47.9% (25.9%–67.0%) 0.517

>40 μmol/L group 30.9% (29 of 94) 35.4% (24.9%–46.1%)

Fracture

≤40 μmol/L group 0.0% (0 of 43) 0% 0.200

>40 μmol/L group 4.3% (4 of 94) 5.9% (1.8%–13.8%)

New‐onset splenomegalyb

≤40 μmol/L group 18.2% (6 of 33) 29.1% (9.4%–52.7%) 0.001

>40 μmol/L group 58.5% (24 of 41) 66.5% (46.4%–80.5%)

New‐onset
thrombocytopeniab

≤40 μmol/L group 25.0% (9 of 36) 34.7% (15.4%–54.9%) 0.156

>40 μmol/L group 43.1% (25 of 58) 48.4% (33.7%–61.7%)

New‐onset ascitesb

≤40 μmol/L group 2.6% (1 of 38) 2.8% (0.2%–12.6%) 0.048

>40 μmol/L group 16.3% (13 of 80) 18.6% (10.4%–28.7%)

GI bleed

≤40 μmol/L group 2.3% (1 of 43) 5.7% (0.3%–23.7%) 0.031

>40 μmol/L group 16.0% (15 of 94) 18.5% (10.3%–28.5%)

New‐onset CEPHb

≤40 μmol/L group 33.3% (9 of 27) 41.2% (19.1%–62.2%) 0.038

>40 μmol/L group 64.7% (22 of 34) 68.8% (48.5%–82.4%)

Transplant/death

≤40 μmol/L group 4.7% (2 of 43) 8.5% (1.1%–26.1%) 0.001

>40 μmol/L group 31.9% (30 of 94) 42.9% (28.6%–56.4%)

aMedian follow‐up: 4.7 years (range 0–13.9 years).
bParticipants with CEPH (n = 76), splenomegaly (n = 63), thrombocytopenia (n = 43), or ascites (n = 19) at 6 months following KP were excluded from respective
analysis of incident events.
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use could more precisely define bile acid cutoffs in BA. In
addition, it is possible that larger studies may identify a
higher cutoff or a tier of cutoffs as having better predictive
value, given that participants had levels as high as 322
μmol/L with a right skew distribution.

Third, the study identifies serum bile acids as a
marker but not necessarily as a driver of liver injury
and disease progression. Clinical trials with drugs that

reduce bile acid pool size will explore this further.
For example, there are two ongoing double‐blind,
randomized, placebo‐controlled clinical trials with ileal
bile acid transport inhibitors in BA (NCT04524390,
NCT04336722). These therapies have previously
been shown to lower serum bile acid levels in other
causes of neonatal cholestasis such as Alagille
syndrome and progressive familial intrahepatic

F IGURE 3 Lower occurrence of clinically evident portal hypertension (CEPH) and higher transplant‐free survival in infants with total serum bile
acids ≤ 40 umol/L 6months following KP. New‐onset CEPH (A) and transplant/death before death (B). This analysis does not include participants
who had already developed CEPH at the 6‐month post‐KP time point (n = 76). For transplant‐free survival, there were 2 participants (4.7%) in the
≤40 μmol/L group who did not survive with their native liver compared with 30 participants (31.9%) in the >40 μmol/L group.
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cholestasis, and trials in BA will help determine
whether their potential to reduce the bile acid pool
size can improve endpoints such as transplant‐free
survival.[38,39]

Serum bile acids may be a useful prognostic
biomarker for infants who achieve normalized serum
bilirubin levels after KP. Future prospective studies are
needed to explore how clinicians can incorporate serum
bile acid measurements into routine post‐KP care, as
well as how investigators can adopt serum bile acids as
a potential endpoint in clinical trials.
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