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Abstract

Advancements in sequencing technologies have witnessed an exponential rise in the number of newly found
enzymes. Enzymes are proteins that catalyze bio-chemical reactions and play an important role in metabolic
pathways. Commonly, function of such enzymes is determined by experiments that can be time consuming and
costly. Hence, a need for a computing method is felt that can distinguish protein enzyme sequences from those of
non-enzymes and reliably predict the function of the former. To address this problem, approaches that cluster
enzymes based on their sequence and structural similarity have been presented. But, these approaches are known
to fail for proteins that perform the same function and are dissimilar in their sequence and structure. In this article,
we present a supervised machine learning model to predict the function class and sub-class of enzymes based on
a set of 73 sequence-derived features. The functional classes are as defined by International Union of Biochemistry
and Molecular Biology. Using an efficient data mining algorithm called random forest, we construct a top-down
three layer model where the top layer classifies a query protein sequence as an enzyme or non-enzyme, the
second layer predicts the main function class and bottom layer further predicts the sub-function class. The model
reported overall classification accuracy of 94.87% for the first level, 87.7% for the second, and 84.25% for the
bottom level. Our results compare very well with existing methods, and in many cases report better performance.
Using feature selection methods, we have shown the biological relevance of a few of the top rank attributes.

1. Introduction
Recent advancements in sequencing technologies have
seen an exponential growth in protein sequences, thus
bringing to light new metabolic pathways. For many
such newly found protein sequences, it is of prime inter-
est to biologists to identify their biological function. In a
biology lab, scientists conduct expensive and time con-
suming experiments to decipher the function of the
sequences. One of the questions they often strive to
address is whether the query protein is an enzyme or
non-enzyme. Enzymes, as we all know catalyze biochem-
ical reactions, but they perform this function differently
using mechanisms depending on their bio-chemical
properties. This has lead to the genesis of an interesting
problem in Bioinformatics, i.e., given a protein sequence,

how well can we classify it as an enzyme and accurately
predict its function?
In light of the key biological role of enzyme proteins,

the Enzyme Commission (EC) of the International
Union of Biochemistry and Molecular Biology (NC-
IUBMB) has created a hierarchical classification scheme
based on the functional mechanism of enzymes [1].
Each enzyme is designated an EC number of the format
X.Y.Z.W., where ‘X’ at the top of this scheme represents
one of the six main classes (one-six), each further sub-
divided to three levels in the hierarchy (Y.Z.W). The six
main classes are Oxidoreductases (1), Transferases (2),
Hydrolases (3), Lyases (4), Isomerases (5), and Ligases
(6). Considering the costly experiments scientists con-
duct to know the enzyme mechanism, a need is felt for
an automated method that can reliably predict the EC
function class and thus significantly expedite experimen-
tal investigations on the query enzyme.
Enzyme function classification has engaged bioinfor-

maticians for a considerable time now resulting in
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different feature extraction methods to tackle this pro-
blem. There are three prominent approaches that have
been widely experimented with: first, using sequence
similarity between enzymes belonging to same func-
tional class and second protein structure comparison
[2,3]. These methods have been considered inefficient
since enzymes belonging to same functional class are
not necessarily similar in sequence and structure [4,5].
The third approach involves representing enzymes using
their sequence and structure driven features that do not
use similarity.
Studies that propose methods from the third category

of approaches can be found in [6-10]. Features are cho-
sen such that they capture the bio-chemical characteris-
tics of a protein from its protein sequence and are
represented in the form of vectors. References [6,7]
established that support vector machine (SVM) is useful
for protein function classification showing accuracy in
the range of 84-96%. This study classifies protein
sequences into classes like RNA-binding, homodimer,
drug absorption, drug delivery, etc., using feature vectors
like amino acids composition, hydrophobicity, polariz-
ability, and secondary structure. It thus became clear
that classification using sequence features and machine
learning algorithms can be useful to predict functions of
proteins. Reference [9] uses 36 features drawn from
enzyme protein sequences, and employs a C4.5 classifier
to build the classification model. This study classified
enzymes into one of the six main EC classes, achieving
precision and recall in the range of 86-92%. Reference
[10] uses features to represent subtle distinctions in
local regions of sequence along with features as used in
[9]. It applies SVM to predict the main class and reports
accuracy in the range of 66.02-90.78%.
There have been efforts to predict the enzyme func-

tion to the sub-class level as well. Reference [8] uses
amino acid compositions derived from sequence and
employs the covariant discriminant algorithm to classify
oxidoreductases (enzymes belonging to class 1) into
their sub-class. Although the results are promising, this
study is limited only to the scope of oxidoreductases.
Reference [11] introduces a technique that uses protein
sequences to compute their functional domain and
PSSM matrix. It proposes a three-layer predictor model
built using the optimized evidence-theoretic k-nearest
neighbor classifier, to predict enzyme main and sub-
functional class. This study does not use sequence fea-
tures and achieves an overall accuracy close to 90%.
In this article, we present a new approach to predict

enzyme function class and sub-class using random for-
est. Random forest is an ensemble-based classification
and regression algorithm, considered unsurpassable in
accuracy among current data mining algorithms [12].
Random forest algorithms have been applied extensively

in different applications ranging from network intrusion
detection [12], probability estimation [13], information
retrieval, and until recently in bioinformatics [14]. Our
method is based on a three-tier predicting model which
when given a query protein sequence, first classifies it
into an enzyme or non-enzyme, and if an enzyme it pre-
dicts the main EC function class and sub-class. To the
best of authors’ knowledge, this is the first article that
explores the use of random forest to this particular pro-
blem. Using a unique set of sequence-driven features
extracted with the aid of online tools, our model reports
an overall accuracy of 94.87% for the first level, 87.7%
for the second, and 84.25% for the bottom level. We
also report results from a direct single-step model to
predict EC sub-class, which obtained an overall accuracy
of 87%. The sequence features used in our study contain
the dayhoffstat value for each of 20 amino acids, which
is a unique aspect of this feature set. We find that the
dayhoffstat features appear in the list of top ranked
attributes thus suggesting that they are important to
improving classification accuracy. We also provide an
analysis of one of the top ranked features, composition
of Cysteine in enzyme sequences.

2. Materials and methods
2.1. Random forest
Random forest is a classification algorithm developed by
Leo Breiman that uses an ensemble of classification
trees [14]. Each of the classification trees is built using a
bootstrap sample of the data. At every node of the tree,
a candidate set of features selected from a random sub-
set of the entire feature set is used to calculate the fea-
ture with the highest information gain. This strategy
turns out to perform very well as compared to many
other classifiers, including discriminant analysis, SVMs,
and neural networks [14]. Thus, random forest uses
both bagging (a successful approach for combining
unstable learners) and random variable selection for tree
building. Once the forest is formed, every tree classifies
the instances by voting for a particular class. The class
that gets maximum votes is chosen as the final classifi-
cation. Random forest has several characteristics that
make it well suited for enzyme function classification:
(a) It runs efficiently on large datasets with many fea-
tures and does not require for data to be normalized.
(b) It can handle missing values. (c) Because many trees
are built and each tree is effectively an independent
model, the model tends not to over-fit to the training
dataset.
The error rate of a random forest depends on the cor-

relation between any two trees and the strength of each
tree in the forest [12]. The random variable selection
procedure applied at every split of the classification
trees contributes to the low correlation between the
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individual trees. The strength of the tree is determined
by the error rate of the tree. Reducing the correlation
between the trees and increasing the strength of each
tree can decrease the overall error rate of the forest.
The two parameters that can help achieve this are: mtry,
size of random sub-set of features, and ntree, the num-
ber of trees in the forest. Random forest error is mea-
sured in terms of out-of-bag (OOB) estimate [15].
Increasing ntree reduces the OOB error rate of the for-
est as it decreases the correlation between individual
trees and the possibilities of over-fitting. mtry should be
a value much smaller than the total number of features.
In most cases, an optimum value between ntree and
mtry results in the lowest OOB error and higher
accuracy.
To improve the classification accuracy, we have opti-

mized the parameter values at every level of the model.
In this article, we also present results obtained using a
direct single-step model, in which a model built using
random forest is trained on enzymes labeled with their
sub-classes and tested on an independent set. The archi-
tecture of the two models is explained in the next
section.

2.2. Model description
In this article, we focus on the three-tier top-down
model to predict enzyme function till the sub-class level
and also share results from a direct one-step approach
to predict the same. The former model comprises of
three layers: the first layer classifies enzymes and non-
enzymes, the second predicts the main function class of
the classified enzymes and the third layer predicts their
sub-class. Each of the three layers is built using a ran-
dom forest classifier with parameter values optimized to
achieve highest accuracy possible. Figure 1 illustrates the
design of the model with optimized parameter values at
each level.
A diagram showing different components of the three-

tier model. The first level classifies enzymes from non-
enzymes. This model has been trained using a random
forest with parameter values mtry = 25 and ntree = 200.
Level 2 classifies enzymes into their main function class,
while level three classifies the enzymes whose main class
is predicted in level 2, into the sub-classes. There are six
classifiers in level 3, each for the corresponding main
class. The level three classifier is built using a random
forest with parameter values identical to level 2, i.e.,
mtry = 7 and ntree = 200.
The second of the two models is a direct one-step

approach to predict the sub-class function level (see Fig-
ure 2). This model was built by training random forest
using instances of enzymes labeled with their sub-class.
Once, the parameter values were optimized, the model
was tested on an independent test set. Later sections

discuss the comparison of results from the two
approaches discussed above.
This model uses a query enzyme sequence and

directly classifies into the sub-class. This model has
been built using a random forest classifier with opti-
mized parameter values, mtry = 7 and ntree = 200.
These values correspond to the minimum OOB error
rate obtained using this classifier.

2.3. Sequence extraction
We extracted protein sequences of enzymes from the
enzyme repository of SWISS-PROT database [16].
Research in machine learning has proved that imbalance
in class size can be an obstacle in building an accurately
predicting model [17]. Hence, the number of sequences
extracted from every main class was kept well balanced.
Since, each main class has many sub-classes, we ran-
domly extracted sequences such that they are well dis-
tributed over the latter. The next step was to remove
identical sequences present in each main class. For this,
we used CD-HIT, a program that removes redundant
sequences, given a sequence identity threshold, which
we set to 100% [18]. Table 1 summarizes the distribu-
tion of sequences across all the main classes and sub-
classes. We selected sequences from only those sub-
classes that contained significant number of sequences
(> 200 sequences). The third column represents the
sequences after removing all identical sequences.

2.4. Feature representation
To extract sequence-derived features, we used two
online tools, EMBOSS-PEPSTAT: an online tool that
generates a list of 61 feature values for a given sequence
[19], and ProtParams: an online tool that computes
values for 36 sequence features [20]. PEPSTATS gener-
ates values for features such as molecular weight, iso-
electric point, amino acid composition, aliphatic amino
acids, molar compositions of aromatic, polar, non-polar,
charged, basic, and acidic amino acids. A unique aspect
of this tool is that it provides the dayhoffstat value for
every amino acid present in the sequence. As defined by
EMBOSS, dayhoffstat is the amino acid’s molar percen-
tage divided by the dayhoff statistic. The dayhoff statistic
is the amino acid’s relative occurrence per 1000 amino
acids normalized to 100 [19]. ProtParams, on the other
hand, does not compute dayhoffstat values. However, it
provides for feature values such as number of negatively
or positively charged residues, number of carbon, hydro-
gen, nitrogen, oxygen and sulfur atoms, GRAVY, theore-
tical-pI, and aliphatic index. The use of these features is
well reasoned and motivated in previous studies [21,22].
From our experiments, we find that a union of the fea-
tures of ProtParams and PEPSTATS delivers better
accuracy in comparison to using only one of the two
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Figure 1 A flowchart diagram of the three-tier top down model (Model 1).

Figure 2 A flowchart diagram of direct sub-class level prediction model (Model 2).
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feature sets. Figure 3 presents a comparison of the OOB
error and accuracy for three cases obtained using a ran-
dom forest classifier with default settings (mtry = 7,
ntree = 10). Unique features from both tools such as
dayhoffstat and number of carbon atoms play a signifi-
cant role in enhancing the classification accuracy. This
is corroborated by the fact that they appear in our ana-
lysis of the top predicting attributes (Figure 4).
The classifier used is random forest with parameter

values, i.e., ntree = 10, mtry = 7. PepStats, an online
sequence analysis tool, computes values for 61 sequence
features, while ProtParams computes for 36 features.
The classification result obtained after taking a union of
the features from the two tools is shown in the third
bar. Some of the features that are unique to each tool

help in improving the accuracy and reducing OOB
error.

2.5. Dataset preparation and tools used
We selected a total of 2400 non-enzyme sequences and
4731 enzyme sequences. For level 1 experiment, we ran-
domly selected 2400 enzyme sequences against an identi-
cal number of non-enzyme sequences. For levels 2 and 3
experiments, we divided the 4731 enzymes equally into
training and test data, each containing 2366 and 2365
instances, respectively. The distribution of sequences
across different classes was kept equivalent in both test
and train data, as can be seen from Table 1. We did not
normalize the feature values. WEKA, a widely used open
source tool in machine learning was used to carry out all
experiments [23]. We used Rattle, to perform feature
selection using variable importance method [24].

3. Results
3.1. Results from experiments using model 1
First, experiments were carried out with different classi-
fiers to identify the best classifier for our dataset. We
carried out tenfold cross-validation experiments between
LibSVM [25], NaiveBayes, C4.5 [26], and Random For-
est, with default settings and parameters for all, as set
by Weka. The experiment was performed at level-2, i.e.,
to predict the main class of the enzymes. Figure 5 illus-
trates the area under the ROC curve for the four differ-
ent classifiers. Random forest out-performed all the
remaining classifiers by recording the highest area under
the curve.

Table 1 Distribution of sequences across different classes
in training and test data combined together

Class Sub-classes Number of
sequences

1
Oxidoreductases

1.1, 1.2, 1.3, 1.4, 1.5, 1.10, 1.16 986

2 Transferases 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 734

3 Hydrolases 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,
3.11

674

4 Lyases 4.1, 4.2, 4.3, 4.4, 4.6, 4.99 828

5 Isomerases 5.1, 5.2, 5.3, 5.4, 5.5 664

6 Ligases 6.1, 6.2, 6.3, 6.4 845

The sequences extracted from SWISS-PROT enzyme database are spread over
a total of 40 sub-classes. Sequences have been extracted from the sub-classes
having the largest bank of sequences. The number of sequences shown
represent sequences with 100% reduced identity.

Figure 3 Accuracy and OOB error obtained using features from PepStats, ProtParams and combined features from the two tools.
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Figure 5 plots the area unde the ROC curve reported
after running Weka on the different classifiers. The
experiment was performed on enzyme sequences to pre-
dict their main class. Random forest recorded the high-
est area as compared to LibSVM, Naïve Bayes and C4.5.

3.2. Level 1: enzyme | non-enzyme classification
Level 1 of the model classifies enzyme protein sequences
from non-enzyme protein sequences. We performed
tenfold cross-validation experiments on a dataset con-
taining values for all 73 features extracted from 2400

Figure 4 Mean decrease accuracy of top attributes for predicting main class of enzymes, computed using variable importance. Model
2 random forest classifier OOB error for different ntree and mtry values.

Figure 5 Area under the ROC curve for different classifiers to predict enzyme main class.
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enzyme and non-enzyme protein sequences, a total of
4800 sequences. We first sought to optimize the two
random forest parameters, ntree and mtry. Figure 6 pro-
vides OOB error estimates for varying values of ntree
and mtry.
This graph shows OOB error obtained for different

runs of the random forest classifier during its training
phase. As the values of mtry and ntree are changed, the
OOB error also varies. With increasing mtry and ntree,
the error appears to decline till a certain value of mtry,
i.e., 25 is reached. Hence, mtry = 25 and ntree = 200 are
selected as values for the parameters for the level 1
classifier.
The least OOB error is obtained when ntree = 200

and mtry = 25. We anchor these parameter values for
level 1 classifier. Table 2 summarizes the results
obtained from a tenfold cross-validation experiment.
The overall accuracy obtained is 94.87%, with an OOB
error of 0.056. This result compares quite favorably with
other articles [11,27] that report an overall accuracy of

approximately 75% (using neural network) and 91.3%,
respectively.

3.3. Level 2: enzyme main function class classification
Using a training and test data consisting of 2366 and
2365 instances, respectively, the second layer in the
model classifies the test set of enzyme sequences into
one of the six EC main function classes. We carried out
several runs of the random forest classifier to obtain the
optimal values of ntree and mtry, the results of which
are shown as a graph in Figure 7. As can be seen in the
figure, the lowest OOB error (approx. 0.117) is obtained
when ntree = 200 and mtry = 7, respectively. Table 3
summarizes the classification results from level 2 classi-
fier built using these parameter values.
Figure 7 shows OOB error obtained from different

runs during training phase of the level 2 random forest
classifier. The least value of OOB error is obtained
when mtry = 7 and ntree = 200. Hence, these values are
selected for the parameters for the level 2 classifier.
The overall classification accuracy achieved was 87.7%,

with 2074 enzymes being correctly classified into their
main function class out of a total of 2365 instances.
This accuracy has been attained by a combination of 73
sequence driven features (union of PepStats and Prot-
Params features) and random forest classifier with opti-
mal parameter values. In comparison to [9] that applies
features from ProtParams and [10] which uses those
from PepStats, respectively, this is a significant improve-
ment in accuracy. Further, the dataset used in this study
comprises of a total of 4731 enzyme sequences spread

Figure 6 Level 1 OOB error for different values of mtry and ntree.

Table 2 Tenfold cross-validation results obtained from
experiment to classify enzyme and non-enzyme protein
sequences

Protein
type

Sequences Correctly
predicted

Precision Recall Accuracy

Enzyme 2399 2287 94.50% 95.30% 95.33%

Non -
Enzyme

2399 2265 95.30% 94.40% 94.41%

Overall 4798 4552 - - 94.87%

Kumar and Choudhary EURASIP Journal on Bioinformatics and Systems Biology 2012, 2012:1
http://bsb.eurasipjournals.com/content/2012/1/1

Page 7 of 14



over 39 sub-classes. The dataset used in [9] contains 780
enzymes spread over 18 sub-classes. Random forest
achieves a higher accuracy despite a wider distribution
of enzyme proteins. These results substantiate the appli-
cation of random forest to classification problems in
bio-informatics.
Using random forest, we also carried out tenfold

cross-validation experiments on all of the 4731
sequences with mtry = 7 and ntree = 200. We found
4171 or 88.16% of the sequences to be correctly classi-
fied into their main enzyme class, with an overall root
mean squared error of 0.1992. Table 4 summarizes the
results from this experiment.
The next step is to predict the sub-class for the

enzymes. To do this, first we collected the enzymes clas-
sified into their respective main classes, into different
files. For example, we took all enzymes classified as
belonging to class 1, and used them as a test dataset for
the level three classifier. We repeated this process for all
six classes. The six level three classifiers were trained

using corresponding main class instances from level two
training data. As an illustration, the level three, sub-
class 1 classifier was trained using main class 1 instances
that were used for level two training, but are now
labeled with their corresponding sub-class.

3.4. Level 3: enzyme sub-class function classification
In level three of the model, we classify enzymes whose
main class has been predicted, into the sub-class that
they might belong to. There are six random forest clas-
sifiers in this stage, each to predict the sub-class for
enzymes under the corresponding main class. We used
the same parameter values as used in level two for all
six classifiers of level three, i.e., ntree = 200 and mtry =
7. This is because we did not see a big difference in
OOB error even after varying values of mtry between 5
and 25.
The level two classifier also generates false positives,

as shown in Table 3. If we consider class 1 only, false
positives here are the enzymes that are classified as class

Figure 7 Level 2 OOB error for different values of mtry and ntree.

Table 3 Classification results on test data for main enzyme class classification using level 2 classifier

Class Total enzymes True positive False positive Precision (%) Recall (%) ROC area

1 493 436 57 88.40 88.40 0.94

2 367 302 49 86 82.30 0.92

3 337 297 66 81.80 88.10 0.95

4 414 371 53 87.50 89.60 0.95

5 332 281 32 89.80 84.60 0.94

6 422 387 34 91.90 91.70 0.96

Overall 2365 2074 291 87.70 87.70 0.94
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1 but actually belong to other classes like 2 or 3. As a
result, as an example enzymes might get wrongly
assigned a sub-class label of 1.2, which in reality is 2.2.
Hence, we need to account for false positives as errors
while reporting the classification accuracy of level three.
Table 4 carries a column titled carry over false positives.
These are the enzymes wrongly predicted as belonging
to the respective main class. For class 1, there are 57
such enzymes that we need to account and distribute
across the sub-classes of class 1. We factor the number
of carry over false positives by the number of test
sequences in each sub-class. For instance, sub-class 1.1
has 81 enzymes while 1.16 has 35 enzymes, hence num-
ber of carry over false positives to 1.1 is twice that for
1.16, i.e., 10 and 5, respectively. We calculate new values
for precision by the addition f carry over false positives
and false positives reported in the experiment. The for-
mula we use is as follows:

Precision =
TruePositves

TruePositves + FalsePositives + CarryOverFalsePositives

False negatives are instances of class 1, for example,
that get wrongly classified as being in class 3, and hence
the sub-class will also be wrongly identified, say 3.1
instead of 1.2. Just like precision, we calculate new
values for recall that take into account the false nega-
tives generated in level two. New recall values are calcu-
lated using the formula given below:

Recall =
TruePositves

TruePositves + FalseNegatives + CarryOverFalseNegatives

Table 5 and Figure 8 provide a quantitative estimate
of the performance of random forest in predicting the
sub-class of the enzymes. The overall precision and
recall when we do not account for carry over false posi-
tives and false negatives is 95.67 and 95.34%, respec-
tively, and after incorporating these errors, the overall
precision and recall falls to 83.01 and 82.67%, respec-
tively. Precision and recall across all sub-classes ranges
from 74.07 to 91.19% and 57.5 to 100%, respectively.
From the results, we can deduce that at level 2, if the
classifier correctly predicts the main class, there is 95%
probability that level three will correctly identify the

sub-class. However, if it does not predict the main class
correctly, this probability drops to 83%. This deduction
is also established by the correlation between the ROC
area for the main class and the corresponding sub-
classes. From Table 3 we can see that the ROC Area is
highest for class 6 and lowest for class 2. When we look
at the ROC area for their corresponding sub-classes, in
Table 5 we notice that the sub-classes of class 6 have
higher ROC area as compared to sub-classes of class 6.
Summarizing the results, it is clear that the three layer
model has achieved highly promising results, with the
capability to correctly predict till the sub-class level with
83% accuracy.
Precision and recall for most sub-classes is around

similar range, besides seven sub-classes that have a
higher recall. Minimum precision is 74.07% (sub-class
3.7) while minimum recall is 57.05% (sub-class 2.3).

3.5. Results from experiments using model 2
Model 2 (see Figure 2) is a direct single step approach
to predicting the sub-class of enzymes. As in previous
cases, we first sought to find optimal values of the ran-
dom forest parameters. We carried out a tenfold cross-
validation experiment. The random forest classifier
reports the lowest OOB error when mtry = 5 and ntree
= 200 (see Figure 9). Using these values, the results
from the experiment are summarised in Table 6.
Figure 9 shows OOB error obtained from different

runs of the random forest classifier during training
phase. The least value of OOB error is obtained when
mtry = 5 and ntree = 200.
The overall precision and recall obtained using Model

2 is 87.35 and 86.74%. Precision ranges from 60.94 to
95.24% while recall lies in the ranges 48.75-99.52%. We
also tested model 2 by introducing 784 non-enzyme
sequences into the dataset. For this, we conducted
another tenfold cross-validation experiment using the
same values for mtry and ntree, 5 and 200, respectively.
Random forest correctly classified 86% of the sequences,
where the precision and recall of the non-enzyme class
was 87.4 and 86.6%, respectively. This is lower than the
results from level-1 of model-1 which reported around
94% accuracy.

Table 4 Results of tenfold cross-validation experiment performed using Model 1 to predict main enzyme class

Class Total sequences True positive False positive Precision rate (%) Recall (%)

1 986 878 115 88.40 88.70

2 734 602 95 86.40 84.10

3 674 610 124 83.10 86.60

4 828 737 81 90.10 89.60

5 664 558 75 88.20 86

6 845 786 70 91.80 92.40

Overall 4731 4171 560 88.20 88.20
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4. Discussion
Although both models 1 and 2 report promising results,
comparing favorably well with other published studies
[8-11], the precision and recall obtained using model 2
(87.35 and 86.74%, respectively) is higher in comparison
to model 1. If we only look at the minimum precision

and recall values, model 2 reports 60.94 and 48.75%,
respectively, both for sub-class 2.3. Through model 1, the
precision for the same class 2.3 is 85.2% while recall is
57.5%. Model 1 has the advantage that if we only con-
sider the instances whose main class is predicted cor-
rectly, the precision for predicting the sub-class is very

Table 5 Level 3 classification results for sub-classes of all six main classes

Class Size False
positives

Carry over false
positives

Precision New
precision

Recall Carry over false
negatives

New
recall

ROC
area

1.1 81 4 10 95.06 84.61 95.1 15 80.20 0.96

1.2 81 5 10 93.98 83.87 96.3 10 85.71 0.96

1.3 81 7 10 91.76 82.11 96.3 7 88.63 0.99

1.4 81 2 10 97.44 86.36 93.8 6 87.35 0.96

1.5 34 3 5 91.18 79.48 91.2 14 64.58 0.89

1.10 43 0 7 100 86 100 1 97.72 0.98

1.16 35 0 5 100 86.48 91.4 4 82.05 0.98

2.1 38 0 6 100 86 97.37 10 77.08 0.96

2.2 45 0 7 100 86.5 100 0 100.00 0.97

2.3 23 0 4 100 85.2 100 17 57.50 0.96

2.4 44 1 7 97.73 84.3 97.72 6 86.00 0.99

2.5 43 4 7 91.49 79.6 100 6 87.75 0.98

2.6 36 3 6 91.89 79.1 94.44 13 69.38 0.95

2.7 36 1 6 96.77 81.1 83.33 3 76.92 0.94

2.8 37 4 6 89.47 77.3 91.89 8 75.55 0.89

3.1 35 1 8 96.97 78.05 91.43 8 74.41 0.97

3.2 45 2 10 95.74 78.95 100 100.00 0.95

3.3 34 1 8 96.97 78.05 94.18 11 71.11 0.94

3.4 46 2 10 95.56 78.18 93.48 3 87.75 0.93

3.5 42 0 10 100 79.17 90.48 4 82.60 0.97

3.6 44 3 10 93.62 77.2 100 2 95.65 0.97

3.7 20 3 4 86.96 74.07 100 6 76.92 0.92

3.8 13 1 2 92.31 80 92.3 5 66.66 0.90

3.11 18 1 4 94.44 77.27 94.45 94.44 0.97

4.1 76 4 11 94.87 83.15 97.37 12 84.09 0.99

4.2 78 4 11 95 83.51 97.44 15 81.72 0.98

4.3 90 4 13 95.7 83.97 98.89 1 97.80 0.97

4.4 41 1 6 97.37 84.09 90.24 5 80.43 0.97

4.6 42 2 6 94.87 82.22 88.1 7 75.51 0.96

4.99 43 2 6 95.24 83.33 93.02 3 86.95 0.97

5.1 83 2 10 97.59 87.1 97.6 8 89.01 0.98

5.2 39 1 4 97.5 88.63 100 9 81.25 0.99

5.3 78 1 8 98.73 89.65 100 16 82.97 1.00

5.4 40 2 5 94.87 84.1 92.5 9 75.51 0.97

5.5 40 0 5 100 88.63 97.5 9 79.59 0.98

6.1 207 2 18 99.04 91.19 100 1 99.51 1.00

6.2 73 1 6 98.61 91.02 97.26 19 77.17 0.98

6.3 72 3 6 95.65 88 91.67 13 77.64 0.95

6.4 35 5 3 86.49 80 91.43 1 88.88 0.94

Overall 2072 82 290 95.67 83.01 95.34 287 82.670 0.96

Carry over false positives and negatives from level two classifier experiments are taken into account while calculating precision and recall in level three. The
distribution of the carry over false positives is factored by the number of test sequences in the respective sub-classes, in order to conserve the sequence
distribution
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high, almost 95%. This result leads us to reliably con-
clude that the set of features extracted from enzyme pro-
tein sequences capture rich information about the
functional mechanism of the enzyme, down to the sub-
class level. Further, model 1 is designed with the objec-
tive of segregating enzymes from non-enzymes, and sub-
sequently predicting main and sub-class of the enzymes.
It can hence be applied to any generic sequence. This
could be helpful to biologists for they would first want to
know whether a query protein sequence is an enzyme or
not. Model 2 on the other hand proves to be more effec-
tive to sequences that are already known to be enzymes.

5. Ranking attributes
In a classification problem, ranking the features is often
of interest as it tells us which features are strong predic-
tors. Reference [17] has indicated that it is possible not
all features from a protein sequence are strong predic-
tors and hence many might contribute to noise. In ran-
dom forest, importance of features is computed using a
method called variable importance [15]. This method
provides two indices to quantify which features are most
informative, i.e., exhibit strong characteristics associated
with enzyme function classes: mean decrease in accuracy
and the gini index. Mean decrease in accuracy is

Figure 8 Graph showing precision and recall for all sub-classes obtained using level 3 random forest classifier.

Figure 9 Model 2 random forest classifier OOB error for different ntree and mtry values.
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considered more reliable and accurate than the gini
index [12]. Hence, we used the former to report the
strong predictors. Since WEKA does not provide the
variable importance feature for random forest as yet, we
used Rattle for this purpose, a data mining tool devel-
oped by Dr Graham Williams [24]. The experiment we
performed was to compute the top predicting attributes
for the enzyme main class by way of tenfold cross

validation. Figure 4 lists the top features computed by
the variable importance method.
Figure 4 shows the top predicting attributes in

decreasing order of accuracy. CMole represents the
Cysteine percentage composition in the protein
sequences. MoltWt is the molecular weight. HDayhoff-
Stat is dayhoffstat value for Histidine in the enzyme pro-
tein sequences.
From the figure we can see that Cysteine amino acid

(CMole) has the highest prediction accuracy, followed
by molecular weight and amino acid number. A box
plot diagram in Figure 10 provides the relative distribu-
tion of cysteines in the six main function classes.
Sequences that belong to class 3, i.e., hydrolases have
the highest median composition of cysteines and highest
upper quartile value. We verified this information with
published studies and found that studies carried out in
[28] report high conservation of cysteines in glycosyl
hydrolase family, which are enzymes from class 3. Refer-
ence [29] has analyzed proteins from this family and
also reports high cysteine conservation in glycoside
hydrolases. Hence, results from this experiment might
indicate that composition of cysteines is higher in
hydrolases. This would however need to be validated
and verified with biological experiments.
Figure 10 showing class 3, i.e., Hydrolases to have the

highest median and upper quartile percentage composi-
tion of Cysteines.
We also noted the top predicting attributes for

enzyme versus non-enzyme classification and sub-class
level classification. First, for the enzyme versus non-
enzyme classification: CMole was not quite the top pre-
dicting attribute, although its Mean Decrease Accuracy
figure was about the same (0.26). Molecular weight
(MolWt.) was the top predicting attribute for this
experiment, with a mean decrease accuracy of 0.36.
Next, for the enzyme sub-class level classification:
CMole, AminoAcidNumber and MolWt were amongst
the top four predictors, with the mean decrease accu-
racy ranging between 0.32 and 0.33.

6. Conclusions
Enzyme function classification is a challenging problem,
and sequence features alone will not be enough to accu-
rately predict enzymatic mechanisms. However, using a
unique set of features extracted from sequence and an
efficient classifier, random forest, we have demonstrated
that sequence features do capture rich bio-chemical
information about an enzyme and if coupled with struc-
tural characteristics, can contribute to a more robust
and accurately predicting model. By using 73 different
features extracted using EMBOSS PEPSTAT and Prot-
Params tool, we have tried to highlight how existing

Table 6 Performance of random forest classifier using
Model 2, direct sub-class classification approach

Class label Instances True positive Precision (%) Recall (%)

1.1 192 157 83.51 81.77

1.10 88 87 93.55 98.86

1.16 74 65 89.04 87.84

1.2 179 169 88.02 94.41

1.3 176 162 94.74 92.05

1.4 175 162 94.74 92.57

1.5 97 78 81.25 80.41

2.1 96 80 95.24 83.33

2.2 91 90 70.87 98.9

2.3 80 39 60.94 48.75

2.4 98 83 91.21 84.69

2.5 97 86 88.66 88.66

2.6 96 82 82.83 85.42

2.7 110 68 93.15 61.82

2.8 93 74 94.87 79.57

3.1 87 71 77.17 81.61

3.11 36 33 80.49 91.67

3.2 89 85 86.73 95.51

3.3 87 76 87.36 87.36

3.4 95 86 94.51 90.53

3.5 91 85 91.4 93.41

3.6 92 88 92.63 95.65

3.7 55 43 91.49 78.18

3.8 36 31 79.49 86.11

4.1 172 159 90.34 92.44

4.2 185 147 89.63 79.46

4.3 183 180 91.84 98.36

4.4 91 77 91.67 84.62

4.6 97 85 91.4 87.63

4.99 93 87 92.55 93.55

5.1 179 168 85.28 93.85

5.2 96 86 83.5 89.58

5.3 188 154 84.15 81.91

5.4 98 77 92.77 78.57

5.5 99 84 85.71 84.85

6.1 418 416 93.91 99.52

6.2 183 156 81.68 85.25

6.3 170 151 87.79 88.82

6.4 82 70 80.46 85.37

Overall 4748 4190 87.35 86.74
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tools can be re-used and extended to address interesting
problems in Bioinformatics. The results from the experi-
ments demonstrate the useful application of random
forest for multi-class problems like enzyme function
classification. The random forest classifier achieved a
high accuracy on a widely distributed and reasonably
large dataset. Further, our analysis of top rank features
suggests that percentage composition of cysteines can
be important in enzyme function classification. The
datasets are available online for other groups to experi-
ment and could prove to be useful for extracting inter-
esting information about enzymes, especially with regard
to the features that we have used.
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