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Abstract

Recent advances in transcriptomics have uncovered lots of novel transcripts in plants. To annotate such transcripts,
dissecting their coding potential is a critical step. Computational approaches have been proven fruitful in this task; however,
most current tools are designed/optimized for mammals and only a few of them have been tested on a limited number of
plant species. In this work, we present NAMS webserver, which contains a novel coding potential classifier, NAMS,
specifically optimized for plants. We have evaluated the performance of NAMS using a comprehensive dataset containing
more than 3 million transcripts from various plant species, where NAMS demonstrates high accuracy and remarkable
performance improvements over state-of-the-art software. Moreover, our webserver also furnishes functional annotations,
aiming to provide users informative clues to the functions of their transcripts. Considering that most plant species are
poorly characterized, our NAMS webserver could serve as a valuable resource to facilitate the transcriptomic studies. The
webserver with testing dataset is freely available at http://sunlab.cpy.cuhk.edu.hk/NAMS/.
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Introduction
Recent advance in transcriptomics (e.g. whole transcriptome
sequencing technique) have uncovered large amounts of novel
transcripts, a high proportion of which are long non-coding RNAs
(lncRNAs), which are larger than 200 nucleotides and lack coding
potential [1–4]. Studies have shown that lncRNAs are functional
and many of them serve as important regulators. For instance,
we previously had discovered various lncRNAs (e.g. Linc-Yy1)
and demonstrated their interactions with transcription factors
during myogenesis [5–10]. LncRNAs are also reported in plants
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and involved in various pathways, e.g. they regulate the splicing
of the coding mRNAs and play roles in response to stress [11–
17]. These studies demonstrate that most of the novel transcripts
could be functional thus deserve further investigations.

Besides the inspiring progress in the past years, however,
it is still complex and challenging to infer the functions of
newly identified transcripts [18–22]. One important step toward
functional annotation is to differentiate lncRNAs from mRNAs,
as coding potential directly affects the design of downstream
experiments [23]. Various computational algorithms have been

https://academic.oup.com/
http://orcid.org/0000-0002-9883-1616
http://sunlab.cpy.cuhk.edu.hk/NAMS/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


2 Sun et al.

developed and proven reliable in this task, most of which uti-
lize supervised machine learning methods (e.g. support vector
machine) to train classification models based on various fea-
tures extracted from a list of known coding and non-coding
transcripts [4, 24–27]. However, since most of the plant species
are poorly characterized, current tools are usually optimized for
mammals. For example, previously we had developed iSeeRNA
[4], which showed high accuracy for human and mouse species,
but it is not suitable for plants, as it relies on cross-species
conservation, while currently, the lack of high-quality reference
genomes for most plant species makes it infeasible to deduce
reliable conservation scores. A handful of software claim appli-
cability in plants, such as CPC2 [24] and CNIT [25], the successors
of CPC [26] and CNCI [27], respectively; however, the performance
of these tools have only been tested on a limited number of
species. In this work, we present NAMS (non-coding assessment
of Magnoliophyta species) webserver, which provides online cod-
ing potential assessment specifically designed for plants. We
have evaluated NAMS against state-of-the-art tools using a com-
prehensive dataset with more than 3 million transcripts from
various plant species to demonstrate performance advantages of
our classifier. Our webserver further provides functional annota-
tions to help the users to find clues to the functions of their tran-
scripts. NAMS webserver with testing dataset is freely available
at http://sunlab.cpy.cuhk.edu.hk/NAMS/.

Methods
Figure 1 shows the schematic workflow of our NAMS webserver.
The webserver takes the transcript sequences provided by
the users as input, then it calculates the coding potential
and performs functional annotations of the query transcripts.
Currently, the webserver provides three classifiers: NAMS, a
newly developed tool in this work, as well as CPC2 and CNIT,
tools that have been demonstrated to be capable of processing
plant transcripts. Supervised machine learning approaches
are widely used in coding potential classifications; however,
currently plant lncRNAs are poorly characterized and a high
proportion of annotated ones originate from a limited number
of model species (e.g. Arabidopsis [28]), which means supervised
classifiers could be biased to the well-annotated species as
they contribute the majority of transcripts in the training
dataset. As a result, we have developed two modules for NAMS:
the NAMS-SVM module is based on support vector machine
(similar to iSeeRNA and CPC2) [29] and the NAMS-DT module
is implemented using a Decision-Tree algorithm. In the current
implementation of NAMS (Supplementary Figure S1), the key
features are open reading frame (ORF) and homologue search
(using blast software [30] against annotated protein sequences
of Magnoliophyta species in the UniProt database [31]), which
are both well-recognized features in this task [4, 26]. Intrinsic
sequence features, e.g. Fickett TESTCODE score [32], have been
proven informative and are heavily utilized in both CPC2 and
CNIT; however, we find that TESTCODE scores show a systematic
bias among various species. For example, TESTCODE scores
for mRNAs are generally higher than lncRNAs in all species
investigated in Supplementary Figure S2, but the scores for rice
lncRNAs are comparable to Arabidopsis mRNAs while much
higher than human mRNAs. We thus doubt that such sequence
features may consist species-specific bias and do not use them
in the current work. Briefly, in NAMS-SVM, we randomly selected
2000 well-annotated transcripts (1000 coding and 1000 non-
coding) from Arabidopsis (similar to CPC2 and CNIT which train
the model using Arabidopsis transcripts while find that the

Figure 1. Schematic workflow of NAMS webserver. The webserver consists of two

components: coding potential assessment and functional annotation of plant

transcripts. The webserver takes the transcript sequences from the users as

input, and predicts the coding potential using three classifiers: NAMS (which

contains two modules: NAMS-DT and NAMS-SVM), CPC2 and CNIT. After that,

the webserver further performs functional annotations of the query transcripts,

including homologue search results and 2D secondary structure prediction.

model works on most plant species) [28] using the ORF size
and homologue search results (E-value, a statistical parameter
accounting for the significance of the hit, and high-scoring
segment pair score (HSP), a measurement of the biological
relevance of the hit) as the features to train a classification
model; while in NAMS-DT, for a given transcript, if its ORF is
longer than 120 aa (amino acids), NAMS-DT checks the best
hit during the homologue search: if the E-value is lower than
0.001 or the HSP score is higher than 200, the transcript will be
classified as ‘coding’; otherwise it will be reported as ‘uncertain’;
on the other hand, for a transcript whose ORF is shorter than
120 aa, if the E-value is larger than 0.001 or the HSP score is
lower than 200, it will be classified as ‘non-coding’; otherwise
an ‘uncertain’ will be reported (Supplementary Figure S1). The
thresholds used by NAMS-DT are carefully selected based on
previous knowledge, tradeoff between sensitivity and specificity,
as well as to minimize the proportion of ‘uncertain’ results
(Supplementary Figure S3). Based on our evaluations, ‘uncertain’
results account for around 5–10% of the transcripts (notably, we
find that CNIT also provides blank prediction results for some
transcripts).

To use the webserver, users are only required to submit
their transcripts in FASTA format. The predicted results will be
returned within a few seconds after submission. All the three
classifiers are called to perform coding potential classification
for the query transcripts. Based on our evaluations (see Results
section), NAMS-DT shows the best performance, therefore, the
webserver uses its prediction as to the primary classification
result; for the transcripts that could not be classified by NAMS-
DT (i.e. ‘uncertain’), the webserver uses the prediction by CPC2

http://sunlab.cpy.cuhk.edu.hk/NAMS/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa200#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa200#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa200#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa200#supplementary-data


NAMS webserver 3

Table 1. Performance of NAMS on the well-annotated testing dataset

Species Category Number of transcripts NAMS-DT accuracy (%) NAMS-SVM accuracy (%)

Arabidopsis mRNA 11 975 95.4 97.6
lncRNA 1233 99.7 98.9

Maize mRNA 286 95.0 98.3
lncRNA 2534 99.6 98.9

Potato mRNA 67 98.5 100.0
lncRNA 978 98.9 95.0

Rice mRNA 1506 95.7 96.8
lncRNA 3726 85.4 83.4

Tomato mRNA 130 90.6 94.6
lncRNA 2932 99.8 99.4

Overall mRNA 13 964 95.4 97.5
lncRNA 11 403 95.1 93.6

as the final result. Besides coding potential assessment, the web-
server also provides functional annotations to the user-supplied
transcripts: for those predicted to be ‘coding,’ the potential
homologue proteins with pairwise amino acid sequence align-
ment will be listed; otherwise, the 2D secondary structure (cal-
culated by RNAfold software [33]) will be shown to the users.

Results
Accuracy of NAMS on well-annotated datasets

We first evaluated the performance of our NAMS classifier
using well-annotated plant datasets. For NAMS-SVM, during
training, it shows a 10-fold cross-validation accuracy of 99.1%;
receiver operating characteristic (ROC) analysis reveals an
area under the ROC curve (AUC) value larger than 0.999
(Supplementary Figure S4); in addition, the accuracies on
classifying mRNAs (i.e. sensitivity) and non-coding RNAs (i.e.
specificity) are 98.8% and 99.6%, respectively, demonstrating
very high performance of NAMS-SVM on the training dataset. We
then evaluated the performance of NAMS-SVM and NAMS-DT on
a testing dataset obtained from CPC2 project. Notably, only RNAs
longer than 200 bp are kept in the analysis, resulting in 13 964
mRNAs and 11 403 lncRNAs from five plant species [Arabidopsis
(which transcripts have no overlap with the training dataset),
Maize, Potato, Rice, Tomato]. Both NAMS-SVM and NAMS-DT
modules show high performance on this dataset (Table 1). For
example, NAMS-DT shows an overall accuracy of 95.4 and 95.1%
in classifying mRNAs and lncRNAs, respectively; the median
accuracies on mRNAs and lncRNAs across the five species are
95.4 and 99.6%, respectively, which performance is similar to
CPC2 on this dataset. For NAMS-SVM, ROC analysis further
reveals AUC values range from 0.973 to 0.999 (median: 0.998)
among the five species (Supplementary Figure S4). These results
demonstrate that NAMS is highly reliable in coding potential
prediction of common plant species.

Comprehensive evaluation of NAMS and current tools

To comprehensively evaluate the performance of NAMS and cur-
rent tools, annotated plant transcripts from Phytozome (v12) [34]
and GreeNC (v1.12) [35] databases are collected. As a result, this
testing dataset contains more than 3.2 million transcripts: the
Phytozome database presents ∼3 million mRNAs from 68 species
and the GreeNC database presents ∼200 thousand lncRNAs from
45 species. In addition, we also applied CPC2 and CNIT, two state-
of-the-art classifiers, on this comprehensive dataset for perfor-

mance comparisons. The summary of the evaluation results is
shown in Table 2, and the detailed information could be found in
Supplementary Table S1. Considering that this dataset consists
of various species, we calculated both the overall accuracy (using
all transcripts) as well as quantiles (including median) of accura-
cies across the species. Briefly, on the Phytozome transcripts, the
performance is similar among NAMS, CPC2 and CNIT (Table 2).
On the GreeNC transcripts, however, NAMS-DT module shows
significantly higher accuracies than the others: the overall accu-
racies are 93.6, 68.9, 83.9 and 55.0%, respectively, for NAMS-DT,
NAMS-SVM, CPC2 and CNIT. In addition, the median accuracy
of NAMS-DT is also remarkably higher (96.3%) compared to
NAMS-SVM (81.8%), CPC2 (80.8%) and CNIT (53.9%) among the 45
species in the GreeNC dataset. Furthermore, NAMS shows sim-
ilar F-measure scores [36] (both NAMS-DT and NAMS-SVM are
0.929) while higher Matthews correlation coefficient (MCC) val-
ues [37] (NAMS-DT: 0.495, NAMS-SVM: 0.384) compared to CPC2
(F-measure score: 0.916; MCC value: 0.423) and CNIT (F-measure
score: 0.943; MCC value: 0.359). ROC analysis further shows that
NAMS-SVM performs slightly lower than CPC2 while higher than
CNIT on this comprehensive dataset (Supplementary Figure S5).
The performance of CNIT is not as excellent as that demon-
strated in their original work. We think that the inconsistency
may due to that CNIT is previously tested using the transcripts in
Ensembl database [38], where the transcript sequences might be
more complete than that in GreeNC database, as many species in
GreeNC database have not been well-characterized. The results
on this comprehensive testing dataset thus demonstrate the
high accuracy and improved performance of NAMS, especially
the NAMS-DT module in the classification of lncRNAs.

NAMS webserver and example outputs

To facilitate the usage of NAMS and provide an easy-to-access
resource for the plant research society, we have set up a
webserver freely available to all users. The users are only
required to submit the sequences of their transcripts in FASTA
format for prediction, and the result will be shown within a few
seconds. Notably, the webserver will keep the result for each
online query for 1 month, which allows the users to bookmark
it for future reviews or share it with their colleagues. Two well-
annotated transcripts are provided as examples to illustrate
the usage and output of NAMS webserver in Figure 2, and more
examples are provided in Supplementary Figure S6. The first
one is a coding transcript, NM_101677.1 (Arabidopsis thaliana
putative FKBP-type peptidyl-prolyl cis-trans isomerase 5). As
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Table 2. Performance of NAMS and current tools on the comprehensive testing dataset

Phytozome (mRNA) GreeNC (lncRNA)

NAMS-DT NAMS-SVM CPC2 CNIT NAMS-DT NAMS-SVM CPC2 CNIT

Overall 87.2 88.5 85.4 92.1 93.6 68.9 83.9 55.0
Quantile 1 85.7 84.1 86.3 90.7 93.3 52.8 77.1 48.0
Median 88.1 88.4 88.9 93.0 96.3 81.8 80.8 54.1
Quantile 3 90.1 92.5 90.9 94.6 97.8 91.7 87.5 59.5

Notes: All values are shown in percentages; Phytozome database contains ∼3 million mRNAs from 68 species, and GreeNC databases contains ∼200 thousand lncRNAs
from 45 species. The prediction accuracies are calculated for each species and summarized in this table.

Figure 2. Snapshots of the NAMS webserver. Example outputs of an annotated (A) coding and (B) non-coding transcript.

shown in Figure 1A, the first part of the result page is the coding
potential prediction, where the query transcript is predicted as
‘coding’ (highlighted in red). The second part is the detailed
information for classification including the ORF size and key
statistics (i.e. E-value and HSP score) in homologue search. For
query transcripts predicted as coding, the webserver shows
the top 10 hits during the homologue search. Users could click
the arrows to view the detailed information, which contains a
pairwise alignment and statistics when measuring the similarity
of the two sequences (Figure 2A). In this case, it is very likely
that the query transcript belongs to a gene that is homologue
to known peptidyl-polyl cis-trans isomerases in various plant
species. The other example is AT1G06963.1, which is a lncRNA
in Arabidopsis thaliana [28] and predicted to be ‘non-coding’ by
NAMS (highlighted in green; Figure 2B). For such a non-coding
transcript, the webserver provides the 2D secondary structure
along with a mountain plot (Figure 2B). This information (e.g. the
harpins) could help the users find out the potential functional
domains for downstream mechanism studies. Considering that
most plant species are poorly annotated, we believe that our
annotations could assist the users to find valuable clues to the
functions of their transcripts.

Discussion

The development of high-throughput whole transcriptome
sequencing technology has revealed millions of novel transcripts
in the past few years. To identify the coding potential of
these transcripts, various computational predictors have been
developed and demonstrated high accuracy. However, most of
the current classifiers are built for mammals and very few
of them are able to work well for plants. In this work, we
present NAMS webserver, which contains a coding potential
predictor specifically designed and optimized for plant species,
as well as functional annotations aiming to provide the users’
clues to the potential functions of their transcripts. NAMS
had been comprehensively evaluated using three datasets
collected from various sources and comprised of more than
3 million transcripts (Table 2). As a result, our evaluations have
demonstrated the unsatisfactory performance of current tools as
well as the advantage of NAMS. On other hand, no computational
software is perfect even though it shows overall high accuracy;
therefore, the strategy used in our webserver that combines
various prediction tools could provide more reliable results
to the users. For example, Supplementary Figure S6A shows

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa200#supplementary-data


NAMS webserver 5

a well-characterized mRNA that codes the EPFL1 (EPIDERMAL
PATTERNING FACTOR-like protein 1) protein, while it is predicted
to be non-coding by CPC2; Supplementary Figure S6B shows an
annotated lncRNA which is predicted to be coding by CNIT. The
lncRNA in Supplementary Figure S6B has a ‘reviewed’ status in
RefSeq gene annotation [39] but has not been fully characterized
yet; our functional annotation reveals multiple stem-loop
structures, suggesting the high probability of a functional
lncRNA. Hence, our webserver could provide both reliable coding
potential assessment, as well as valuable functional annotations
for the users.

In coding potential assessment field, supervised machine
learning approaches have been widely adapted and demon-
strated high performance in various studies (mostly in mam-
mals) [4, 24–27]. However, in this work, we show that currently
such methods may not be optimal for plants. In fact, in our
NAMS algorithm, the NAMS-SVM and NAMS-DT modules
utilize the same features while employ different classification
algorithms. The performance of these two modules is both
very high and comparable on the testing dataset consisting
of well-annotated species (Table 1), while drastically different
on the comprehensive dataset which contains transcripts from
various species that are poorly characterized. The unsatisfactory
performance of CPC2 and CNIT on the comprehensive dataset
further suggests that at the current stage, supervised machine
learning approaches may not be the most preferred methods
for plants. We think that this could be attributed to the
circumstance that current studies on plants mainly focus
on a limited number of model species (e.g. Arabidopsis);
therefore biases the classification models; sequence features
(e.g. Fickett TESTCODE) are also commonly used in various
classifiers while our analysis reveals species-specific bias in
such features; therefore, selection of features for machine
learning approaches may also affects their performances. Our
NAMS-DT algorithm is thus valuable under such scenario. In the
future, we think that with the exploration of more plant species,
supervised methods should be much improved toward the most
reliable tools to facilitate transcriptomics studies in plants.
In the meantime, considering the performance advantage of
NAMS-DT, we think that that it is worthwhile to integrate
NAMS into transcriptome data processing pipelines [23, 40]
for more sensitive de novo lncRNA identifications in following
studies.

In summary, considering that most plant species are poorly
annotated, through the integration of coding potential assess-
ment and functional annotations, we believe that our easy-
to-use and multifunctional NAMS webserver could serve as a
valuable resource to the plant research society.

Key Points
• Comprehensive evaluation using more than 3 million

plant transcripts from various species reveals unsatis-
factory performance of current coding potential tools.

• We have developed a new tool, NAMS, specifically
designed for plants and outperforms state-of-the-art
tools in coding potential classification.

• We have set up a user-friendly webserver with coding
potential assessment and functional annotations for
plant transcripts freely available to all users.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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