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Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and
fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the
MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition
of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved,
thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling
cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while
insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal
tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-
mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus,
the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic
nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule.

1. Introduction

Insulin is one of the essential hormones in humans [1]. It is
secreted from pancreatic 𝛽 cells and regulates glucose home-
ostasis in various organs and tissues, such as the liver, muscle
and fat tissues, and the kidney. However, the roles of insulin
in these organs and tissues are pleiotropic and variable. In
the liver, insulin inhibits gluconeogenesis, promotes glycogen
synthesis, and activates de novo lipogenesis. In themuscle and
adipocytes, insulin stimulates glucose uptake [2].

Insulin exerts its activity via signal transduction path-
ways that start from the binding of insulin to the insulin
receptor (IR) [3]. Via insulin receptor substrate (IRS), the
signal is transmitted to phosphoinositide 3-kinase (PI3K)
and phosphoinositide-dependent kinase-1 (PDK1) and leads
to the phosphorylation of Akt. The phosphorylated Akt
mediates vital signals such as stimulating protein synthesis,
cell survival, transcription, and glycogen synthesis [4]. There
are four subtypes of IRS (IRS1 to IRS4), among which IRS1
and IRS2 are the primary mediators involved in insulin

signaling [5]. There are other signal transduction pathways
initiated by insulin, such as mitogen-activated protein kinase
(MAPK)/extracellular signal-regulated kinase (ERK) kinase
(MEK) and ERK, which, partly under IRS-mediated signal
and partly under Shc that directly mediates signals from the
IR, serve to primarily regulate cell growth and proliferation
[6, 7]. Figure 1 shows the simplified scheme of the insulin
signal transduction network.

However, in insulin resistance, the target organs and/or
tissues do not fully respond to insulin. Insulin resistance is
characterized by attenuation of the insulin effect. The prob-
lem is that the phenotype of insulin resistance is complex;
for example, liver insulin receptor knockout mice (LIRKO)
show hyperglycemia and hypolipidemia, due to total liver
insulin signal deficiency [8]. In contrast, in humans and
in animal models of metabolic syndrome-induced insulin
resistance, there is hyperglycemia and hyperlipidemia caused
by preserved lipogenesis [9]. Additionally, the mechanisms
of insulin resistance is different among organs and tissues.
For example, in adipose tissue, both IRS1-dependent and
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Figure 1: Typical insulin signaling cascade. Insulin binds to insulin
receptor in the cell surface [7, 13–15]. The signal goes via IRS,
PI3K, and PDK1 to Akt. Akt is a key regulator of this cascade
and triggers various signals of physiological responses such as
stimulation of glucose uptake, inhibition of gluconeogenesis, and
stimulation of lipogenesis. Insulin also stimulates cell growth and
proliferation via MEK and ERK cascade. IRS: insulin receptor
substrate, PI3K: isoform of phosphatidylinositol 3-kinase, PDK1:
3-phosphoinositide-dependent protein kinase-1, GLUT4: glucose
transporter type 4, FoxO1: Forkhead box protein O1, and SREBP-1c:
sterol regulatory element-binding protein 1c.

IRS2-dependent signals are impaired in insulin resistance.
However, in the renal proximal tubule (PT), insulin signaling
via IRS1 is impaired but insulin signaling via IRS2 is preserved
[10–12].

2. Selective Insulin Resistance in the Liver and
Vascular Endothelium

As shown in Figure 1, the insulin signaling cascade has
various effects on glucose and lipid metabolism. The insulin
signaling cascade mediates signals for gluconeogenesis inhi-
bition by inhibiting the Forkhead box protein O1 (FoxO1)
activity [22] and for activation of glucose uptake by inducing
glucose transporter 4 (GLUT4) translocation to the plasma
membrane [23]. The insulin signaling cascade also induces
lipogenesis by activating sterol regulatory element-binding
protein- (SREBP-) 1c [13, 24]. In insulin resistance, these
effects are impaired to different extents.

In the liver, IRS1 mediates lipogenesis while IRS2 medi-
ates glycogen synthesis. In insulin resistance, the signaling
cascade via IRS2 seems to be impaired while the signaling
cascade via IRS1 seems relatively intact [25, 26]. Furthermore,
in hepatocytes with insulin resistance, SREBP-1c expression
is increased, while the expressions of IRS2 and insulin-
induced Akt phosphorylation are significantly decreased
[26]. The IRS1-dependent pathway is essential for SREBP-
1c expression triggered by insulin [25], while the PI3K
signaling that is dependent on IRS2 has been shown to be

essential for enhancement of glucose uptake by inhibiting
glycogen synthase kinase (GSK) 3𝛽 [27].These results suggest
that both gluconeogenesis and lipogenesis are stimulated
under hepatic insulin resistance, inducing hyperglycemia
and hyperlipidemia. The difference between the role of IRS1
and IRS2 in insulin signaling cascade could account for the
existence of selective insulin resistance in liver. In fact, the
liver is the first organ in which selective insulin resistance was
noticed [28–30].

In the liver, the evidence of specific zonation formetabolic
pathways [31–34] has accumulated. Two zones, an afferent
periportal area and an efferent perivenous region, are known
so far. The periportal, upstream area is supplied with blood
rich in oxygen and hormones such as insulin and is involved
in oxidative energy metabolism and gluconeogenesis. On
the other hand, the perivenous downstream area is supplied
with blood which is poor in oxygen but rich in CO

2
and

metabolic products and is engaged in glucose uptake and
lipogenesis [34–36]. Recent studies suggest that selective
insulin resistance might be related to hepatic zonation; the
periportal area becomes insulin resistant, while the perive-
nous area remains insulin sensitive and thus accompanied
with enhanced gluconeogenesis and retained lipogenesis [37].

In vascular endothelial cells, IR/IRS1/PI3K/Akt pathways
are thought to be attenuated in insulin resistance, while the
ERK/MAPK pathways are not affected in obese Zucker rats
[38], suggesting the existence of selective insulin resistance.
Insulin increases endothelial nitric oxide (NO) production
and endothelial NO synthase (eNOS) gene expression via
PI3K and Akt, which is impaired in insulin resistance [39,
40]. The gene expression of eNOS is altered by IRS1 [41].
Mice lacking IRS1 present impaired endothelium-dependent
vascular relaxation, suggesting that IRS1 plays a significant
role in insulin signal transduction at the vascular endothe-
lium [42]. IRS2−/− mice exhibit more intensive neointima
formation compared to wild type and IRS1−/− mice [43].This
attenuation of vascular insulin signaling appears to mainly
involve the IRS1-dependent pathway but IRS2-dependent
pathway may also be partly involved. On the other hand,
preserved ERK/MAPK pathway triggers the expression of
endothelin-1, a strong vasoconstrictor that leads to blood
pressure elevation [44]. Additionally, the lack of insulin
receptor gene and resulting attenuation of insulin signaling
were shown to increase the expression of vascular cell
adhesion molecule 1 (VCAM-1) [38, 44, 45], a strong inducer
of atherosclerosis, showing that loss of insulin signaling could
accelerate atherosclerosis. Taken together, selective insulin
resistance also exists in the vascular endothelium; that is, the
attenuation of IRS/PI3K pathway could impair NO-derived
vasodilatation and promote atherosclerosis, while the pre-
served ERK/MAPK pathway could induce vasoconstriction
mediated by endothelin-1.

3. The Roles of IRS1 and IRS2 in Muscle and
Adipose Tissue in Insulin Resistance

In muscle, insulin signaling via IRS and PI3K is attenuated,
whereas the stimulation of the MAPK pathway by insulin is
thought to be intact in hyperinsulinemia and type 2 diabetes
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mellitus (T2DM) [46–48]. Huang and colleagues showed that
gene silencing of IRS1, but not IRS2, in L6 myotube cells
reducedGLUT4 translocation and glucose uptake, suggesting
that IRS1 is mainly involved in insulin-stimulated glucose
uptake [49]. Other studies also suggest that muscle IRS1, but
not IRS2, is reduced in insulin resistance [50]. In muscle,
insulin resistance seems to attenuate predominantly IRS1-
dependent GLUT4 translocation and glucose uptake, though
some reports suggest that IRS2-dependent insulin signaling
cascade could also be involved in glucose metabolism in
myocytes [51, 52].

Adipose tissue is the major site responsible for systemic
insulin resistance. Ueki and colleagues showed that suppres-
sor of cytokine signaling 1 (SOCS-1) and SOCS-3 causes
impaired insulin signaling through the phosphorylation of
IRS1 and IRS2 by separate mechanisms [53]. In human
adipocytes, exposure to glucose and high dose insulin for
several hours reduced IRS1 expression [54] while, in rat
adipocytes, high fat diet reduced both IRS1 and IRS2 content
[55, 56]. The reason why IRS1 and IRS2 are not suppressed
identically between human and rat adipocytes is not under-
stood.

Insulin induces translocation of GLUT4, the main glu-
cose transporter isoform expressed in adipocytes, from the
cytosol to the plasma membrane [57, 58]. Overexpression of
human IRS1 in rat adipocytes elevates surface GLUT4 level
even without insulin [59]. In insulin resistance, the adipocyte
itself is enlarged and the expression of IRS1 and GLUT4 is
decreased. Inflammation factors such as TNF𝛼 and IL-1𝛽 are
thought to induce reduction of IRS1 and GLUT4 expression
[60, 61].

4. Chronic Kidney Disease (CKD)
and Insulin Resistance

Substantial evidence indicates that insulin resistance is
accompanied by chronic kidney disease (CKD) [62]. Insulin
resistance is frequently seen in patients with advanced or
end-stage renal disease and also in patients with mild
renal dysfunction [63, 64]. The mechanisms involved in the
occurrence and development of insulin resistance in CKD
has been clarified to some extent [62]. Inflammation is a
notorious contributor to the emergence of insulin resistance.
Mediators of chronic inflammation, such as TNF-𝛼, IL-6,
and interferon-𝛾 show increased levels in CKD patients [65–
67]. The binding of insulin to IR is well preserved, but the
signal transduction cascade after insulin binding to IR seems
to be impaired [68, 69]. The main inhibitory step is the
degradation of IRS1 by the ubiquitin complex, which reduces
phosphorylation of Akt that is downstream of IRS1, resulting
in abnormal glucose homeostasis and lipid metabolism [70,
71].

5. Recent Findings regarding Insulin Signaling
in the Renal Proximal Tubule

In renal tubules, insulin stimulates sodium reabsorption in
many tubular segments [12, 72, 73]: the PT [74–77], thick
ascending loop of Henle (TAL) [78, 79], distal convoluted

tubule (DCT) [80], and cortical collecting duct (CCD) [81].
As for the PT, signal transduction cascade initiated by insulin
triggers Akt phosphorylation, mainly via IRS2/PI3K [11, 82].
In theDCT, the insulin signal pathway includesAkt andwith-
no-lysine kinase (WNK) [83].

We have recently showed [11] that in PTs of the Otsuka
Long Evans Tokushima Fatty (OLETF) rat, an animal model
of insulin resistance, the stimulatory effect of insulin on
sodium bicarbonate cotransporter (NBCe1) activity via the
PI3K/Akt pathway was also totally intact. This strongly
suggests that, even in insulin resistance, the enhancement of
sodium reabsorption via NBCe1 by insulin is preserved. We
also showed that, in the kidney cortex of insulin resistant
OLETF rats, the expression of IRS1 was decreased to some
extent but the expression of IRS2 was totally retained. Why
the expression of IRS2 in the kidney cortex is preserved
in insulin resistance is not completely understood. How-
ever, after feeding and insulin administration, the protein
expression of steroid regulatory element-binding protein 1
(SREBP1) was decreased in the liver but preserved in the
kidney cortex, whereas the protein expression of Forkhead
box protein O1 (FoxO1) was elevated in the liver but
unchanged in the kidney cortex. This indicates that the liver
and kidney cortex have different regulatory mechanisms for
IRS2 expression [11]. Others have also showed that the kidney
expression of IRS2 was preserved even in diabetic rats [10].
These facts support our findings of different IRS2 expression
regulation between kidney and liver. We also confirmed that
this stimulatory effect of insulin on NBCe1 in the PT is pre-
served in humanswith insulin resistance as well.These results
suggest a possibility that hyperinsulinemia accompaniedwith
insulin resistance is an important factor for the onset and
progression of hypertension in metabolic syndrome and is
mediated through the IRS2/PI3K/Akt signaling pathway.

We have also subsequently reported that, in OLETF
rats with overt diabetic nephropathy accompanied with
massive proteinuria, the stimulatory effect of insulin on
renal proximal sodium reabsorption was preserved [16]. The
expression of IRS2 and the insulin-induced phosphorylation
of Akt in the kidney cortex were also preserved in these rats.
Moreover, in the PT of human subjects with type 2 diabetic
nephropathy, insulin significantly stimulated NBCe1 activity.
These results indicate that the stimulatory effect of insulin on
PT sodium reabsorption is preserved even in overt diabetic
nephropathy with massive proteinuria. This could at least
partially explain why intensive glycemic control for patients
with T2DM and CKD is often complicated with massive
weight gain, prolonged hyperinsulinemia, and hypoglycemia
due to decreased renal function and poor prognosis due to
increased cardiovascular risk [84].

In contrast, OLETF rats have a significantly decreased
expression of IRS1 in the kidney cortex. This may be relevant
to the fact that gluconeogenesis, which is restricted to the PT
in the kidney, is enhanced in DM, and this is supported by
control experimental animals having suppressed PT gluco-
neogenesis due to an intact IRS1 pathway [85–88]. In insulin
resistance, diabetes, and overt diabetic nephropathy, IRS2-
dependent stimulation of sodium transport by insulin in
the PT is preserved and this may induce sodium retention,
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whereas IRS1-dependent suppression of gluconeogenesis is
attenuated and might induce hyperglycemia. These findings
suggest that insulin signaling is selectively impaired in the PT,
under conditions of systemic insulin resistance, diabetes, and
even overt diabetic nephropathy.

6. Recent Findings regarding Insulin
Signaling in Glomeruli

The glomerulus is composed of three cell types: podocytes,
endothelial glomerular cells, and mesangial cells. All of these
cells have been shown to respond to insulin stimulation.
In the glomerular endothelial cells, insulin can increase
nitric oxide (NO) production by stimulating eNOS activity
[39]. This effect seems to be impaired in animal models of
insulin resistance and diabetes [89, 90]. In primary cultures,
podocytes have the highest IR and IRS1 expression levels
compared with endothelial cells and mesangial cells [10].
Insulin was suggested to play a role in the regulation of
podocyte contractility, which may contribute to glomerular
permeability [91, 92]. Podocyte-specific IR knockout mice
develop albuminuria, the effacement of podocyte foot pro-
cess, and podocyte apoptosis.These mice also have increased
glomerular matrix level, glomerulosclerosis, and glomerular
basement membrane (GBM) thickening, which recapitulates
some features of diabetic nephropathy. This suggests that
podocyte-specific insulin signaling is crucial for glomerular
function [93]. Insulin is also reported to modulate glomeru-
lar permeability by controlling podocyte contractility [17].
Insulin exerts its effect on mesangial cells; insulin has been
shown to inhibit mesangial cell apoptosis, by activating the
PI3K pathway and enhancing mesangial cell proliferation
[94–96].

Similarly in glomeruli, many reports suggest that insulin
signaling is altered in insulin resistance and diabetes. Using
animal models of insulin resistance and T2DM, Mima and
colleagues showed an attenuation of glomerular IRS1 expres-
sion, IRS1 phosphorylation, and glomerular endothelial sig-
naling. In contrast, IRS2 expression was preserved in these
glomerular endothelial cells [10]. The glomerular insulin
signaling cascade via Akt2 is thought to be crucial for the
maintenance of glomerular function and structure [93, 97].
The impairment of IRS2 signaling in the podocyte in the onset
of diabetic nephropathy has been very recently suggested;
Santamaria and colleagues demonstrated that phosphatase
and tensin homolog (PTEN) and IRS2 were essential for
insulin signaling in podocytes [18].

These findings could help to elucidate the mechanisms
of the emergence and the progression of diabetic nephropa-
thy. The existence of insulin resistance in type 1 diabetes
(T1D) is a remarkable risk factor for the progression to
overt nephropathy [98–100]. Additionally, in various animal
models of renal injury, thiazolidinediones (TZDs), used clin-
ically for improving insulin sensitivity, are reported to have
renoprotective effects on the glomeruli [101–103], suggesting
that glomerular insulin resistance could be an important
factor for the impairment of renal function.

Taken together, the attenuation of glomerular insulin
signaling cascade accompanied with insulin resistance and
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Figure 2: Insulin signaling in insulin resistance in the kidney [10,
11, 16–21]. In the PT, the expression of IRS1 is suppressed while
that of IRS2 is preserved. IRS1 signaling deficiency may cause the
upregulation of G6P and PEPCK. In this condition, the inhibition of
gluconeogenesis does notwork sufficiently, causing enhanced gluco-
neogenesis and hyperglycemia. On the other hand, the expression of
IRS2 is preserved, causing stimulation of sodium reabsorption via
NBCe1, leading to sodium retention, hypertension, and edema. In
the glomeruli, IRS1 signaling is also impaired similar to the PT.This
causes podocyte dysfunction, possibly leading to DM nephropathy.
Both the PT and glomeruli have selective insulin resistance, with
differences between signaling via IRS1 and signaling via IRS2. IR:
insulin receptor, IRS: insulin receptor substrate, FoxO1: Forkhead
box protein O1, NBCe1: sodium bicarbonate cotransporter type
1, G6P: glucose-6-phosphatase, and PEPCK: phosphoenolpyruvate
carboxykinase.

DM could be related to the emergence and progression of
diabetic nephropathy. Conversely, selective insulin resistance
in the PT could result in the preservation of the stimulatory
effect of insulin on sodium transport as well as the attenua-
tion of inhibitory effect of insulin on gluconeogenesis. This
may explain the pathogenetic mechanisms of hypertension
accompanied with hyperinsulinemia, edema, and fluid reten-
tion as a complication of metabolic syndrome and intensive
insulin treatment. Unsuppressed renal gluconeogenesis could
also at least partially contribute to hyperglycemia in DM.
Thus, the selective insulin resistance in the kidney seems
to be a common mechanism linking all negative effects on
the emergence and progression of diabetic nephropathy and
other complications, in both glomeruli and renal tubules,
making the prevention and therapy of diabetic nephropathy
evenmore challenging. In the glomeruli, the decrease of IRS1-
dependent signaling impairs the functions of glomerular
cells, endothelial cells, podocytes, and mesangial cells. In
the PT, IRS2-dependent stimulation of sodium reabsorption
could cause hypertension and edema, while impaired IRS1-
dependent signaling could induce unsuppressed gluconeo-
genesis, possibly contributing to hyperglycemia. TZDs are
suggested to have protective effects on the glomeruli by
ameliorating insulin sensitivity. However, in the PT, TZDs
enhance sodium retention [104] and can abolish the ben-
eficial effect of TZDs on glomeruli. Figure 2 summarizes
selective insulin resistance in the kidney.
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7. Conclusion

This paper provides an overview of the recent findings
regarding selective insulin resistance in the kidney. This
condition of “selective insulin resistance” has been previously
recognized, but it is only recently that the existence of
renal “selective insulin resistance” and some of its detailed
mechanism have started to be elucidated. The characteristics
of insulin resistance differ among organs and tissues; in liver
IRS2-mediated pathway is impaired, causing hyperglycemia
while IRS1-mediated pathway is preserved to some extent,
inducing hyperlipidemia. In the glomerulus, deficiency of
IRS1-mediated pathway causes glomerular dysfunction and
possibly contributes to diabetic nephropathy. In the PT, IRS2-
mediated pathway is preserved and the stimulation of sodium
reabsorption by insulin causes sodium retention and possibly
subsequent hypertension, whereas the potential impairment
of the IRS1-mediated pathway could lead to unsuppressed
gluconeogenesis.These facts support the existence of selective
insulin resistance in the kidney. TZDs, drugs for improve-
ment of insulin sensitivity, enhance sodium retention in
the renal tubules. “Selective insulin resistance” in diabetic
nephropathy could explain the challenges of treatment for
hypertension and congestive heart failure accompanied with
diabetes. Future investigation targeted at the improvement
of selective insulin resistance will be of significance for the
treatment of diabetes and its complications.
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