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Single molecular species can self-assemble into Frank–Kasper (FK)
phases, finite approximants of dodecagonal quasicrystals, defying
intuitive notions that thermodynamic ground states are maxi-
mally symmetric. FK phases are speculated to emerge as the
minimal-distortional packings of space-filling spherical domains,
but a precise measure of this distortion and how it affects
assembly thermodynamics remains ambiguous. We use two com-
plementary approaches to demonstrate that the principles driving
FK lattice formation in diblock copolymers emerge directly from
the strong-stretching theory of spherical domains, in which a
minimal interblock area competes with a minimal stretching of
space-filling chains. The relative stability of FK lattices is stud-
ied first using a diblock foam model with unconstrained parti-
cle volumes and shapes, which correctly predicts not only the
equilibrium σ lattice but also the unequal volumes of the equi-
librium domains. We then provide a molecular interpretation for
these results via self-consistent field theory, illuminating how
molecular stiffness increases the sensitivity of the intradomain
chain configurations and the asymmetry of local domain pack-
ing. These findings shed light on the role of volume exchange
on the formation of distinct FK phases in copolymers and sug-
gest a paradigm for formation of FK phases in soft matter
systems in which unequal domain volumes are selected by the
thermodynamic competition between distinct measures of shape
asymmetry.
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Spherical assemblies occur in nearly every class of supramolec-
ular soft matter, from lyotropic liquid crystals and sur-

factants to amphiphillic copolymers (1). In concentrated or
neat systems, self-assembled spherical domains behave as
giant “mesoatoms,” adopting periodically ordered crystalline
arrangements. While superficially similar to lattices formed
in atomic or colloidal systems—which are stabilized largely
by bonding or translational entropy—the periodic order in
soft materials is governed by distinctly different principles
because lattice formation occurs in thermodynamic equilibrium
with the formation of the mesoatoms from the constituent
molecules themselves. Thus, the equilibrium sizes and shapes of
mesoatoms are inextricably coupled to the lattice symmetry and
vice versa.

In this article, we address the emergence of noncanonical,
Frank–Kasper (FK) lattices in soft materials, characterized by
complex and large unit cells yet formed by assembly of a single
molecular component. Initially constructed as models of metal-
lic alloys (2, 3), FK lattices are a family of periodic packings
(4, 5) whose sites are tetrahedrally close packed (i.e., sitting on
the vertices of nearly equilateral tetrahedra, the densest local
arrangement of equal radius spheres) and can be decomposed
into polyhedral (e.g., Voronoi or Wigner Seitz) cells surround-
ing each site containing 12, 14, 15, or 16 faces. Known as the FK
polyhedra, these cells (Z12, Z14, Z15, and Z16) possess variable
volume and envelope spheres of distinct radii. Hence, FK lattices
are natural candidates to describe ordered, locally dense pack-
ings of spherical elements of different radii such as atomic alloys

(3, 5) or binary nanoparticle superlattices (6). Once considered
anomalous in soft matter systems, the past decade has seen an
explosion in the observation of FK lattices in a diverse range
of sphere-forming assemblies. These include (A15, σ) liquid–
crystalline dendrimers (7, 8), (A15, σ) linear tetrablock (9, 10),
(σ, C14, C15) diblock (11–13) and (A15) linear–dendron (14)
block copolymer melts, (A15) amphiphilic nanotetrahedra (15,
16), (A15, σ, C14, C15) concentrated ionic surfactants (17, 18),
and (C14) monodisperse, functionalized nanoparticles (19). The
central puzzle surrounding the formation of FK lattices in these
diverse systems is understanding why single components assem-
ble into phases composed of highly heterogeneous molecular
environments.

A common element distinct to FK formation in soft sys-
tems is the thermodynamic cost of asphericity imposed by
incompatibility between uniform density and packing of per-
fectly spherical objects (Fig. 1). In soft assemblies, the ideally
spherically symmetric domains are warped into lower symme-
try, polyhedral shapes that fill space without gaps. Intuitively,
one expects that the minimal free-energy state is the one for
which the quasi-spherical domains (qSDs) remain “most spher-
ical.” The most commonly invoked notion of sphericity in this
context is the dimensionless cell area A to volume V ratio,
A≡A/(36πV 2)1/3, which has a lower bound of 1 achieved by
perfect spheres. The cellular partitions of FK lattices play a
key role in the mathematical modeling of dry foams, known
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Fig. 1. Chain packing of spherical diblock copolymer domains of the BCC
lattice (Top), with corresponding limits of weakly coupled (Bottom Left)
and strongly coupled (Bottom Right) of core domain shape of polyhedral
(truncated-octohedron) cell symmetry.

as the Kelvin problem (20–23), which seeks minimal area of
partitions of space into equal volume cells.∗ Based on the fact
that the lowest area, equal-volume cellular partition known to
date, the Weaire–Phelan foam (20), derives from the FK lattice
A15, Ziherl and Kamien proposed that this lattice is generically
favored thermodynamically in so-called “fuzzy colloid” models
(24, 25), an argument subsequently adapted to sphere phases of
block copolymers (26, 27). Recently, Lee, Leighton, and Bates
(11) reasoned that average “sphericity” could be increased (i.e.,
decreased mean A) below the Weaire–Phelan structure if the
equal-volume constraint for distinct cells is relaxed, as would
occur for molecular exchange between distinct qSDs, presum-
ably in equilibrium with the thermodynamic cost for deviations
from a preferred aggregation number. Based on the Voronoi
partitions, which have unequal volumes for FK lattices, σ was
argued to have a lower mean dimensionless area than A15
and thus should be stable over that lattice according to the
sphericity argument, consistent with observations of a σ lattice
in diblock copolymer melts (13) and self-consistent field the-
ory (SCFT) of conformationally and architecturally asymmetric
diblocks (28).

While the role of volume asymmetry has been implicated
previously in the formation of FK lattices by soft qSD assem-
blies (29), critical questions remain unanswered. First, what are
the relevant measures of sphericity optimized by the assembly
thermodynamics? Second, how do these in concert determine
the optimal balance between shape asymmetry (nonspherical
domains) and volume asymmetry (molecular partitioning among
domains) for a given qSD lattice? Finally, how does this bal-
ance select the equilibrium lattice and determine the scale of
thermodynamic separation between the many competing FK lat-
tices? We address these questions in the context of what we call
the diblock foam model (DFM), which describes the thermo-
dynamic competition between interdomain surface energy and

*The tetrahedral coordination of FK lattices implies that their partitions closely approx-
imate the geometric constraints of Plateau borders and are therefore near to minimal-
area partitions. In addition to A15, at least two more partitions of FK lattices, σ and
H, have also been shown previously (21, 23) to beat the area of optimum originally
conjectured by Kelvin, the BCC partition. In SI Appendix, 2B. Minimal Area Cells: Kelvin
Problem, we report that the FK lattice P also belongs to this category.

chain stretching. For optimal mean qSD size, the DFM quantifies
the thermodynamic cost of asphericity in terms of a geometric
mean of reduced cell area and dimensionless radius of gyra-
tion of the cells and thus integrates elements of both the Kelvin
and lattice Quantizer problems (30). These geometric proxies
for interblock repulsion and intramolecular stretching in qSD
exhibit qualitatively different dependencies on cell shape, a fac-
tor that we show, based on this model and SCFT analysis, to
be critical to the volume partitioning among distinct qSD and
optimal lattice selection.

Among the various classes of FK-forming soft matter (7–
9, 11–15, 17, 19), we posit that diblock copolymers represent
the optimal starting point for investigating the selection of
low-symmetry FK phases by soft matter spheres. Diblock copoly-
mers are a relatively simple chemical system, consisting of two
flexible chains bonded together at their ends, and there exist
robust theoretical methods for studying their phase behavior in
the context of universal physical models (31, 32). The funda-
mental mechanisms underlying assembly of diblock copolymers
that we elucidate here furnish the foundation for subsequent
investigations of other soft matter systems, where these basic
principles are conflated with additional phenomena emerging
from electrostatics, hydrophobic interactions, and detailed pack-
ing of the complicated (non-Gaussian) configurations of their
constituents.

DFM of FK Lattice Selection
We adopt what we call the DFM, first developed by Milner and
Olmsted (33, 34), in which the free energy of competing arrange-
ments is reduced to purely geometric measures of the cellular
volumes enclosing the qSD. To a first approximation, these cells
are the polyhedral Voronoi cells for a given point packing, whose
faces represent coronal brushes flattened by contact with neigh-
boring qSD coronae. The model is based on strong-stretching
theory (SST) of diblock copolymer melts, in which interblock
repulsions drive separation into sharply divided core and coronal
domains and the chains are well-extended. We also consider the
case of large elastic asymmetry between core and coronal blocks,
which itself derives from asymmetry of the block architecture or
the segment sizes. This corresponds to the polyhedral-interface
limit (35), in which the core/coronal interface in each qSD adopts
a perfect, affinely shrunk copy of the cell shape (see Fig. 1,
Bottom Right). Polyhedral warping of the interface is favored
when the stiffness of the coronal blocks, which favors a more
uniform extension from the interface to the outer cell wall, domi-
nates over entropic stiffness of core blocks and interblock surface
energy, both of which favor round interfaces.

In this limit, the free energy per chain (26, 34), F (X ), of a
given lattice packing X derives from two contributions,

F (X ) = γ
A(X )

R0
+
κ

2
I(X )R2

0 , [1]

where γ and κ are coefficients fixed by the chain properties
(i.e., block lengths, segment lengths, interblock repulsion), and
R0 is the radius of a sphere of equal volume to the mean
volume of cells, or (4π/3)R3

0 =n−1
X

∑nX
i=1 Vi , where Vi is i th

cell volume of nX total cells in X (see SI Appendix, 1A. Poly-
hedral Interface Limit of Strongly-Segregated Diblock Sphere
Lattices for details). The first term represents the enthalpy
of core–corona contact and hence is proportional to the (per
volume) interfacial area, which itself is proportional to the
cell area Ai , measured by the dimensionless (mean) cell area,
A(X ) = (n−1

X

∑nX
i=1 Ai)/(4πR

2
0). The second term represents

the entropic cost of extending polymeric blocks (here modeled
as Gaussian chains) in radial trajectories within qSD. This cost
grows with the square of domain size and depends on qSD
shape through the dimensionless square radius of gyration, or
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Fig. 2. A DFM structure for the cubic repeat of C15 is shown in A, with qSD centers shown within the Z12 and Z16 cells as red and blue, respectively. (B)
Equilibrium shapes for three cell geometries studied, in which the slight curvature of cell faces and edges is visible for the relaxed shape cases. Results of
the DFM are shown for 11 competing FK phases (labeled above), plotted as a function of mean coordination, or average number of cell faces 〈Z〉: (C) mean
dimensionless area, (D) mean dimensionless stretching, (E) mean free energy, and (F) rms volume variation among cells relative to mean volume 〈V(X)〉. In
C–E, points are labeled according to the legend in D, and the dashed and solid lines show unconstrained and Voronoi results, respectively, for BCC. In F,
variable volume cell results are compared with qSD volumes extracted from SCFT at χN = 40, f = 0.25, and ε= 2 as described in the text.

stretching moment I(X ) = (n−1
X

∑nX
i=1 Ii)/(4πR

5
0/5), where

Ii =
∫
Vi

d3x |x− xi |2 is the second-moment volume of the i th

cell, whose center lies at xi . Optimizing mean cell size (R0)
yields the minimal free energy of lattice X , relative to the perfect
sphere free-energy F0 = 3

2
(γ2κ)1/3,

F(X )≡minR0 [F (X )]/F0 =
[
A2(X )I(X )

]1/3. [2]

This geometric mean favors simultaneously low values of dimen-
sionless area and stretching.† While minimal area partitions (at
constant volume) are associated with Kelvin’s foam problem, lat-
tice partitions that optimize Ii (at fixed density) are the object of
the Quantizer problem (30), which has applications in computer
science and signal processing (36).

The Milner and Olmsted model has been studied for flat-faced
Voronoi cells of face-centered cubic (FCC), body-centered cubic
(BCC), and A15 (27, 34), showing that the latter FK lattice of
sphere-forming diblocks is favored over former two canonical
packings in the polyhedral interface limit. Here, we analyze a
vastly expanded class of 11 FK lattices, possessing up to 56 qSD
per periodic repeat. Most critically, we use a Surface Evolver
(37)-based approach that minimizes F(X ) over arbitrary vol-
umes and shapes of constituent cells in the DFM structure (see
SI Appendix, 2 for detailed methods and tabulated results).

To assess the importance of relaxing volume and shape, con-
sider the three distinct ensembles of qSD cells, shown for C15
in Fig. 2 A and B. We have computed results for equal-volume,
relaxed-shape cells, which cannot exchange mass, and centroidal
Voronoi cells, which have fixed flat-face shapes but unequal vol-
umes (also fixed). The former ensemble neglects the possibility
of mass exchange between micelles, while the second optimizes

†Assembly thermodynamics depends on the dimensionless ratios of structure-averaged
area and stretching of cells, as opposed to averages of dimensionless cell area and
stretching.

stretching (36) but is suboptimal in terms of cell area.‡ Neither
model is realistic, but they provide useful points of compar-
ison with the unconstrained, relaxed-volume and shape cells,
which strictly minimize F(X ) for given X . Fig. 2C shows that
allowing both volume and shape to relax leads to a complete
inversion of the trend of A(X ) with 〈Z 〉. Importantly, there
is also a near degeneracy for the free energy of FK structures
in Fig. 2E, which all lie within 0.08% in F(X ) (as compared
with the relatively large ≈ 1% spread for equal-volume qSD).
These results confirm the critical role of volume exchange among
asymmetric qSD in the thermodynamics of lattice formation (11,
12). Among these nearly degenerate, fully unconstrained DFM
structures, the σ phase overtakes A15 (minimal for fixed, equal
volume) as the minimal energy phase (with next lowest energy
for P), consistent with its observation upon annealing (11, 13)
as well as recent SCFT studies of conformationally asymmet-
ric diblocks (28). Notably, however, in the relaxed-volume and
shape DFM, σ possesses neither the minimal area (C14) nor
minimal stretching (BCC). Rather, its predicted stability results
from the optimal compromise between these competing mea-
sures of domain asphericity.

The interplay between area and stretching underlies the emer-
gent asymmetry in equilibrium qSD volumes. Comparing the
equal-volume to unconstrained DFM results in Fig. 2 C and D
shows that volume relaxation has a far more significant effect on
relaxation of A(X ) than I(X ), which changes little by compari-
son. Relaxation proceeds for all structures by inflating cells with a
relatively larger area and shrinking smaller area cells, restrained
only by stretching cost creating highly unequal domain sizes (SI
Appendix, Fig. S1). Volume exchange for lattices with large pro-
portions of lower area Z12 cells (e.g., C14 and C15) achieve

‡Centroidal Voronoi cells have generating points at the centers of volume of the cell
and, hence, for a given X minimize the mean-square distance of all points to their
corresponding central point (see SI Appendix, 2A. Minimal Stretching Cells: Quantizer
Problem for additional details).
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relatively large (≈ 2%) drops in A(X ) when compared with the
high-〈Z 〉 end of the spectrum (e.g., ≈ 0.2% for A15).

Cell volume asymmetry in equilibrated DFM structures pushes
well beyond that of the “natural” geometry of Voronoi cells,
which is strictly optimal for stretching but not for its product with
the square of dimensionless area. Fig. 2F shows that both uncon-
strained and Voronoi models of qSD cell geometry exhibit an
increase volume dispersion with decreasing mean coordination
(or with increasing fraction of Z12s). However, optimal uncon-
strained DFM cells are nearly twice as polydisperse in volume as
the Voronoi distribution. This massive volume asymmetry among
qSD (up to ≈ 19% variance for C14 and C15) is driven by a
dramatic reduction in interblock contact area, a drive that is ulti-
mately limited by the thermodynamic balance with the entropic
(stretching) costs of filling space with qSDs of unequal size.
These results imply that structures with a larger equilibrium vol-
ume dispersion (such as the lower 〈Z 〉 C14 and C15) are more
susceptible to the effects of thermal processing that selectively
promote or inhibit chain exchange among equilibrating spheres
(12) than phases such as A15, which relax free energy relatively
little through volume equilibration.

Previous SCFT studies (12, 28) have shown that the canon-
ical BCC sphere phase is overtaken by a stable σ lattice when
the elastic asymmetry, embodied by ratios of statistical segment
lengths, ε≡ aA/aB & 1.5. DFM not only correctly predicts σ as
the dominantly stable sphere phase but also does a remarkable
job of predicting the relative hierarchy among metastable FK
competitors. This is evident in SI Appendix, Fig. S16 A–C, where
we compare the free energies, scaled enthalpies, and entropies
for σ, Z, C14, C15, and A15 predicted by the unconstrained cell
DFM to AB diblock SCFT calculations using methods described
in ref. 32 at somewhat strong segregation conditions χN = 40,
where χ is the Flory–Huggins parameter for A/B contact and
N is the degree of polymerization. DFM correctly predicts the
narrow 0.01% scale of free-energy splitting between these com-
petitors for ε= 2 diblocks in the composition range f ≤ 0.25,
where f is the volume fraction of the minority block. Moreover,
DFM predicts their ranking relative to σ with the exception of
Z, which DFM predicts to be nearly degenerate with C15. The
accuracy of DFM extends beyond thermodynamics to structure,
most notably the volume asymmetry in Fig. 2F.

Molecular Mechanism of Aspherical Domain Formation
To probe the molecular mechanism that underlies the selec-
tion of FK lattices in block copolymers, we analyze two order
parameters that quantify the respective asymmetric shapes and
volumes of qSD, computed from the volumes enclosing A-rich
cores in SCFT composition profiles of diblocks at χN = 40,
f = 0.29, and for variable conformational asymmetry (see SI
Appendix, 3B. Geometrical Analysis of Spherical Domains). The
first parameter,

αi =
AA/B

i − 1

Apoly− 1
, [3]

measures the degree of polyhedral warping of the core in terms
of the dimensionless area AA/B

i of the A/B interface of the
i th domain relative to a sphere, where Apoly

i is the dimen-
sionless area predicted for the perfectly polyhedral interface of
the corresponding cell from the unconstrained DFM: αi = 0 for
spherical interfaces, andαi = 1 for interfaces that adopt the poly-
hedral shapes of the DFM cells. We define a second parameter,
ν(X ), that measures asymmetry of unequal volumes enclosed
within A/B interfaces predicted by SCFT, relative to the volume
asymmetry predicted by polyhedral cells of DFM for the same
structure X :

ν(X ) =

〈∣∣∆Vi (X )
〈V (X )〉

∣∣2〉1/2
A/B〈∣∣∆Vi (X )

〈V (X )〉

∣∣2〉1/2
poly

, [4]

where ∆Vi(X ) =Vi −〈V (X )〉 is the volume deviation of the
i th domain relative to the average in X and values of ν(X )
greater (less) than 1 indicate that qSD in SCFT are more (less)
polydisperse predicted by relaxed DFM cells.

It has been argued previously (27) that the polyhedral warp-
ing, or faceting, of core–corona interfaces should increase with
ε, which controls the ratio of corona- to core-block stiffness, due
to the relatively lower entropic cost of more uniformly stretched
coronae achieved by polyhedral interfaces. This expectation is
consistent with the observed monotonic increase of α from 0
at ε= 1 to the saturated value of α≈ 0.05 for ε& 2− 3 for the
qSD in BCC plotted in Fig. 3A.§ As shown in SI Appendix,
Fig. S17, the polyhedral warp of the interface grows also with
increasing f , due to the increased proximity of the qSD cell
boundary to the interface and relatively shorter coronal blocks
at larger core fractions. While clearly far from a sharply faceted
shape, the increase in core shape anisotropy is obvious from 2D
cuts through the qSD shown in Fig. 3B, showing a visible warp
of A/B interface toward the truncated-octahedral shape of the
BCC cell at ε= 3.

For the FK phases, which are composed of distinct-symmetry
qSD, areal distortion exhibits a markedly different dependence
on increased coronal/core stiffness, as illustrated by the plots of
α12 andα14 vs. ε for A15 in Fig. 3C. Z12 domains exhibit a mono-
tonic, albeit modest, increase in distortion with ε. Surprisingly,
for the Z14 domains, the excess area drops from its maximal
value of α14' 0.4 in the conformationally symmetric case for
ε= 1 down to a lower yet significant plateau value of α14' 0.2,
roughly twice the areal distortion for BCC.

The origin of this counterintuitive drop in dimensionless area
of the Z14 cells with increased outer block stiffness is illus-
trated in Fig. 3D, which compares 2D sections of the Z14 qSD
of A15 at ε= 1 and ε= 3. While the shape for larger outer
block stiffness (ε= 3) is consistent with a quasi-faceted inter-
face that copies the polyhedral cell (with rounded edges) of the
Z14 domain, the conformationally symmetric case (ε= 1) is nei-
ther faceted nor spherical. It instead adopts oblate or discoidal
shape. The contrast in core shape is further reflected in the subin-
terface (vector) orientational order parameter of A-segments
(38) and the spatial distribution of A-block chain ends, also
shown in Fig. 3 D and E. For larger ε, the preference for more
uniform coronal block stretching drives the quasi-polyhedral
domain shape, with radial chain trajectories extending from the
center of the domain, a point at which core block ends are con-
centrated. In contrast, for the case of ε= 1, the stiffness of the
core blocks is sufficient to resist deformations away from uni-
form core thickness. Occupying the somewhat flattened Z14 cell
with a qSD of uniform core thickness then leads to the discoidal
shape, in which chain ends spread laterally in a quasi-lamellar
core rimmed by a quasi-toroidal packing at its circumference.
The preference for uniform core thickness within the relatively
oblate Z14 cell, which gives rise to a larger area discoidal
interface for ε= 1, ultimately gives way to the quasi-polyhedral
qSD shape, and corresponding radial chain stretching, with
increased outer block stiffness for ε& 2 (see schematic in
Fig. 3F).

SI Appendix, Fig. S18 shows evidence of this same discoidal→
polyhedral transition qSD within the most oblate cells of other
FK phases, C15 and Z, leading to a corresponding drop in
excess area αi from ε= 1 to ε≈ 2 for those cells. In Fig. 3G,
we find this intradomain shape transition with increasing corona-
/core-block stiffness is coupled to a transition in volume asym-
metry among qSD. Discoidal domains of the conformationally

§While this extends beyond what is realized with most flexible linear diblocks, bulky
side chains including bottlebrush configurations and miktoarm polymers would make
the upper limit accessible.
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Fig. 3. The polyhedral warping of the A/B interface, measured by αi from SCFT profiles of χN = 40 and f = 0.29 diblocks, of BCC qSD is plotted vs.
conformational asymmetry ε= aA/aB in A. Corresponding 2D cross-sections (normal to [100] through the center of the primitive cell) of qSD within the
truncated-octahedral cells of BCC are shown in B, with composition varying from red in A-rich regions to blue in B-rich regions (A/B interface is white).
Also shown in vectors are the mean orientation of A-block segments (polar order parameter) (38). In C, the areal distortion of Z14 and Z12 qSD from SCFT
predictions of A15 is shown (same composition and segregation strength as BCC), with the corresponding section of the Z14 (cut normal to [100] through
face of primitive cell, see SI Appendix, Fig. S18) qSD shown in D as in B. Additionally, spatial distribution of the A-block (core forming) chain ends are shown
in E, varying from zero density (blue) to maximal density (red) within the cores. Schematics illustrating respective discoidal and polyhedral qSD packing are
shown in F. In G, the volume dispersion (normalized by the DFM prediction) is plotted vs. conformational asymmetry.

symmetric diblocks (ε= 1) realize a volume dispersion that is
strongly divergent from the polyhedral geometry in the DFM,
including both greater (ν(X )> 1, for A15) and lesser (ν(X )<
1 for Z, C15) dispersity. However, in the limit of ε& 2, rela-
tively stiffer coronal blocks pull the cores into radial-stretching,
quasi-polyhedral shapes. This transition to more compact cores,
in turn, results in volume redistributing among equilibrium
qSD tending to the ν(X )→ 1 limit, consistent with agree-
ment between asymmetric volumes of DFM and SCFT shown
in Fig. 2F.

Notwithstanding the broad agreement between SCFT and
DFM predictions, the degree of polyhedral warping of qSD
shape is both arguably modest (i.e., α. 0.3 for ε� 1 for this
χN and f ) and highly variable in the FK structures, suggest-
ing a heterogeneous degree of shape frustration among cells.
Moreover, the discoidal → polyhedral transition occurs only in
high-α qSD, whereas low-α cells (e.g., Z12 cells of A15) main-
tain radial stretching and a monotonic dependence on ε. What
controls the variability of coupling between cell geometry of
polyhedral distortion? Fig. 4 shows the correlation between αi

for qSD extracted from SCFT at χN = 40, f = 0.25, and ε= 2
(i.e., in the quasi-polyhedral shape regime) plotted as a func-
tion of the dimensionless stretching Ii for the corresponding
cells from the DFM. The generically increasing trend of αi with
Ii for cell geometries across competing phases argues that the
variable degree of shape frustration within distinct qSD, and
its consequent impact on qSD core shape, is regulated by the
constraints of asymmetric chain stretching in polyhedral cells.
In other words, the ultimate degree of asphericity of core dis-
tortion of qSD (measured by dimensionless area) is, in fact,
controlled by the local asphericity in radial stretching required
by space-filling chain packing (measured by dimensionless radius
of gyration).

Concluding Remarks
We anticipate that the emergence of optimal FK lattice struc-
ture and thermodynamics via a balance of competing mea-
sures of domain asymmetry highlighted here for high-molecular
weight diblock copolymers will extend to other copolymer
systems where these phases have been observed, including
architecturally asymmetric copolymers, linear multiblocks, low-

molecular weight/high-χ systems, and blends. In particular, lower
molecular weight polymers drive the system closer toward the
strong segregation limit and away from the mean-field limit.
Each of these materials exhibits different molecular mechanisms
through which the relative stiffness of the coronal domain trans-
mits the asymmetry of the local qSD packing into the core shape.
For example, the observation of polygonal/polyhedral warping
of outer zones of core–shell domains of linear mulitblock poly-
mers (39) provides a plausible mechanism to stabilize the σ
phase observed in linear tetrablocks (9). On the other hand,
accurately modeling the formation of σ by low-molecular weight
conformationally asymmetric diblocks (11, 13) likely requires
a non-Gaussian (finite extensibility) model of chain stretch-
ing but one that nevertheless, like the dimensionless radius

Fig. 4. Correlation between polyhedral warping of core shapes (αi)
within symmetry-distinct qSD extracted from SCFT at χN = 40, f = 0.25,
and ε= 2 and the degree of frustration of chain stretching in the cor-
responding cell, quantified by the (cell-wise) dimensionless stretching
moment, Ii .
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of gyration I(X ), favors compact domains and competes against
the minimal area preference for unequal domain volumes.
Beyond copolymers, we speculate further that additional intra-
and intermolecular mechanisms play the role of balancing the
drive for minimal domain area in the formation FK phases, from
giant nanotetrahedra (15, 16) to ionic surfactants (17, 18). We
speculate that the DFM studied here may anticipate a much
broader class of “generalized foam models” that integrate two or
more measures of cellular shape and that may be useful as min-
imal models for a wider range of tessellated architectures (e.g.,
living tissue) (40).

The present results for the DFM also shed light on the
nonequilibrium pathways for stabilizing metastable FK com-
petitors, as has been demonstrated for conformational asym-
metric linear diblocks quenched from high-temperature disor-
der sphere phases to low-temperature metastable, C14, and
C15 phases (12, 41). The low-temperature quench is sus-
pected to freeze out the interdomain chain exchange needed
to achieve the equilibrium σ state; thus, the kinetically trapped
quenched state inherits the volume distribution of the high-

temperature micelle liquid state. The DFM suggests a way to
analyze the stability of FK states when domain volumes are
out of equilibrium, suggesting the observation of C14 and C15
may be selected among the low-temperature kinetically trapped
arrangements because it inherits a volume distribution that is
both smaller in average cell size and possibly more polydis-
perse than the equilibrium state at the low temperature and
hence a better fit to the “aggregation fingerprint” of low-〈Z 〉
packings.
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