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Abstract

Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal
hydrolase a-galactosidase A (a-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide
(GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular
disease. The current treatment for Fabry disease is through infusions of recombinant a-gal (enzyme-replacement therapy;
ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance
from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of
glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT)
has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we
show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model
of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being
more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT
provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and
uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in
the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility
of an improved therapeutic paradigm in the management of Fabry disease.
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Introduction

The lysosomal storage disorder (LSD) Fabry disease is caused by

mutations in the gene encoding the lysosomal hydrolase a-

galactosidase A (a-gal) [1]. Deficiency in a-gal activity results in

the abnormal accumulation of neutral glycosphingolipids, in

particular globotriaosylceramide (GL-3) in many cell types.

Vascular endothelium accumulation plays a major role, leading

to kidney dysfunction, cardiac and cerebrovascular disease [2].

The current standard of care for Fabry patients is enzyme-

replacement therapy (ERT) through periodic infusions of recom-

binant human a-gal (agalsidase beta or agalsidase alpha). This

treatment has been shown to be effective at slowing the loss of

renal function [3,4] and at reducing the cardiac disease [5].

However, its ability to abate disease progression particularly in

patients with more advanced manifestations is more modest [6,7].

Also, the degree of accumulated GL-3 clearance varies depending

upon the cell-type [8]. Hence, alternative or adjuvant therapies

may provide an improvement over the existing treatment

paradigm.

Several alternative therapeutic options have been evaluated for

LSDs [9], with substrate reduction therapy (SRT) being the most

promising based on its demonstrated efficacy in Gaucher disease

and oral availability [10,11]. SRT works on the principle of

limiting the production of the pathologic substrate, which in the

case of Fabry disease is primarily GL-3. This can be achieved by

inhibiting the enzyme glucosylceramide synthase which catalyzes

the first step in the synthesis of glycosphingolipids (GL-1) and

therefore subsequent molecules including GL-3. The premise of

SRT for Fabry disease using inhibitors of glucosylceramide

synthase has been evaluated in mouse models [12–14] and shown

to be of some benefit in lessening the burden of glycolipid

accumulation. A candidate inhibitor, miglustat, is approved for

treatment of type 1 Gaucher disease (in patients for whom ERT is

not a therapeutic option). It is however associated with adverse

side effects [15,16] that may compound reported Fabry disease
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symptoms (e.g. diarrhea, peripheral neuropathy) and is not

approved for this indication [17]. It is desirable to have alternative

small molecule drugs with the appropriate safety profile for SRT of

Fabry disease. However, it should be noted that because the

majority of Fabry patients are null for a-gal activity, SRT as a

monotherapy is unlikely to be as effective as it has been shown for

type 1 Gaucher patients, whom invariably retain some residual

glucocerebrosidase activity. This distinction suggests that a

combination of ERT and SRT may be a more beneficial

approach to managing Fabry disease.

To evaluate the relative merits of a combined SRT and ERT

approach for Fabry disease, we utilized a drug already shown to be

active in SRT for Gaucher disease [11], namely eliglustat tartrate

(Genz-112638). As an inhibitor of glucosylceramide synthase,

eliglustat tartrate has been shown to be effective as both a

monotherapy and in combination with ERT in a mouse model of

Gaucher disease [18,19]. In the current studies, we evaluated this

molecule in an a-galactosidase A knockout mouse [20] that exhibits

many similarities with the human disease. Although the disease

manifestations are less severe than noted in human, the mouse

models of Fabry disease [20,21] nevertheless can provide valuable

information on the merits of various therapeutic interventions [22].

Evaluations of potential therapies in these mice have focused

mainly on tissue levels of GL-3, but other disease relevant

symptoms could also be measured, such as heat-sensitivity as a

marker of peripheral neuropathy [23,24]. Here, we describe our

evaluation of SRT (using eliglustat tartrate) as a monotherapy as

well as SRT in combination with ERT (using recombinant human

a-galactosidase A) in a Fabry mouse model. We demonstrate that

the therapeutic benefit of the combined therapy approach is both

additive and complementary for treating this disease.

Results

The majority of our studies with SRT using eliglustat tartrate were

performed using immunocompetent Fabry mice. However, because

infusions of a-gal elicited the production of antibodies against the

recombinant human enzyme (that may complicate interpretation of

the results), studies that involved the use of ERT were performed

using the Fabry-Rag mouse model, which does not generate a

humoral response to recombinant human a-gal (data not shown).

Although multiple symptoms are apparent in patients, Fabry mouse

models are relatively normal except for modest accumulation of GL-

3. We have noted previously [23] that the Fabry mouse also displays

a progressive functional deficit in heat sensitivity as well as pathology

in the dorsal root ganglia. In addition to monitoring this sensory

readout, we also measured renal parameters to monitor the potential

impact of treatment on kidney function.

SRT reduces the rate of GL-3 accumulation in visceral
tissues

One-month old Fabry mice were either untreated or dosed with

eliglustat tartrate (in food) and sacrificed over time to quantify

tissue GL-3 levels. Figure 1 shows that in untreated mice, all the

visceral tissues evaluated (liver, kidney, heart and spleen) as well as

whole blood, accumulated GL-3 over the 11 month course of the

study to levels at least 100-fold higher than wild-type control GL-3

levels. Treated Fabry mice also continued to accumulate GL-3

throughout the course of the study, but did so at a reduced rate,

generally resulting in significant net GL-3 reductions of 40–50%

by the end of the study. One exception was the brain, where no

difference was seen between treated and untreated mice, though

the increase of GL-3 in both treated and untreated Fabry mice was

significant (p,0.0001) relative to the wild-type control. This lack

of treatment efficacy in the CNS was expected, because eliglustat

tartrate is a substrate for P-glycoprotein [11] and as such fails to

distribute to the brain parenchyma effectively. Overall, these

results are consistent with an ability of eliglustat tartrate to inhibit

(to some degree) the synthesis of glycosphingolipids such as GL-3,

but because this inhibition is not complete and given the total

absence of a-gal in the model, these glycosphingolipids continue to

accumulate in most tissues albeit at a significantly reduced rate.

SRT normalizes urine volume and decreases urine GL-3
levels

In untreated Fabry patients, GL-3 deposition in the kidney leads

to proteinuria and progressively decreasing glomerular filtration

rates. Later stage renal dysfunction then leads to uremia and is a

common cause of death [2]. Initial renal symptoms, however, may

include polyuria due to a concentration defect [25]. Enzyme

replacement therapy can successfully ameliorate these symptoms,

especially in patients with early-stage renal insufficiency [26]. As a

model, the Fabry mouse appears to recapitulate early, rather than

later effects of the disease process. Thus, for example, there was no

evidence of renal failure in 80-week old mice in one Fabry mouse

model [27]. Consistent with this view, a screening of renal

parameters in our mouse model revealed increases in urine volume

and urine GL-3 that could be used as biomarkers related to the

disease process. Figure 2A shows that the volume of urine

produced by the cohort of untreated Fabry mice trended toward a

higher level relative to that produced by wild-type mice; SRT

normalized urine volume to wild-type levels. Figure 2B shows

that there was an ,20-fold increase in urine GL-3 levels in the

untreated Fabry mice relative to that of age-matched wild-type

controls. Treating Fabry mice with eliglustat tartrate (SRT)

reduced the urine GL-3 concentration to about 50% that of the

untreated mice, mirroring the benefit observed in the visceral

tissues (Figure 1). It should be noted that the carbon chain length

and form of the urine GL-3 acyl groups more closely matched

those detected in the mouse kidney profile and differed

significantly from that of the blood (data not shown). This suggests

that the source of the urine GL-3 is not a representative blood

filtrate but more likely derived from the kidney. Figure 2C
depicts the total GL-3 excreted over 24 h, showing that although

SRT significantly decreased urine GL-3 (,2.5-fold relative to

untreated Fabry mice), it remained ,10-fold higher than wild-type

levels. Together with the data in Figure 1 showing GL-3

deposition in the kidney over time, these results demonstrate

renal involvement in the Fabry mouse with physiologic conse-

quences that may mirror the early stages of kidney pathophysi-

ology in Fabry patients. They also suggest that SRT may provide

benefit in terms of delaying the loss of renal function.

SRT delays the onset of heat-insensitivity in Fabry mice
Fabry disease is characterized by small fiber dysfunction in both

male and female patients that results in increased thresholds for

both heat and cold stimuli [28–31]. Consistent with this small fiber

neuropathy, Fabry mice also develop a demonstrable deficit in their

ability to respond to a heat stimulus [22,23]. Potential therapeutics

can be evaluated in this model for their effects on a nociceptive

response to a heat stimulus by measuring the time taken by the

mouse to react (latency) after being placed on a 55uC hot-plate.

Figure 3 shows that there was no difference in latency between

treated and untreated Fabry mice at 3 months of age, although both

groups reacted more slowly to heat than the wild-type mice at this

initial time point. Wild-type mice showed no change in latency

throughout the study. However, consistent with our earlier report

[23], untreated Fabry mice developed a progressive thermal
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hypoalgesia beginning at 5 months of age. An equivalent deficit was

not observed in the eliglustat tartrate-treated Fabry mice until 7

months of age. This two-month delay in the progression of loss of

heat-sensitivity between the treated and untreated Fabry mice was

consistent and significant throughout the course of the study.

Collectively, these results in the Fabry mouse suggest that SRT with

eliglustat tartrate can provide benefit by delaying GL-3 accumu-

lation and its attendant (renal and neurologic) symptoms. Because

the Fabry mouse is null for a-gal, we reasoned that stabilization or

actual reduction of the GL-3 burden would be more likely if

recombinant a-gal were included in the treatment regime. To

evaluate this possibility, we chose to use the Fabry-Rag model (these

mice do not develop mature B or T cells), thereby eliminating any

humoral immune response to a-gal epitopes that might complicate

interpretation of the experimental results.

Combined ERT and SRT is most effective at reducing GL-3
levels in tissues of the Fabry-Rag mouse

The combination of ERT and SRT was evaluated in 3-month

old Fabry-Rag mice, an age at which significant GL-3 has

accumulated; absolute GL-3 levels were comparable between

Fabry and Fabry-Rag mice (data not shown). Fabry mice were

treated either by ERT or SRT alone or by combination SRT and

ERT. For the monotherapy studies, Fabry mice were administered

either 300 mg/kg/day eliglustat tartrate in the food throughout

the course of the study (SRT) or a-gal (1 mg/kg) every 2 months

(ERT2). For the combination studies, animals received 300 mg/

kg/day eliglustat tartrate and a-gal (1 mg/kg) dosed IV every 2

months (ERT2+SRT) or 4 months (ERT4+SRT). The latter was

designed to determine whether the frequency of enzyme

treatments could be reduced when combined with SRT. Mice

were killed beginning at 3-months of age, and tissue GL-3 levels

determined. Visceral tissues (liver, kidney, heart and spleen), whole

blood and urine all demonstrated elevated levels of GL-3 in the

Fabry-Rag mouse relative to the wild-type controls at all time

points (data not shown).

Figure 4A shows that although all treatment paradigms

reduced GL-3, the greatest and most consistent reductions

regardless of tissue were obtained using infusions of a-gal every

two months plus eliglustat tartrate. Figure 4B shows the results

for liver, kidney, heart and urine at the end of the study (11

months of age). In the liver and heart, ERT was the more effective

monotherapy strategy, with additional benefit realized in the liver

when SRT was deployed in combination. In the kidney, ERT and

SRT alone were equally effective, but their combination was

significantly more effective. Urine GL-3 was effectively reduced by

SRT, with some added benefit by ERT. The kidney and urine

both showed highly significant improvements in GL-3 levels with

either regimen of combination therapy (ERT2 or ERT4) when

compared to the ERT alone group. This observation suggests that

a combination of ERT and SRT may benefit those Fabry patients

whose renal function continues to decline even when on ERT

Figure 1. Substrate reduction therapy delays the accumulation of GL-3 in visceral tissues of Fabry mice. Treated Fabry mice received
eliglustat tartrate as a component of their food beginning at 5 weeks of age. The GL-3 levels in various tissues of untreated control Fabry (N), eliglustat
tartrate-treated Fabry (%) and wild-type mice (m) were determined using a mass spectrometry assay and are presented as mg GL-3/g wet tissue. Data are
shown as mean 6 SEM (n = 5 mice/time point). Statistics were performed using the Graphpad Prism software t test (** = p,0.01; *** = p,0.001).
doi:10.1371/journal.pone.0015033.g001
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[26]. Taken together, these results suggest that in all the tissues

tested, maximum GL-3 reduction can be obtained using a

combination of ERT plus SRT, and that within this context,

more frequent dosing with enzyme appears to be more effective.

Combined ERT and SRT is most effective at reducing
uromodulin levels in the urine of Fabry-Rag mice

Uromodulin (Tamm-Horsfall glycoprotein) is the most abun-

dant protein in normal mammalian urine. It resides as a

glycophosphatidylinositol-anchored protein on the tubular epithe-

lial cells of the ascending loop of Henle from where it is

proteolytically cleaved and excreted. Uromodulin expression and

processing appears to be abnormal in Fabry patients [32].

Characterization of the Fabry-Rag mouse showed that urine

uromodulin levels were significantly elevated. Figure 5 shows that

although monotherapy by SRT and ERT had some ability to

decrease urine uromodulin concentrations (20–25% reduction

compared to untreated), combining ERT and SRT appeared to

result in an additive effect, reducing uromodulin concentrations by

at least 50%. Taking into account the effects of combination ERT

and SRT on urine volume (data not shown; see Figure 2), total

uromodulin amounts excreted over a 24 h period were most

effectively reduced by the combined ERT and SRT approaches

(,75% compared to untreated; data not shown).

In untreated Fabry patients, uromodulin excretion has been

reported as being reduced [32], while we found an increase in the

untreated Fabry-Rag mouse model. In addition to possible

differences in the extent of kidney pathology between the mouse

model and patients, it is worth noting that differences in ELISA

capture antibodies together with post-translational processing of

uromodulin [32] may help account for these apparent discrepan-

cies. In any case, excreted uromodulin may be reflecting GL-3

buildup in the distal tubules, and these changes can be normalized

most effectively in the mouse model by a combined ERT plus

SRT approach.

SRT is most effective at delaying the onset of heat-
insensitivity in Fabry-Rag mice

The effects of the different therapeutic regimes on thermal

sensitivity in Fabry-Rag mice were also evaluated using the hot-

plate assay (Figure 3). Figure 6 shows that the latency of Fabry-

Rag mice at 3 months of age (start of study) to react upon being

placed on a hot-plate was already significantly increased relative to

that of wild-type mice that were 11 months of age (end of study).

Left untreated, the latency of Fabry-Rag mice to react to the hot-

plate essentially doubled over the eight months of the experiment.

Although this progressive increase in latency in the Fabry-Rag was

qualitatively similar to that observed in the Fabry model (Figure 3),

it was not as dramatic, and did not approach the latency (60 sec)

seen in the immunocompetent Fabry mouse. Consistent with the

wild-type result shown in Figure 3, latency in the wild-type mouse

cohort was unchanged over this same time frame (data not shown).

Figure 2. Substrate reduction therapy normalizes urine volume and decreases urine GL-3 levels. Treated Fabry mice received eliglustat
tartrate as a component of their food beginning at 5 weeks of age. Urine was collected from eliglustat tartrate (SRT)-treated or untreated Fabry mice
and also from age-matched wild-type mice (11-months of age) housed in metabolic cages for 24 h. (A) Total urine volume. (B) Concentration of GL-3
in the urine. (C) Total GL-3 excreted in urine over 24 h. Data are shown as mean 6 SEM (n = 15 mice/group). Statistics were determined using the
Graphpad Prism software t test (* = p,0.05 compared to Fabry untreated).
doi:10.1371/journal.pone.0015033.g002

Adjuvant Therapy for Fabry Disease

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e15033



Fabry-Rag mice treated with ERT alone showed no improvement

in response time compared to untreated controls. Mice that

received SRT alone or SRT combined with ERT showed similarly

reduced response times and were all significantly more sensitive to

the heat stimulus than untreated Fabry-Rag controls. Taken

together, these data suggest that SRT is more effective than ERT

at delaying the loss of heat sensitivity in the Fabry-Rag mouse and

may therefore provide benefit in treating the peripheral nervous

system related symptoms of Fabry patients.

Combined ERT and SRT is most effective at reducing the
number of vacuolated neurons in the dorsal root ganglia
of Fabry-Rag mice

Cell bodies of primary sensory neurons are located in the dorsal

root ganglia (DRG); their afferent axons project into the spinal

column. The neuropathic pain characteristic of Fabry disease may

have its origin in the accumulation of GL-3 in DRG neurons and

their subsequent destruction [33]. We had previously shown that

at nine months of age, the DRG cell bodies of Fabry mice appear

vacuolated and distended, and that this vacuolation could be

partially prevented by providing exogenous a-gal from a gene

therapy vector [23]. We therefore monitored the DRG morphol-

ogy to assess the relative efficacies of SRT and ERT in the Fabry-

Rag model. Vacuolated DRG neurons were quantified after 8

months of treatment. Spinal cords were processed for H&E

staining to reveal the presence of vacuolated cells in the dorsal root

ganglia. Figure 7 (left panel) shows qualitatively that the

untreated Fabry-Rag DRGs had the most severe vacuolation

(lighter shaded cell bodies), consistent with our previous findings in

the immunocompetent Fabry model. Treatment with ERT alone

appeared to decrease vacuolation. Combination ERT and SRT

decreased vacuolation to a greater extent, but still did not

normalize morphology to that seen in age-matched wild-type

mice. Figure 7 (right panel) compares the quantitative analysis of

DRG vacuolation resulting from the different treatment regimes.

In untreated animals, the degree of DRG vacuolation approached

75%, i.e. three of every four DRG neurons were vacuolated.

Although both ERT and SRT monotherapies decreased DRG

vacuolation relative to that seen in untreated mice, the

combination of ERT and SRT produced the largest beneficial

effect, decreasing vacuolation by ,50%. The reductions in all

treatment groups were significant relative to the untreated Fabry-

Rag control. Comparison of the ERT only treated group with the

combination bi-monthly ERT with SRT (ERT2+SRT) showed

significant benefit of the combined therapy approach. There was

no significant difference between the ERT alone and the ERT

every 4 months plus SRT (ERT4+SRT) indicating that for DRG

vacuolation these treatments are equally effective. Collectively,

these results imply that any aspect of Fabry peripheral neuropathy

that may have been derived from DRG pathology (e.g.

acroparesthesias, neuropathic pain) might be mitigated by a

combined ERT plus SRT approach.

Discussion

Clinical experience with ERT using recombinant human a-

galactosidase A has shown it to be an effective therapy for many

Fabry patients. Treatment results in positive effects on the heart,

kidneys, peripheral nervous system and quality of life [34]. There

is, however, evidence that ERT could be improved upon. For

example, enzyme replacement with a-gal is unable to remove GL-

3 from all tissues to the same degree. Endothelial cell clearance is

much better than clearance from kidney podocytes, other

Figure 3. Substrate reduction therapy delays the onset of heat-insensitivity in Fabry mice. Treated Fabry mice received eliglustat tartrate
as a component of their food beginning at 5 weeks of age. Mice were placed on a 55uC hot-plate and the time for them to respond (latency)
recorded. Latency was measured every two months from 3-months of age for untreated control Fabry (N), eliglustat tartrate treated Fabry (%), and
wild-type mice (m). Statistics compare the treated to the untreated Fabry mice. Data are shown as mean 6 SEM (n = 15 mice/time point). Statistics
were determined using the Graphpad Prism software t test (* = p,0.05; ** = p,0.01; *** = p,0.001).
doi:10.1371/journal.pone.0015033.g003
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epithelial cells, smooth muscle cells and cardiac myocytes [8,35].

This is possibly due to restricted accessibility of the protein to these

cell types. Given these considerations, alternative or additional

therapeutic options could prove beneficial for Fabry patients.

A SRT approach has proven effective for Gaucher disease [11].

Because the pharmacodynamics and biodistribution of a small-

molecule drug might differ from that of an enzyme, a SRT

approach might provide benefit in tissues less accessible to ERT.

The different functional modality of these two approaches was

demonstrated by their differential effects on the lipid composition

of the caveolae of vascular endothelium from Fabry mice [36].

However, as most male Fabry patients have essentially no a-gal

enzyme activity, a SRT approach is unlikely to be effective as a

monotherapy. This point was demonstrated in our studies

evaluating SRT monotherapy using eliglustat tartrate in the Fabry

mouse, in which a reduction in the rate of accumulation was

achieved, but the GL-3 substrate continued to increase over time

(Figure 1). This is in contrast to observations using SRT for type 1

Gaucher disease in which there are significant levels of residual

enzyme activity and a monotherapy could successfully prevent or

reverse disease progression [11,19]. We went on to demonstrate

that the most effective treatment at reducing the levels of GL-3 was

by combining ERT every two months with SRT. This yielded the

best efficacy at every time point in all tissues tested (Figure 4A) and

was significantly better than ERT alone in the liver, kidney and

urine. When comparing ERT alone to the ERT every two months

plus SRT, significant improvements were also observed in urine

uromodulin levels (Figure 5), loss of heat-sensitivity (Figure 6) and

prevention of DRG cell vacuolation (Figure 7). These therapeutic

improvements in divergent systems suggest that the combination

therapy may be both additive and complementary.

As well as just adding SRT to the existing ERT, we evaluated the

potential for a reduced frequency of ERT in combination with SRT

(ERT4+SRT) as being another treatment option. In some assays,

notably kidney and urine GL-3 levels (Figure 4), urine uromodulin

level (Figure 5), heat-sensitivity (Figure 6) and degree of DRG

vacuolation (Figure 7), this therapeutic option was as, or more

effective than, ERT every two months alone. These results suggest

that by using SRT the frequency of ERT infusions could be reduced,

improving quality of life while maintaining therapeutic efficacy.

Although Fabry disease is caused by an X-linked mutation and

therefore is often considered a predominantly male disorder,

through lyonization there are many female Fabry heterozygotes

that are also symptomatic [2,37,38]. Although the degree of disease

severity tends to be milder and onset of disease symptoms delayed

relative to males, there are female patients who are severely affected.

These patients, who are already on ERT, would likely also benefit

from the combination enzyme replacement and substrate reduction

therapy. However, there is a subset of female Fabry patients whose

disease symptoms are relatively mild or more slowly progressing

who currently do not receive ERT. The option of a SRT alone may

provide a realistic treatment alternative for these mildly affected

patients. The SRT monotherapy studies in Fabry mice reported

here provide evidence that therapeutic benefit might be attained

through this approach. Similar effects were achieved in the

preventative study (starting at one month of age) and the treatment

study (starting at 3 months of age) with SRT alone, thus suggesting

potential benefits for symptomatic patients. Furthermore, as mildly

affected female Fabry patients express a-gal in a proportion of their

cells, this might allow for some degree of enzyme cross-correction

and render them amenable to an SRT monotherapy approach, i.e.

similar to a type 1 Gaucher patient.

Conceptually, some symptoms of Fabry disease are unlikely to

be treated effectively with ERT due to limited access of the protein

therapeutic. These could include disease manifestations that may

be related to the peripheral or central nervous systems, such as

acroparesthesia, gastrointestinal distress, and psychological aspects

[39] as well as hearing deficiencies and corneal opacity. A small

molecule SRT-based treatment option may provide more benefit

for such manifestations, as evidenced by the delayed loss of heat-

sensitivity of Fabry-Rag mice treated with SRT (Figure 6). A

second-generation molecule with properties similar to those of

eliglustat tartrate, but able to cross the blood-brain barrier, may

prove efficacious for treating eye, ear and CNS deficiencies.

In summary, our preclinical results in mouse models of Fabry

disease suggest that for a-galactosidase A null Fabry patients, SRT

as a monotherapy is unlikely to correct disease symptoms

effectively. If this approach is combined with ERT, two new

Figure 5. Combined enzyme-replacement therapy and sub-
strate reduction therapy is most effective at reducing uromo-
dulin levels in the urine of Fabry-Rag mouse. Urine was collected
from 10-month old Fabry-Rag mice. Mice receiving no treatment were
used to standardize urine volume and uromodulin levels for those
treated with ERT every two months (ERT2), ERT every two month-
s+eliglustat tartrate (ERT2+SRT), ERT every four months+eliglustat
tartrate (ERT4+SRT) and eliglustat tartrate alone (SRT). Relative urine
uromodulin levels from the Fabry-Rag mice were determined using a
sandwich ELISA. Data are presented as % of uromodulin concentration
relative to an age-matched untreated control Fabry-Rag mouse. Data
are shown as mean 6 SEM (n = 10 mice/time point). Statistical
comparisons are to the ERT2 treatment group and were determined
using the Graphpad Prism software t test (* = p,0.05; ** = p,0.01;
*** = p,0.001).
doi:10.1371/journal.pone.0015033.g005

Figure 4. Combined enzyme-replacement therapy and substrate reduction therapy is most effective at reducing GL-3 levels in
visceral tissues and fluids of the Fabry-Rag mouse. Untreated age-matched Fabry-Rag mice were used to standardize the GL-3 levels. (A) GL-3
levels over time for groups treated with ERT every two months (%),ERT every two months+eliglustat tartrate (&), ERT every four months+eliglustat
tartrate (#) and eliglustat tartrate alone (m). (B) GL-3 levels at the end of the study in liver, kidney, heart (all 11-months old) and urine (10-months
old) for groups treated with ERT every two months (ERT2), ERT every two months+eliglustat tartrate (ERT2+SRT), ERT every four months+eliglustat
tartrate (ERT4+SRT) and eliglustat tartrate alone (SRT). Statistical comparisons are to the ERT2 treatment group. Data are shown as mean 6 SEM (n = 5
mice/time point except 11-month tissue and all blood and urine samples where n = 10 mice/time point). Statistics were determined using the
Graphpad Prism software t test (* = p,0.05; ** = p,0.01; *** = p,0.001).
doi:10.1371/journal.pone.0015033.g004
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Figure 7. Combined enzyme-replacement therapy and substrate reduction therapy is most effective at reducing the number of
vacuolated ganglion cells in DRGs of the Fabry-Rag mouse. Spinal cords from 11-month old mice were processed for hematoxylin and eosin
staining. Photomicrographs (4006) of the dorsal root ganglia were taken to highlight the degree of vacuolation in the ganglion cells of the thoracic
section. (Left Panel) Representative images are shown for (A) untreated Fabry-Rag mice, (B) Fabry-Rag mice treated with ERT every two months only
(ERT2), (C) Fabry-Rag mice treated with ERT every two months and SRT (ERT2+SRT), and (D) wild-type controls. (Right Panel) Multiple sections were
examined microscopically and the percent vacuolated DRG cells in each section determined. Groups of Fabry-Rag mice were treated with ERT every
two months (ERT2), ERT every two months+eliglustat tartrate (ERT2+SRT), ERT every four months+eliglustat tartrate (ERT4+SRT), eliglustat tartrate
alone (SRT). Age-matched untreated Fabry-Rag and wild-type mice were included as controls. Data are shown as individual scores (N), mean (dashed
line) 6 SEM (n = 10 mice/time point). Statistics were determined using the Graphpad Prism software t test (* = p,0.05 compared to ERT2 treated).
doi:10.1371/journal.pone.0015033.g007

Figure 6. Substrate reduction therapy is most effective at delaying the onset of heat-insensitivity in Fabry-Rag mice. Treatments were
begun at 3 months of age. Latency in treated Fabry-Rag mice and in an age-matched wild-type control group was measured at 11 months of age; a 3-
month old untreated Fabry-Rag cohort was included for comparison. Mice were placed on a 55uC hot-plate and the time for them to respond
(latency) recorded. Latency is shown for wild-type mice, Fabry-Rag mice treated with ERT every two months (ERT2), ERT every two months+eliglustat
tartrate (ERT2+SRT), ERT every four months+eliglustat tartrate (ERT4+SRT), eliglustat tartrate alone (SRT) and an untreated Fabry-Rag cohort. Data are
shown as mean 6 SEM (n = 10 mice/time point). Statistical comparisons are to the untreated Fabry-Rag mice at 11 months of age, and were
determined using the Graphpad Prism software t test (* = p,0.05; ** = p,0.01; *** = p,0.001).
doi:10.1371/journal.pone.0015033.g006
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viable treatment options become possible. One allows for a

reduced frequency of ERT while on SRT maintenance therapy,

improving quality of life through a reduced dependency on

enzyme infusions. The second approach adds SRT to the existing

ERT, perhaps resulting in a treatment modality that is both

additive and complementary with a more beneficial outcome than

either treatment alone. For the currently under-treated mildly-

affected female population, SRT alone may provide therapeutic

benefit, as has been demonstrated for type 1 Gaucher patients.

With carefully designed treatment regimens, adding SRT to the

medical options for all Fabry patients could provide significant

therapeutic and quality-of-life benefits.

Materials and Methods

Animal Studies
Ethics Statement. Procedures involving mice were reviewed

and approved by the Genzyme Corporation Institutional Animal

Care and Use Committee (Protocol 07-1115-2-BC) following

guidelines established by the Association for Assessment of

Accreditation of Laboratory Animal Care (AAALAC).

Wild-type 129/Sv mice were obtained from Taconic Laboratories

(Germantown, NY). Fabry mice (a-galactosidase A knock-out) [21]

were contract bred at Charles River Labs (Bedford, MA). Fabry-Rag

mice are a stable cross of a Fabry mouse and a Rag-1 mouse [40] to

generate an immune-deficient strain of mouse that accumulates GL-

3 and can receive repeat doses of recombinant human a-

galactosidase without developing a humoral immune response.

Pathological and glycosphingolipid characterization revealed no

discernible differences to the parental Fabry mouse line (data not

shown), though differences in the rate of loss of heat-sensitivity

(measured in the hot-plate assay – see below) were observed.

Urine was collected every two months. Mice were housed

individually in metabolic cages for 24 h with unrestricted access to

food and water. Blood samples were collected from the orbital

venous plexus under anesthesia (2–3% isoflurane) into EDTA

microhematocrit capillary tubes. Animals were killed by carbon

dioxide inhalation, their tissues harvested immediately and snap

frozen on dry ice. Spinal columns were taken whole and fixed in

10% neutral buffered formalin before processing for histological

analysis.

Treatment regimens
Animals in SRT treatment groups received eliglustat tartrate

(Genz-112638; (1R,2R)-octanoic acid [2-(2,3-dihydro-benzo[1,4]

dioxin- 6-yl)-2-hydroxy-1-pyrrolidin-1-ylmethyl -ethyl]-amide-L-

tartaric acid salt) as a component of the pellet food diet. Drug was

formulated at 0.15% w/w in standard mouse chow (TestDiet,

Richmond, IN) and provided ad libitum. This formulation provided

300 mg/kg of eliglustat tartrate per day for a 25 g mouse eating

5 g of food per day. This dose of eliglustat tartrate was selected

based on earlier pilot tolerability and efficacy studies (data not

shown). Mice receiving recombinant human a-galactosidase A

(1 mg/kg) were dosed by tail-vein injection. Mice dosed with a-gal

every 2 months received injections at 3-, 5-, 7- and 9-months of

age; the cohort receiving a-gal every 4 months was dosed at 3- and

7-months of age. Samples were collected prior to dosing.

Measurement of peripheral sensory function using the
hot-plate test

A nociceptive response to a heat stimulus was measured as

described previously [23]. Mice were individually placed on a 55uC
surface (Analgesia meter, Columbus Instruments, Columbus, OH)

and the time taken to respond with a characteristic hind paw shake

was recorded as the latency. If no response was evident by 60 sec the

mouse was removed to prevent injury. The assay was performed

every two months to minimize any potential learning effect.

Quantitation of globotriaosylceramide (GL-3) levels
Tissue. On the day of extraction, tissues were removed from

the 280uC freezer and placed on dry ice. Pieces of tissue were cut

and placed into 20 mL glass vials and 1 mL of extraction solvent

(80% methanol, 15% acetonitrile, 4% 10mM ammonium acetate

solution, 1% formic acid) was added per 2.5 mg of tissue. Tissues

were then homogenized (TissueTearor, BioSpec Products, Inc.,

Bartlesville, OK) and sonicated for 10 min at room temperature in a

sonicating water bath. The resulting suspension was transferred to a

15 mL conical tube and the debris pelleted by centrifugation at

1500g for 5 min. A 4 mL aliquot of the supernatant was then

transferred to an autosampler vial containing dried internal standard

(N-heptadecanoyl ceramide trihexoside). The resulting solutions

were vortexed for 5 min to ensure dissolution prior to analysis.

Urine. On the day of extraction, urine samples were removed

from the 280uC freezer and allowed to thaw. An internal standard

(N-heptadecanoyl ceramide trihexoside) was added to

microcentrifuge tubes and dried under nitrogen gas. Urine

(20 ml) was placed into the tubes, and vortexed 30 sec to

solubilize the internal standard. Protein was precipitated from

the sample by adding 100ml extraction solvent followed by

sonication (sonicating waterbath for 10 min) and centrifugation

(16,200g for 5 min) and an aliquot of the supernatant was then

transferred to an autosampler vial for analysis.

Dried-Blood Spots. On the day of extraction, samples were

removed from a 220uC freezer and allowed to come to room

temperature. An internal standard (N-heptadecanoyl ceramide

trihexoside) was added to microcentrifuge tubes and dried under

nitrogen gas. A single 3.2 mm spot was punched from each card

into a tube containing the dried internal standard. Protein was

precipitated from the sample by adding 200ml extraction solvent

followed by sonication (sonicating waterbath for 10 min) and

centrifugation (16,200g for 5 min). An aliquot of the supernatant

was then transferred to an autosampler vial for analysis.

LC/MS/MS. Samples were analyzed on a system consisting of

an HTC PAL autosampler, Agilent 1200 HPLC, and API-5000 and

4000 Qtrap mass spectrometer. During analysis, samples were

stored at 9uC in the autosampler cool stack. The HPLC was run in

isocratic mode with a normal-phase silica column, and MS/MS was

performed in MRM mode. Matrix based calibration curves were

prepared to quantify GL-3 concentrations in urine, DBS and tissue.

Quantitation of urine uromodulin
A sandwich ELISA was developed using commercially available

reagents to quantitate uromodulin levels in the urine. The capture

antibody was a goat polyclonal against an internal region of mouse

Tamm-Horsfall protein (G-20; Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA) and the detection antibody was the biotinylated

sheep polyclonal anti-mouse uromodulin antibody (Cat#
BAF5175, R&D Systems, Inc., Minneapolis, MN). Following

incubation with streptavidin-HRP (Cat# 21127, Thermo Scien-

tific, Rockland, IL) signal was detected using TMB HRP substrate

(BioFX Laboratories, Inc., Owings Mills, MD).

Histopathology
At the termination of the study, mice were killed by carbon dioxide

asphyxiation. Whole spinal columns were fixed in 10% neutral

buffered formalin and subsequently decalcified using buffered formic

acid for 5–7 days. Decalcified spinal columns containing the spinal

cord and DRGs were embedded in paraffin and 5–6 micron thick
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cross sections were stained with hematoxylin and eosin (H&E). A

board-certified veterinary pathologist who was blinded to the study

design examined multiple sections of spinal column including spinal

cord and DRGs microscopically. For each section, the total number

of normal or enlarged/vacuolated DRG cells was manually counted

in a representative microscopic field at 6400 magnification. For

quantitative assessment, the percent vacuolated DRG cells in each

section were calculated by dividing the number of vacuolated DRG

cells by the total number of DRG cells.
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