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Abstract: Based on expert system theory and fluid–structure interaction (FSI), this paper suggests
an intelligent design optimization system to derive the optimal shape of both the fluid and solid
domain of flow channels. A parametric modeling scheme of flow channels is developed by design for
additive manufacturing (DfAM). By changing design parameters, a series of flow channel models
can be obtained. According to the design characteristics, the system can intelligently allocate suitable
computational models to compute the flow field of a specific model. The pressure-based normal
stress is abstracted from the results and transmitted to the solid region by the fluid–structure (FS)
interface to analyze the strength of the structure. The design space is obtained by investigating the
simulation results with the metamodeling method, which is further applied for pursuing design
objectives under constraints. Finally, the improved design is derived by gradient-based optimization.
This system can improve the accuracy of the FSI simulation and the efficiency of the optimization
process. The design optimization of a flow channel in a simplified hydraulic manifold is applied as
the case study to validate the feasibility of the proposed system.

Keywords: expert system; fluid–structure interaction; design optimization; additive manufacturing;
flow channel

1. Introduction

Flow channels are the core structures in hydraulic components. The traditional flow
channels are usually right-angle channels with process holes due to the limitations of
processing and design methods, which causes the appearance of vortices and energy loss
of the flow [1]. To solve this problem effectively, it is essential to seek a kind of superior
processing technology and optimize the flow channels [2] inside the hydraulic components
accordingly [3]. On one hand, additive manufacturing (AM) has been increasingly applied
in the processing of the flow channels because it can manufacture parts of any shape. In
order to fully take advantage of AM, it is necessary to incorporate design for additive
manufacturing (DfAM) methodology [4] into the optimization of flow channels. On the
other hand, the simulation of flow channels is essential to gain an insight into the design
optimization, in which Computational Fluid Dynamics (CFD) is commonly applied in the
analysis of the flow field [5]. When the pressure of the fluid domain causes the deformation
of the solid domain, the fluid domain will be affected correspondingly. In this case, the fluid–
structure interaction (FSI) should be considered, otherwise the accuracy of the calculation
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results cannot be guaranteed. Multiple sets of FSI simulation results can provide the data
foundation for the establishment of the mathematical model, and the design optimization of
flow channels can be derived by optimization algorithms. However, hydraulic components
with flow channels are usually featured with complex modeling schemes, which require
costly effort from highly experienced modelers. As a result, the acquisition of simulation
data is a tedious and error-prone process. Therefore, an optimization system for AM flow
channels based on artificial intelligence (AI) is demanded to setup simulation, integrate
the heterogeneous modules, and process data. With the assistance of such a system, the
optimization of flow channels can be realized, and the optimized design can be fabricated
by AM, as shown in Figure 1.

Figure 1. The traditional right-angle flow channel optimized by the intelligent design optimization
system and fabricated by AM.

In this paper, an intelligent design optimization system based on expert system [6]
theory is proposed. This system is a general system with the flow channel structure as the
optimization object. To reduce the computation load, the multi-channel structure can be dis-
assembled into several single channels by focusing on the optimization of typical features,
such as right-angle channels. In this system, the modeling scheme and design parameters
should be firstly defined based on the characteristics of directed energy deposition (DED)
and optimization goals. According to the model features [7] and initial conditions, the
intelligent allocation of fluid physics models is achieved, and the accurate CFD simulation
results of different design points are obtained after computation. Based on the CFD results,
the design optimization of flow channels under constraints is conducted to achieve the
optimization objectives. The pressure distribution of the optimized flow field is coupled
to the corresponding solid interface, so that the structural strength analysis is performed.
Subsequently, the intelligent optimization algorithm is applied to derive the optimal value
of the objective function under constraints with design parameters and the corresponding
FSI results as the data input. Specifically, the research on CFD- and FSI-based optimization
is reviewed in Section 2. The principles and implementation of intelligence in FSI applied in
this paper are presented in Section 3. The architecture and function of the intelligent design
optimization system are introduced in Section 4. Following that, a case study of a flow
channel in a hydraulic manifold is demonstrated in Section 5 to verify the effectiveness of
the proposed system.

2. Literature Review

Design optimization is commonly applied in the improvement of complex parts in-
volving fluid flow. In order to ensure accurate data support, FSI is the preferred simulation
method in such kind of scenarios. However, design optimization usually requires a large
amount of simulation data, so it is necessary to adopt intelligent approaches to improve
the efficiency and accuracy of simulation. After design optimization, AM is suitable for
the fabrication of the optimized flow channels due to its capability in producing complex
structures. The following sub-sections offer a detailed review of the relevant aspects.
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2.1. Intelligence in FSI Simulation

In many physical models which have solid and fluid domains, there is an interaction
between each domain due to the displacement and deformation of the solid structures
under the flow influence [8]. For this kind of multi-domain interaction problem, called
multiphysics applications, it is almost impossible to solve only with the knowledge of
a single discipline [9]. Therefore, it is necessary to consider the influence between the
fluid domain and the solid domain through FSI. For different interaction situations, FSI
is usually divided into one-way coupling and two-way coupling [10–12]. The difference
between these two methods of coupling lies in if the information in the fluid domain and
the solid domain are transmitted to each other. Among them, the two-way coupling of FSI
includes the strong two-way coupling and the weak two-way coupling. The strong two-
way coupling problems require solving equations of the fluid domain and solid domain
simultaneously, while the equations of the fluid domain or solid domain should be solved
firstly and then the data is exchanged in subsequent calculations for the weak two-way
coupling [13]. No matter which method is adopted, the foundation is the conservation of
physical variables such as stress and temperature on the interface between fluid–structure
(FS) domains.

The simulation objects of FSI include the solid domain and fluid domain, and the
solution of the fluid domain depends on CFD [12]. For components involving internal fluid
flow, a large number of CFD simulations are necessary for the design optimization of flow
channels due to their complex structures [14], which requires significant experience and
time input. To alleviate this issue, CFD simulations are in urgent need for intelligence. One
approach is to apply AI in CFD solvers to improve the solving efficiency. Boosari et al. [15]
designed a fast-track data-driven method based on artificial neural networks (ANNs).
The computational speed of the model was increased by 100 times compared to traditional
CFD by using the proposed intelligent computing model, which was proved by the two-
dimensional dam-break. The other approach is to apply AI to predict the flow field. Studies
have shown that prediction models can be generated by intelligent measures to predict a
variety of fluid phenomena that may occur in flow channels, thus effectively replacing CFD
and greatly saving the time of numerical simulation [16]. Shamshirband et al. [17] forecasted
the erosion rate of micro- and nano-sized particles in a 90◦ elbow based on an adaptive
neuro-fuzzy inference system (ANFIS). Compared with CFD, the ANFIS prediction model
had higher calculation accuracy under the verification by root-mean-square error (RMSE).
Lee et al. [18] proposed a CFD-based multi-resolution simulation framework to resolve
multiscale problems. The approximation theory and domain decomposition were combined
with statistical techniques, such as the co-kriging method, to predict the result. Ren and
Cao [19] proposed a low-dimensional data transformation model through the CFD-based
open-source platform OpenFOAM, which can improve the efficiency of the CFD-based
prediction model while ensuring simulation accuracy.

At present, research on the intelligence of FSI simulation is mainly focused on building
prediction models to replace the CFD solver by learning substantial data with a variety
of intelligent algorithms. However, the accuracy of the prediction model is usually not as
high as the original solver, leading to larger errors when constructing approximate fitting
equations. The flow regime in the complex channel is mostly turbulent, which makes it
difficult to configure the simulation, and it has a high dependence on expert knowledge.
Therefore, the key problem in FSI simulation is how to complete the configuration of CFD
accurately and intelligently without human intervention, thereby providing data support
for design optimization more efficiently.

2.2. FSI-Based Design Optimization

With the wide application of FSI in the simulation of hydraulic components, the com-
bination of FSI technology and multiple design optimization methods has been studied.
FSI is one of the main methods to obtain the data needed for parametric optimization.
For example, Kang and Kim [20] conducted research on response surface methodology
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(RSM)-based and FSI-based optimal design methods for a centrifugal compressor impeller
by using ANSYS DesignXplorer (DX). It was demonstrated that the structural safety of the
impeller could be improved by 10% at the maximum stress. Wen et al. [21] optimized the fin
structure comprehensively through the multi-objective Genetic Algorithm (MOGA) based
on FSI and RSM. A multi-objective optimization that increased the heat transfer efficiency
and decreased the maximum stress was established. As a robust and capable tool [22],
topology optimization can be combined with FSI to improve the design. Combining the
level set method (LSM) and the extended finite element method (XFEM), Jenkins and
Maute [23] presented an FSI-based topology optimization approach. To solve the opti-
mization problems based on the steady-state FSI, Yoon [24] developed a new stress-based
topology optimization method (STOM) based on the qp-relaxation method and the global
p-norm approach, which can acquire the structure with the minimum volume under the
local stress constraint. Furthermore, the shape optimization can be combined in the process
of fluid–structure coupling solution. Jang et al. [25] proposed a design optimization method
to solve highly nonlinear multi-physics problems, which can be applied to the reliable
optimization of the solid domain affected by FSI. The feasibility of the proposed method is
verified by the shape optimizations of a channel and a vessel. Aghajari and Schafer [26]
presented an FSI-based quadratic sequential programming algorithm to accelerate the
process of shape optimization. In addition, adjoint shape optimization is an important
approach involving FSI, which reduces the computation of multivariable optimization by
calculating adjoint equations [27,28]. However, the sensitivity information is difficult to
obtain in complex flow scenarios, which in turn results in a high computational cost. [29].

Although some research cases of FSI applied in various optimization methods have
been studied, and several of them also applied the intelligent algorithm to improve the
performance of calculation, there still lacks research of systematic FSI-based optimization.
It is necessary to build an intelligent design optimization system to integrate a series of
cumbersome functions, including running each group of the FSI simulation intelligently,
recording the information automatically, and calculating the optimal value by optimization
algorithms. The characteristics and constraints of AM should also be considered in the
design optimization to meet the actual manufacturing requirements.

2.3. AM in the Fabrication of Optimized Flow Channels

The optimized flow channels usually eliminate the process holes due to the drilling
operation and replace them by other transition forms at the intersection of two or more flow
channels. Faced with such kinds of complex structures, the traditional machining method
has the disadvantages of intractable processing, low efficiency, and waste of materials.
In comparison, AM can make intricate parts of any shape by adding materials layer by
layer [30,31]. When parts have complex features such as curved surfaces and bending
angles, the advantages of AM can be adequately reflected, making it a suitable manufacture
solution to the optimized flow channels. Zhang et al. [32] replaced the process holes by
the smooth transition in flow channels of a hydraulic manifold and manufactured the
optimized hydraulic manifold by a stereo lithography apparatus (SLA). Through selective
laser melting (SLM), Alshare et al. [33] produced a hydraulic manifold that was redesigned
based on FSI simulations. Many studies on the lightweight design of flow channels only
utilized the characteristics of AM; however, it is necessary to add the process constraints
of AM into the design optimization of flow channels considering their complex situations
in actual machining. To improve the comprehensiveness of design optimization, the
concept of DfAM needs to be introduced. DfAM is proposed to take full advantage of the
manufacturing capacity to achieve better performance while meeting the requirements of
AM, which requires the designers to add AM direction, support structures, size limitations,
and so on, as the design constraints [34–36]. For instance, Biedermann et al. [37] proposed
a CAD-based design method for AM flow channels to meet the AM overhang constraint.
This method can avoid most support structures by changing the cross-section shape and
the AM direction. Ponche et al. [38] presented a new numerical DfAM methodology that
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can optimize the geometries of products based on the product performance and the process
requirements. The feasibility of the method was verified by a turbine blade. In addition,
different AM technologies are featured with various processing factors such as forming
principles, direction, materials, and so on; hence, the design constraints should be set in
DfAM for each AM technology, respectively [34].

Based on the literature reviewed, DfAM of flow channels is mainly focused on how to
exert the advantages of AM and reduce the support structure in the manufacturing. Unlike
the aforementioned AM techniques, the cradle five-axis DED technology adds an A-axis
and C-axis on the basis of a three-axis machine tool, which can keep the overhang angle
within a reasonable range. The rotation of the platform around the X-axis and Z-axis offers
the freedom to achieve complex forming methods, such as changing AM direction, printing
on curved surfaces, and so on; thus, flow channels can be printed along its axis, and support
structures can be avoided. However, the design of flow channels manufactured by this
technique has been rarely studied. Therefore, it is of practical significance to integrate
various processing constraints of DED, such as the rotation angle of the turntable, the
minimum wall thickness, and so on, into the DfAM of flow channels, which can maximize
the AM capability in manufacturing flow channels with improved performance.

3. Intelligent FSI Simulation System

FSI, widely applied to various engineering research projects, is a technical means
of considering the interaction between FS domains. Instead of solving the domains in-
dependently, the essence of FSI is solving sets of equations that are established by the
mathematical expressions of hydromechanics and solid mechanics. The arbitrary La-
grangian Eulerian (ALE) descriptive equations for the incompressible Newtonian fluid
flow are as follows:

ρf
δvf
δt

+ ρf(vf − v̂f) · ∇vf = ∇σf + f B, in Ωf (1)

∇ · vf = 0, in Ωf (2)

σf = −pf I + µ[∇vf + (∇vf)
T ], in Ωf (3)

where the domains are described as Ωf and ΩS, ρf and vf are the density and velocity of the
fluid, respectively, t is time, the symbol5 is used to denote the divergence and gradient
operators, v̂f is the velocity of the moving ALE frame, σf is the fluid stress tensor, f B is
the vector of fluid forces, I is the identity tensor, µ is the fluid viscosity, and pf is the fluid
pressure. The Lagrangian equations for the solid structure are

ρs
∂vs

∂t
= ∇ · σs + f B, in Ωs (4)

det(F) = 1, in Ωs (5)

σs = G(F · FT − I)− ps I, in Ωs (6)

where ρs and vs are the density and velocity vector of the solid displacement respectively, F
is the deformation tensor, G is the solid shear modulus, σs is the Cauchy stress tensor, and
ps is the fluid pressure [10].

The flow channel structure in this paper has strength constraints during the design
optimization process. The deformation of the solid domain of the flow channel is generally
so small that the influence on the fluid domain is negligible. Therefore, the one-way
coupling method that transmits information from the fluid domain to the solid domain is
selected [10]. In this way, it is necessary to obtain the calculation results of the fluid domain
first and apply them as one of the boundary conditions of the solid domain.

Based on the previous research on the intelligent CFD simulation system [14,39,40],
the intelligent FSI simulation system is proposed, as illustrated in Figure 2. This system
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is composed of CFD simulation and structure simulation, with the interface between FS
domains as the medium of the data transfer.

Figure 2. Structure of the intelligent FSI simulation system.

Considering the characteristics of AM, more parameters are needed to constrain the
flow channel model, which will generate heterogeneous designs to be processed by FSI.
The intelligent FSI simulation system is especially suitable for this situation in which there
is a large number of FSI simulations of parametric design models. In the proposed system,
the attributes of an FS domain can be extracted automatically based on the geometric
and physical information conveyed by the flow channel model. Subsequently, the discrete
model and the boundary conditions of the FS domain can be configured, respectively. In FSI,
CFD is needed to analyze the flow field. However, CFD models require special expertise
and rich experience to deal with the nonlinearity, which is at a cost of human resources and
great time input. To solve this key issue, an expert system is embedded into the intelligent
model selection module of the proposed system to determine the optimal settings and
allocate the appropriate fluid physics models according to the design characteristics of
different flow channels, as shown in Figure 3. According to the extracted attributes of the
input flow channel model, the Reynolds number and the Mach number can be calculated
by the following formulas:

Re =
ρvD

µ
(7)

Ma =
v√
kRT

(8)

where ρ is the density of the fluid, v is the average velocity of the fluid, D is the inner
diameter of the flow channel, µ is the dynamic viscosity of the fluid, k is the specific heat
ratio of the fluid, R is the gas constant, and T is the temperature of the fluid. Different
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Reynolds numbers and Mach numbers correspond to different flow regimes that affect the
CFD configurations.

Figure 3. Intelligent model selection module.

Specifically, when the Reynolds number of the flow in channels is greater than 4000, a
turbulence model should be selected. When the Mach number is greater than 0.3, selecting
the total energy compressible flow model is appropriate. In the meantime, it is necessary
that proper boundary conditions and the reference pressure are configured to activate the
compressible flow simulation. At the beginning of the simulation, lower order discretization
schemes, such as upwind differencing scheme [41] and the k–ε turbulence model for
turbulent flow, should be preferentially selected if the iteration index is small or the
simulation has convergence issues. With the increase of the iteration index, higher order
advection schemes can be employed to improve the accuracy of simulation. For details,
please refer to authors’ previous work published in [39].

After the result validation, the CFD results of the fluid domain and the data associated
with the interface are exported. For structural simulation, the boundary condition of
the inner wall surface can be obtained by the pressure data exported, while the meshing
method of the body and boundary conditions of the fixed end remain unchanged. Then
the FSI results are obtained after conducting the structure simulation. Based on this
intelligent system, human intervention can be eliminated, and the simulation accuracy can
be synchronously guaranteed.

4. Intelligent Design Optimization System
4.1. System Architecture

Based on the intelligent FSI simulation system proposed in Section 3, the intelligent
design optimization system is established, for which the system architecture is shown in
Figure 4. The intelligent control module is the basis and guide tool of the whole intelligent
design optimization system. The control of the ANSYS-based FSI analysis module and
the MATLAB-based design optimization module is realized through the statements which
can call each module and the automatic modification of script files. The main program is
written in Python to control the simulation and optimization process in an orderly way.
In addition, the data transmission and reading between modules also depends on the
intelligent control of the main program.
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Figure 4. Architecture of the intelligent design optimization system.

By applying SolidWorks, a parametric CAD model of the fluid domain is es-
tablished with multiple design variables considering the process constraints of AM.
Subsequently, the CAD model of the solid domain with the feature of the wall thickness
is built by Boolean operation [42] and the spline interpolation method [43]. All design
variables in modeling constitute design points. According to the quantity and the range
of design variables, the levels of each design variable and the design points are defined
by the design of experiment (DOE) in the design optimization module. The values of
levels affect the number of subsequent simulations and the accuracy of mathematical
models. The Python-based intelligent control module can create the scripting file
corresponding to each design point based on the initial script exported by ANSYS. The
main program can call ANSYS to run each scripting file and record all the simulation
results into a comma-separated values (CSV) file, which plays the role of the interface
between ANSYS and MATLAB. The main program then calls MATLAB to process the
CSV file. The FSI-based design optimization is divided into two parts. Firstly, the
shape of the fluid domain is optimized based on CFD results recorded in a CSV file.
Following that, the optimal value of each design parameter of the solid domain under
the constraint is derived based on another CSV file that conveys structure simulation
results. The optimized design can be finally acquired if the updated parametric model
can be verified by the test simulation.

4.2. Principle of the Intelligent System
4.2.1. The Parametric Modeling for AM

In order to utilize the characteristics of AM and guarantee the manufacturability, the
idea of DfAM is introduced into the parametric modeling of flow channels. In this paper,
five-axis DED was selected as the AM technology to fabricate flow channels, which is
demonstrated in Figure 5. Accordingly, the specific modeling guidelines of flow channels
are as follows:
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Figure 5. Configuration of the flow channel and major components in a five-axis DED machine tool.

1. The process hole should be replaced by a section of integrated bent channel, which will
not only improve the energy efficiency, but also take advantage of AM in producing
complex surfaces;

2. The bent section should be designed with variable wall thickness to achieve the goal
of weight reduction and satisfy the strength requirement simultaneously;

3. Five-axis DED can obtain flow channels without supporting structures. The premise
is that the maximum flow channel bent angle should not exceed 90 degrees to avoid
collisions of DED machine tools;

4. Additional geometric constraints should be added to the bent section of the flow chan-
nel to smooth the transition between the bent section and the straight section, which
guarantees stable machining paths and platform rotation in five-axis DED process;

5. As flow channels belong to thin-walled parts, the wall thickness of its 3D model
should be greater than the minimum thickness that can be formed by DED.

4.2.2. FSI Analysis Module

Considering the requirement of intelligent FSI analysis for the solver capability, the
method of data exchange, and system integration, ANSYS Workbench was selected as
the platform for FSI analysis in this paper. The CFX module and the Static Structural
module were applied to conduct the CFD analysis and solid structure analysis, respectively.
Mastered by the intelligent control module, the specific steps of intelligent FSI analysis are
as follows:

1. The model parameters are input into the main program, and the Reynolds number
and Mach number corresponding to different models are calculated based on the
aforementioned Equations (7) and (8), respectively;

2. The initial scripting file generated by ANSYS Workbench is used as the source tem-
plate, and then the source template is updated as new scripting files, which have the
same quantity extracted from design models. The configurations of simulation in each
new scripting file are also updated by the script statement modification function in
the expert system based on the values calculated in the previous step;

3. The new scripting files can run in the specified project one after another calling ANSYS
Workbench, which ensures that each design model can be processed automatically;

4. After the FSI simulation is completed, the results corresponding to each design model
can be obtained by reading the CSV output file generated by ANSYS.

It should be noted that the Static Structural module is not compatible with some
scripting functions, and thus the data update of the structural simulation cannot be recorded
in the generated scripting files automatically. Therefore, a new scripting framework is
created to integrate the reading function and the module call function, as shown in Figure 6.
Thus, the intelligent simulation and data acquisition of the FSI analysis module can be
completely achieved.
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Figure 6. Partial code of the scripting file in the intelligent control module.

4.2.3. Design Optimization Module

Based on metamodeling [44], an approximate relationship between inputs and out-
puts can be established as a mathematical model that can be used to obtain parameter
correlations and predict the value of a certain input. For the design optimization module of
the proposed intelligent design optimization system, inputs are the design variables of the
parametric model x = (x1, . . . , xk), which can be considered as design points [45], while
outputs are the simulation results y as responses [46]. The collection of all design points
and responses serves as a design space. The relationship between x and y can be described
as follows:

y = f̂ (x, β) + ε (9)

where f̂ (•) is the approximate model, β is the coefficient vector, and ε is the approximate
error. The RSM is applied based on design points x and responses y. The second-order
polynomials are used to derive the approximate objective function as follows:

f̂ (xs, β) = β0 +
k

∑
i=1

βixsi +
k

∑
i=1

βiix2
si + ∑

i<j

k

∑
i=1

βijxsixsj (10)
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where k is the number of design variables in a design point, and s is the index of a design
point [47]. The design matrix X is defined as follows:

X =


1, x11, · · · , x1k, x2

11, · · · , x2
1k, x11x12, · · · , x1(k−1)x1k

1, x21, · · · , x2k, x2
21, · · · , x2

2k, x21x22, · · · , x2(k−1)x2k
...

...
. . .

...
...

. . .
...

...
. . .

...
1, xn1, · · · , xnk, x2

n1, · · · , x2
nk, xn1xn2, · · · , xn(k−1)xnk

 (11)

The coefficients of Equation (9) can be calculated by

β = (XTX)
−1

XTy (12)

Based on all design variables and simulation results, the objective functions and the con-
straint equations are established according to Equations (10)–(12), which can predict the response
at a given point within the specified range of the design variables. The extreme value can also be
obtained by gradient-based optimization in MATLAB. Then it is necessary to run a test FSI simu-
lation of the model corresponding to the extreme value to check whether the error of the extreme
value is acceptable compared to the test result. If not, this design point and the corresponding
simulation results are added to the design space, and a new round of design optimization will
start. The extreme value will not be output as the optimal solution until it is reasonable.

5. Case Study
5.1. Problem Description

Hydraulic manifolds are typical components with flow channels. The traditional
machining method is drilling holes in rectangular metal blocks according to hydraulic
schematic diagrams. With the forming principle of layer upon layer superposition, AM can
fabricate shapes that traditional processing methods cannot achieve [48], so it is the most
suitable processing method for manufacturing the optimized hydraulic manifold.

The purpose of this case study was to optimize the pressure drop and weight of the flow
channel without compromising the structural integrity of the manifold by taking advantage
of five-axis DED, which is an AM technique that can avoid support structures. As shown in
Figure 7a, the hydraulic manifold applied in this study was a simplified geometry composed
of one flow channel with a process hole. Verified by simulation, Figure 7b demonstrates that
there was a recirculation zone adjacent to the process hole that led to excessive energy loss [49]
in this flow channel. Therefore, the optimization objective was to establish the design scheme
of the variable cross-section and variable-thickness flow channel with the minimum pressure
drop and minimum weight under the strength constraint. The design optimization of the fluid
domain and the solid domain was carried out successively.

Figure 7. A hydraulic manifold with one flow channel: (a) cross-section view of the CAD model,
(b) streamlines visualized by CFD-Post (Re = 5156 and Ma = 0.019 at the bent 45◦ cross section).
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5.2. Design Optimization of the Fluid Domain
5.2.1. Design and Analysis

To meet the constraints on the solid design induced by AM, the parametric model
of the fluid domain should be a variable cross-section bent flow channel with the same
basic dimension parameters as the original design, which are listed in Table 1. As a result,
the internal flow domain of the simplified hydraulic manifold shown in Figure 7a was
extracted as shown in Figure 8. In this model, R1 and R2 were defined as the radius of the
inner arc and outer arc of the flow channel, respectively, which were the design variables
to be optimized. The goal was to reduce the volume of recirculation zone and obtain the
optimal shape of the fluid domain that had the minimum pressure drop.

Table 1. The values of dimension parameters.

Parameter Value (mm)

D1 6
D2 16.5
L1 67
L2 67
L3 21

Figure 8. Fluid domain of the flow channel with design variables.

In this case, the working fluid in the flow channel was L-HL46 hydraulic oil, which
has the properties listed in Table 2. The flow velocity at the inlet was set to 35 m/s, and
the pressure at the outlet was 20 MPa. Based on DOE, design variables were divided into
5 levels as shown in Table 3. The lowest and highest levels correspond to the lower and
upper bounds of design variables, respectively.

Table 2. The values of parameters associated with the working fluid.

Parameter Value Unit

T 323.15 K
p 20 MPa
ρ 870.15 kg/m3

C 4812 Cal/(g·K)
µ 0.02501 kg/(m s)
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Table 3. Levels of design variables of the fluid domain.

Level R1 (mm) R2 (mm)

1.828 14.398 20.398
1 11.5 17.5
0 8 14
−1 4.5 10.5
−1.828 1.602 7.602

5.2.2. Optimization Based on RSM

The numerical experiments were designed by the Central Composite Design (CCD)
method, which generated 10 design points. Processed by the intelligent FSI simulation
system, the pressure drop values corresponding to each design point were recorded in a
CSV file, which is tabulated in Table 4.

Table 4. Design points with pressure drop.

Design Point R1
(mm)

R2
(mm)

∆p
(Pa)

1 4.5 10.5 251,030
2 4.5 17.5 366,420
3 11.5 10.5 234,500
4 11.5 17.5 214,860
5 1.6 14 369,470
6 14.4 14 203,640
7 8 7.6 262,250
8 8 20.4 347,080
9 8 14 230,700
10 8 14 230,700

Data of all design points in the CSV file were read by the MATLAB-based design
optimization module. Based on the data in Table 4, the objective function was derived by
RSM as follows:

∆p = 371, 290 + 4010R1 − 22, 080R2 + 1370R1
2 + 1820R2

2 − 2760R1R2 (13)

As a result, the minimum pressure drop was 186,600 Pa at the design point
(R1, R2) = (15, 17.465). This optimal solution was substituted into the parametric model
for simulation verification. The simulation result demonstrated that the relative error
of the pressure drop was 0.69%, and the optimized pressure drop was 73.43% lower
than that of the original design shown in Figure 7a. Figure 9 depicts the pressure distri-
bution on the interface of the optimized fluid domain. It is notable that the maximum
pressure appeared at the outer arc of the flow channel.

Figure 9. Pressure distribution on the interface of the optimized fluid domain (Re = 5908 and Ma = 0.022
at the bent 45◦ cross section).



Micromachines 2022, 13, 100 14 of 21

5.3. Optimization of the Solid Domain
5.3.1. Design and Analysis

The stress of the arc section was larger compared to the other sections, so the design
of local thickness was necessary. According to the optimized fluid domain, a parametric
model of the solid domain was established based on the spline interpolation method. As
shown in Figure 10, 6 design variables were applied to control the wall thicknesses of
four sections of the flow channel: the wall thickness of the vertical section x1, the wall
thicknesses of the outer arc section x2 and x3, the wall thicknesses of the inner arc section
x4, and x5, and the wall thickness of the horizontal section x6. The goal was to acquire a
solid model that had the minimum weight under the strength constraint by controlling the
wall thicknesses of each section.

Figure 10. Solid domain of the hydraulic manifold with design variables.

The levels and corresponding values of design variables for the optimization of the
solid domain are listed in Table 5. The 316 L stainless steel, common metal AM material,
was used as the material, which had a density of 7980 kg/m3 and yield strength of 250 MPa,
in the structural simulation [50]. It should be noted that the shear stress induced by the
fluid on the wall was four orders of magnitude lower than the normal stress caused by
the pressure. Therefore, the shear stress was neglected in the application of the interface
boundary condition. Then, the maximum strain and stress could be obtained by the
structural simulation. Since volume is proportional to weight and could be acquired by
SolidWorks directly, it was applied as one of the responses in metamodeling.

Table 5. Levels of design variables of the solid domain.

Level x1 (mm) x2 (mm) x3 (mm) x4 (mm) x5 (mm) x6 (mm)

2.828 4.7 5.48 5.48 7.83 7.83 4.7
1 3.6 4.2 4.2 6 6 3.6
0 3 3.5 3.5 5 5 3
−1 2.4 2.8 2.8 4 4 2.4
−2.828 1.3 1.52 1.52 2.17 2.17 1.3

5.3.2. Optimization Based on RSM

According to CCD, there were 90 design points generated, which had to be processed
by the intelligent FSI simulation system. The values of design variables and the FSI
simulation results of each design point are shown in Table A1 of the Appendix A. Based on
the data of 90 design points, the objective function was derived by RSM as follows:

V = 5.4829 + 1.1008x1 + 0.0471x2 + 0.0247x3 + 0.0387x4 + 0.067x5 + 1.5174x6 + 0.1687x1
2−

0.001x2
2 + 0.0012x3

2 − 0.0021x4
2 − 0.0016x5

2 + 0.1507x6
2 + 0.01x1x2 + 0.0049x1x3+

0.016x1x4 + 0.0032x1x5 + 0.0106x1x6 + 0.002x2x3 − 0.0001x2x4 − 0.0015x2x5+

0.0058x2x6 + 0.0013x3x4 + 0.0024x3x5 + 0.0072x3x6 − 0.0006x4x5 + 0.0046x4x6 + 0.0062x5x6

(14)
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and the constraint equation was also derived as follows:

σMax = 223.0129− 30.6255x1 − 1.6095x2−2.5868x3 − 6.1686x4 − 5.7091x5 − 18.937x6+

1.8943x1
2 − 0.2387x2

2 + 0.2731x3
2 + 0.1103x4

2 + 0.0863x5
2 + 0.4902x6

2 + 0.0358x1x2+

0.1807x1x3 + 0.7707x1x4 + 0.2898x1x5 + 1.6479x1x6 + 0.1054x2x3 − 0.0982x2x4−

0.0585x2x5 + 0.0211x2x6 − 0.0161x3x4 − 0.1031x3x5 + 0.0856x3x6 + 0.2145x4x5+

0.2843x4x6 + 0.7467x5x6 ≤ σs/n

(15)

where σs is the yield strength, and n is the factor of safety, which was equal to 3 in this case.
Applying the gradient method, the optimal combination of variables x1 to x6 under the
strength constraint was 3.2488, 4.1469, 3.704, 7.37, 7.37, and 1.58, with the minimum volume
being 15,460 mm3. This optimal solution was substituted into the parametric model, as
shown in Figure 11a. By simulation, it was verified that the relative error of the maximum
stress of the optimized design was 3.43%, and the relative error of volume was less than
0.001%, which all met the accuracy requirement.

Figure 11. Design optimization of the solid domain: (a) cross-sectional view of the CAD model,
(b) stress distribution.

The structural simulation result of the optimized design is shown in Figure 11b. Com-
pared with the model in Figure 7a, the volume of the flow channel was reduced by 90.53%.
Moreover, the volume was 20.66% lower than that of the flow channel optimized with
uniform wall thickness. Figure 12 depicts the influence of design variables on the maximum
stress. Evidently, the maximum stress was most sensitive to the wall thickness of the vertical
pipe section x1. According to the strain contour gained from the structural simulation,
the flow channel had a tendency to bend inward under the flow pressure, resulting in a
greater stress in the inner arc section than the outer arc section. The optimization program
enhanced the inner arc section to provide sufficient support, resulting in the fact that the
wall thicknesses of the outer arc section x2 and x3 had almost no effect on the maximum
stress value.

Figure 12. Influence of the design variables on the maximum stress.
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5.4. Manufacturing of the Optimized Flow Channel

To verify the applicability of the intelligent design optimization system to AM, the
optimized flow channel was manufactured by LATEC HMC-500A, which is a cradle five-
axis DED machine tool shown in Figure 13a. As shown in Figure 13b, the end face of
the outlet was chosen as the original AM surface, and the direction perpendicular to this
surface was determined as the initial AM direction. Facilitated by the five-axis capability, it
allows the flow channel part to be manufactured along its axis to avoid support structures.
The manufacturing of the bent channel section was realized by the rotation of the platform
and the cradle according to the curved axis of this section. The 316 L stainless steel powder
was applied as the material for AM. The minimum wall thickness of the flow channel was
1.58 mm, greater than the DED minimum wall thickness requirement of 1 mm. The process
parameters were set in the dialog box of the machine tool control system according to the
material properties and dimensions of the model. Then the execution of the part fabrication
was checked by the manufacturing process simulation in the environment of the machine
tool. Figure 13c shows the processing position where the cradle rotates 90 degrees.

Figure 13. The optimized flow channel manufactured by five-axis DED: (a) LATEC HMC-500A,
(b) AM process planning, (c) manufacturing process simulation, (d) manufactured part.
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After AM, milling and abrasive blasting were carried out on the outer surface of the
flow channel structure, and the final part is shown in Figure 13d. Therefore, the proposed
intelligent design optimization system derives an improved flow channel with satisfactory
manufacturability under the DfAM framework.

6. Conclusions

In this paper, an integrated design optimization system is proposed, which is com-
posed of a Python-based intelligent control module, an ANSYS-based FSI analysis module,
and a MATLAB-based design optimization module. The operation of these modules is
realized by the manipulated script file and data transmission. DfAM of flow channels
was implemented by considering the characteristics and process constraints of AM in the
modeling process. An expert system is embedded in the intelligent control module, so
that the FSI analysis module can be called based on the scripting files to realize the intelli-
gent simulation of the models corresponding to different design points created by DOE.
The simulation results are obtained after the solving process. Based on metamodeling, the
approximate relationship between design variables and properties of the flow channel is
established to derive the optimal solution by optimization algorithms.

The effectiveness of this system is verified by the design optimization of a simplified
hydraulic manifold with one flow channel. Based on the proposed system, the design
variables and simulation results corresponding to each design point are obtained and
recorded in a CSV file. Based on RSM and gradient-based optimization, the optimized
design with minimum pressure drops and minimum volume is derived under the strength
constraints. The successful manufacturing of the optimized flow channel part demonstrates
that the proposed approach has achieved DfAM by considering the processing requirements
of AM in design optimization.

At present, the intelligent design optimization system has only demonstrated its
capability in the optimization and the AM of a simplified hydraulic manifold. In the
future, the optimized flow channel will be manufactured by additive–subtractive hybrid
manufacturing, which can guarantee the machining quality of the inner surface, and thus
the optimization effect can be tested by experiment. In addition, this system will be further
developed to optimize hydraulic manifolds with multi-channels to verify its applicability
in practical scenarios.
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Appendix A

Table A1. Design points with volume and maximum stress.

Design Point x1 (mm) x2 (mm) x3 (mm) x4 (mm) x5 (mm) x6 (mm) Volume (mm3) Maximum Stress (MPa)

1 3.6 4.2 4.2 6 4 2.4 17,897.476 83.875
2 3.6 4.2 4.2 6 4 3.6 20,968.032 77.451
3 3.6 4.2 4.2 6 6 2.4 18,048.811 80.785
4 3.6 4.2 4.2 6 6 3.6 21,152.207 78.199
5 3.6 4.2 4.2 4 6 2.4 17,875.377 82.833
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Table A1. Cont.

Design Point x1 (mm) x2 (mm) x3 (mm) x4 (mm) x5 (mm) x6 (mm) Volume (mm3) Maximum Stress (MPa)

6 3.6 4.2 4.2 4 6 3.6 20,966.183 77.099
7 3.6 4.2 4.2 4 4 2.4 17,710.653 86.241
8 3.6 4.2 4.2 4 4 3.6 20,786.965 79.586
9 3.6 4.2 2.8 6 4 2.4 17,771.738 83.405

10 3.6 4.2 2.8 6 4 3.6 20,848.548 77.13
11 3.6 4.2 2.8 6 6 2.4 17,902.091 80.711
12 3.6 4.2 2.8 6 6 3.6 21,002.514 76.702
13 3.6 4.2 2.8 4 6 2.4 17,742.931 82.403
14 3.6 4.2 2.8 4 6 3.6 20,804.92 76.954
15 3.6 4.2 2.8 4 4 2.4 17,587.042 85.323
16 3.6 4.2 2.8 4 4 3.6 20,635.994 78.576
17 3.6 2.8 4.2 6 4 2.4 17,766.073 83.68
18 3.6 2.8 4.2 6 4 3.6 20,830.547 77.7
19 3.6 2.8 4.2 6 6 2.4 17,907.069 80.76
20 3.6 2.8 4.2 6 6 3.6 21,007.847 77.399
21 3.6 2.8 4.2 4 6 2.4 17,737.808 82.23
22 3.6 2.8 4.2 4 6 3.6 20,819.957 77.307
23 3.6 2.8 4.2 4 4 2.4 17,577.73 85.738
24 3.6 2.8 4.2 4 4 3.6 20,636.711 78.545
25 3.6 2.8 2.8 6 4 2.4 17,629.393 83.133
26 3.6 2.8 2.8 6 4 3.6 20,677.002 76.828
27 3.6 2.8 2.8 6 6 2.4 17,789.481 80.755
28 3.6 2.8 2.8 6 6 3.6 20,852.685 77.18
29 3.6 2.8 2.8 4 6 2.4 17,609.845 82.125
30 3.6 2.8 2.8 4 6 3.6 20,682.307 77.352
31 3.6 2.8 2.8 4 4 2.4 17,460.586 84.905
32 3.6 2.8 2.8 4 4 3.6 20,499.801 78.604
33 3 3.5 3.5 5 5 3 17,798.702 84.732
34 3 3.5 3.5 5 5 3 17,798.702 84.732
35 3 3.5 3.5 5 5 3 17,798.702 84.732
36 3 3.5 3.5 5 5 3 17,798.702 84.732
37 3 3.5 3.5 5 5 3 17,798.702 84.732
38 3 3.5 3.5 5 5 3 17,798.702 84.732
39 2.4 4.2 4.2 6 4 2.4 15,119.431 93.836
40 2.4 4.2 4.2 6 4 3.6 18,189.79 85.819
41 2.4 4.2 4.2 6 6 2.4 15,273.54 90.887
42 2.4 4.2 4.2 6 6 3.6 18,349.325 83.995
43 2.4 4.2 4.2 4 6 2.4 15,160.95 93.869
44 2.4 4.2 4.2 4 6 3.6 18,194.569 87.043
45 2.4 4.2 4.2 4 4 2.4 14,972.612 97.894
46 2.4 4.2 4.2 4 4 3.6 18,036.759 89.345
47 2.4 4.2 2.8 6 4 2.4 15,002.218 93.788
48 2.4 4.2 2.8 6 4 3.6 18,048.514 85.408
49 2.4 4.2 2.8 6 6 2.4 15,145.882 90.865
50 2.4 4.2 2.8 6 6 3.6 18,206.417 84.055
51 2.4 4.2 2.8 4 6 2.4 14,998.914 93.891
52 2.4 4.2 2.8 4 6 3.6 18,060.763 86.783
53 2.4 4.2 2.8 4 4 2.4 14,857.127 97.363
54 2.4 4.2 2.8 4 4 3.6 17,929.129 88.834
55 2.4 2.8 4.2 6 4 2.4 15,005.44 93.953
56 2.4 2.8 4.2 6 4 3.6 18,067.713 85.678
57 2.4 2.8 4.2 6 6 2.4 15,150.937 90.986
58 2.4 2.8 4.2 6 6 3.6 18,230.22 84.009
59 2.4 2.8 4.2 4 6 2.4 15,011.626 93.745
60 2.4 2.8 4.2 4 6 3.6 18,064.973 86.61
61 2.4 2.8 4.2 4 4 2.4 14,863.887 97.405
62 2.4 2.8 4.2 4 4 3.6 17,910.394 88.809
63 2.4 2.8 2.8 6 4 2.4 14,878.343 93.982
64 2.4 2.8 2.8 6 4 3.6 17,918.057 85.383
65 2.4 2.8 2.8 6 6 2.4 15,037.007 91.242
66 2.4 2.8 2.8 6 6 3.6 18,098.979 83.893
67 2.4 2.8 2.8 4 6 2.4 14,890.674 93.835
68 2.4 2.8 2.8 4 6 3.6 17,944.428 86.406
69 2.4 2.8 2.8 4 4 2.4 14,746.24 97.228
70 2.4 2.8 2.8 4 4 3.6 17,778.339 88.442



Micromachines 2022, 13, 100 19 of 21

Table A1. Cont.

Design Point x1 (mm) x2 (mm) x3 (mm) x4 (mm) x5 (mm) x6 (mm) Volume (mm3) Maximum Stress (MPa)

71 3 3.5 3.5 5 5 3 17,798.702 84.732
72 3 3.5 3.5 5 5 3 17,798.702 84.732
73 1.3 3.5 3.5 5 5 3 14,385.117 105.84
74 4.7 3.5 3.5 5 5 3 22,185.297 76.622
75 3 1.52 3.5 5 5 3 17,614.667 89.408
76 3 5.48 3.5 5 5 3 17,980.02 83.986
77 3 3.5 1.52 5 5 3 17,614.18 89.593
78 3 3.5 5.48 5 5 3 17,990.502 84.071
79 3 3.5 3.5 2.17 5 3 17,562.815 91.662
80 3 3.5 3.5 7.83 5 3 17,998.965 81.625
81 3 3.5 3.5 5 2.17 3 17,559.502 91.296
82 3 3.5 3.5 5 7.83 3 18,010.566 81.606
83 3 3.5 3.5 5 5 1.3 13,899.297 96.837
84 3 3.5 3.5 5 5 4.7 22,567.122 77.509
85 3 3.5 3.5 5 5 3 17,798.702 84.732
86 3 3.5 3.5 5 5 3 17,798.702 84.732
87 3 3.5 3.5 5 5 3 17,798.702 84.732
88 3 3.5 3.5 5 5 3 17,798.702 84.732
89 3 3.5 3.5 5 5 3 17,798.702 84.732
90 3 3.5 3.5 5 5 3 17,798.702 84.732
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