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Abstract: A heuristic description of the spin-rotation-gravity coupling is presented and the implica-
tions of the corresponding gravitomagnetic Stern–Gerlach force are briefly mentioned. It is shown,
within the framework of linearized general relativity, that the gravitomagnetic Stern–Gerlach force
reduces in the appropriate correspondence limit to the classical Mathisson spin-curvature force.
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1. Introduction

Consider a free test particle of mass m moving with velocity V in an inertial frame of
reference in Minkowski spacetime. The free particle moves on a straight line with constant
velocity forever. Here, the Minkowski metric is

− ds2 = ηµν dXµdXν , Xµ = (ct, X, Y, Z) , (1)

where Greek indices run from 0 to 3, while Latin indices run from 1 to 3. The Minkowski
metric tensor ηµν is given by diag(−1, 1, 1, 1). Throughout this paper, we use the convention
that c = 1, unless specified otherwise. The equation of motion of the particle is obtained via
the variational principle of stationary action δS = 0, where

S =
∫
−m ds =

∫
L dt , L = −m(1−V2)1/2 . (2)

The corresponding Hamiltonian isH0 = γ mc2, where γ is the Lorentz factor.
Let us now imagine that the static inertial observer at the origin of the spatial coor-

dinates in Minkowski spacetime decides to refer the motion of the free particle to axes
that rotate with angular velocity Ω(t) about the Z axis. This static observer thus becomes
noninertial and its new reference frame has coordinates (ct, r), where r = (x, y, z). Then,
V = v + Ω(t)× r, where v = dr/dt is the velocity of the particle with respect to the new
rotating axes. From

L = −m
[
1− (v + Ω× r)2

]1/2
, (3)

we find the canonical momentum

p =
∂L
∂v

= γm(v + Ω× r) (4)

and the Hamiltonian [1]
H = H0 −Ω(t) · L , (5)

where L = r× p is the orbital angular momentum of the free point particle.
If the particle carries with it an “intrinsic” spin vector S, then S remains constant

along the straight trajectory of the particle in the inertial frame. However, with respect to
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the rotating coordinate system, S appears to precess with angular velocity −Ω(t). Let si,
i = 1, 2, 3, be the components of S with respect to the rotating axes; then,

dsi
dt

+ εijkΩjsk = 0 . (6)

On the other hand, for a true intrinsic quantum spin vector with the commutation relations

[sp, sq] = ih̄εpqnsn (7)

that is invariant under the rotation of coordinates, the Heisenberg equation of motion for
such a quantum observable,

h̄
dsk
dt

= i[HSR, sk] , (8)

results in Equation (6) if the spin-rotation Hamiltonian is of the form

HSR = −S ·Ω(t) . (9)

This is the Hamiltonian that accounts for the precessional motion of the spin in the quantum
theory. It follows that in the quantum case there is an additional contribution to the classical
Hamiltonian (5) such that the total Hamiltonian of the particle in the rotating frame is given
byH+HSR. Hence,

HTotal = H0 −Ω(t) · J , (10)

where J := L + S is the total angular momentum of the free particle. This is a natural
result, since J is the generator of rotations in the quantum theory. The energy eigenvalues
as measured by the noninertial static observer include the spin-rotation coupling, which is
a quantum inertial effect that is independent of mass of the particle. In the classical limit,
h̄→ 0 and we recover Equation (5).

Spin-rotation coupling is a general phenomenon that is due to the inertia of intrinsic
spin. Physical states in quantum theory are described by mass and spin, which characterize
the irreducible unitary representations of the inhomogeneous Lorentz group. The inertial
properties of mass are well known. Phenomena associated with the spin-rotation cou-
pling reveal the inertial properties of intrinsic spin. Spin-rotation coupling has extensive
observational support [2–23]. It has recently been observed directly in neutron interferome-
try [24–31]. Furthermore, it has significant applications in spintronics [32–47]. For further
discussion and references, see [48,49].

1.1. Spin-Vorticity Coupling

Consider a laboratory experiment involving a rotating system, which creates a congru-
ence in spacetime. As a body rotates, we expect that the intrinsic spins of the constituent
particles all remain fixed with respect to the local inertial frame; therefore, the intrinsic
spins all appear to precess with respect to the body-fixed frame. In the continuum limit, it
may be that the local angular velocity of motion becomes dependent on position, in which
case the spin-rotation coupling naturally goes over to the spin-vorticity coupling [43,44]

HSV = −1
2

S ·ω , (11)

where ω is the vorticity
ω = ∇×V (12)

and V is the velocity field of the congruence. If the angular velocity is spatially uniform
such that V = Ω× r, then ω = 2 Ω andHSV reduces toHSR. For a description of moving
macroscopic matter in continuum mechanics, see section E.4.1 of Ref. [50]. For recent work
on spin-vorticity coupling, see [45,46].



Entropy 2021, 23, 445 3 of 12

1.2. Stern–Gerlach Force due to Spin-Vorticity Coupling

In general, vorticity depends on position and we might then expect the appearance of
an attendant Stern–Gerlach force as well; that is,

fµ = −∂µ(HSV) =
1
2

S · ∇µ ω . (13)

Such a spin-dependent force could then lead to the generation of a spin current. This
idea was apparently first proposed in Ref. [40] and received experimental confirmation
in [41–43]. For the extension of these ideas to fluid spintronics, see [44] and the references
cited therein. Moreover, Ref. [47] deals with the application of spin-vorticity coupling in
fluid dynamics.

2. Spin-Gravity Coupling

Within the framework of linearized general relativity, we use here the approximation
scheme known as gravitoelectromagnetism (GEM) that is based on the well-known analogy
with Maxwell’s electrodynamics. We are interested in the weak exterior field of a compact
rotating astronomical source with mass M and proper angular momentum J. The spacetime
metric,−ds2 = gµν dxµdxν, is given in a Cartesian system of coordinates xα = (ct, x) by [49]

− ds2 = −c2
(

1− 2
Φ
c2

)
dt2 − 4

c
(A · dx)dt +

(
1 + 2

Φ
c2

)
δijdxidxj , (14)

which represents Minkowski spacetime plus a linear perturbation due to the source. That
is, gµν = ηµν + hµν. We neglect all metric perturbation terms of O(c−4) in this weak-field
and slow-motion approximation method. In Equation (14), Φ(t, x) is the gravitoelectric
potential and A(t, x) is the gravitomagnetic vector potential. For the exterior field of a
rotating astronomical mass, for instance, −Φ is the Newtonian gravitational potential and
A is due to mass current and vanishes in the Newtonian limit (c→ ∞). Very far from the
rotating source,

Φ ∼ GM
r

, A ∼ G
c

J× x
r3 , (15)

where r = |x|. The GEM potentials satisfy the transverse gauge condition

1
c

∂Φ
∂t

+∇ ·
(

1
2

A
)
= 0 . (16)

Moreover, in analogy with electrodynamics, the GEM fields are defined by

E = −∇Φ− 1
c

∂

∂t

(
1
2

A
)

, B = ∇×A , (17)

in terms of which Einstein’s field equations in this case become formally similar to
Maxwell’s equations [51]. For discussions of the non-Newtonian gravitomagnetic effects,
see [49,52].

We are interested in the motion of a classical spinning point particle in the GEM
field. The relevant equations in this case are the Mathisson–Papapetrou (“pole-dipole”)
equations [53,54], namely,

DPµ

dτ
= Fµ , Fµ = −1

2
Rµ

ναβ uνSαβ , (18)

DSµν

dτ
= Pµuν − Pνuµ . (19)

In these equations, Fµ, Fµuµ = 0, is the Mathisson spin-curvature force [55], uµ = dxµ/dτ
is the 4-velocity of the pole-dipole particle and τ is its proper time. Moreover, Pµ is the
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4-momentum of the particle and Sµν is its spin tensor that satisfies the Frenkel–Pirani
supplementary condition [56,57]

Sµν uν = 0 . (20)

It follows from these equations that

Pµ = m uµ + Sµν Duν

dτ
, (21)

where m := −Pµuµ is the mass of the spinning particle and is a constant of the motion.
That is, differentiating m = −P · u and using F · u = 0 together with Equation (21), we find

dm
dτ

= −
(

m uµ + Sµν Duν

dτ

)
Duµ

dτ
= 0 , (22)

since u · u = −1 and Sµν is antisymmetric. In the massless limit (m→ 0), the Mathisson–
Papapetrou equations together with the Frenkel–Pirani supplementary condition behave
properly; indeed, the spinning massless test particle follows a null geodesic with spin
parallel or antiparallel to its world line [58]. The Frenkel–Pirani supplementary condition
is therefore appropriate for a point particle.

Let us define the spin vector of the particle Sµ via

Sµ = −1
2

ηµνρσ uνSρσ , Sαβ = ηαβγδ uγSδ , (23)

where ηαβγδ = (−g)1/2εαβγδ is the Levi-Civita tensor and εαβγδ is the alternating symbol
with ε0123 = 1. The Mathisson spin-curvature force now takes the form

Fµ = ∗Rµνρσ uν Sρ uσ , ∗Rµνρσ =
1
2

ηµναβ Rαβ
ρσ , (24)

in terms of the dual Riemann tensor, and the spin dynamics is represented by

(gµν + uµ uν)
DSν

dτ
= 0 , (25)

so that Sµ, Sµ uµ = 0, is Fermi–Walker transported along the world line of the spinning
particle [57].

Consider now a pole-dipole particle held at rest in space in the exterior GEM field.
Nongravitational torque-free forces are necessary to counter the Mathisson force as well as
the attraction of gravity of the source in order to keep the particle fixed in space. The 4-
velocity vector of the particle is then given by uµ = (1 + Φ/c2)δ

µ
0 . A natural orthonormal

tetrad frame λµ
(α) adapted to the static test pole-dipole particle with uµ = λµ

(0) is given in
the (ct, x, y, z) coordinate system by

λµ
(0) = (1 + Φ/c2, 0, 0, 0) , (26)

λµ
(1) = (−2A1/c2, 1−Φ/c2, 0, 0) , (27)

λµ
(2) = (−2A2/c2, 0, 1−Φ/c2, 0) , (28)

λµ
(3) = (−2A3/c2, 0, 0, 1−Φ/c2) , (29)

where the tetrad axes are primarily along the local GEM coordinate axes. The projection of
the spin vector on the adapted tetrad frame is given by

S(α) = Sµ λµ
(α) , (30)
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which implies that S(0) = 0 and

dS(i)

dτ
=

[Dλµ
(i)

dτ
λµ(j)

]
S(j) . (31)

A straightforward calculation reveals that to linear order in the perturbation

Dλµ
(i)

dτ
λµ(j) = ∂j Ai − ∂i Aj . (32)

Therefore,
dS(i)

dτ
= εijkBj S(k) (33)

and the spin vector precesses with an angular velocity given by the local gravitomagnetic
field. We can regard the gravitomagnetic field in Equation (33) as the locally measured
field within our approximation scheme. That is, the GEM potentials can be combined
into a 4-vector in analogy with electrodynamics and the corresponding GEM field tensor
is then projected on the tetrad frame λµ

(α) to obtain the measured gravitoelectric and
gravitomagnetic fields at the location of the spinning particle. However, λµ

(α) differs from
δ

µ
α by terms that are linear in the spacetime perturbation; therefore, in our approximation

method E and B are indeed the same as the measured fields.
If the spin vector is of quantum origin and represents the intrinsic spin of the “point”

particle, then a spin-gravity Hamiltonian in terms of measured quantities is associated
with its precession such that

HSG =
1
c

S · B . (34)

We assume here that a particle with intrinsic spin behaves in the correspondence limit
like an ideal gyroscope. For instance, in connection with experiments in an Earth-based
laboratory, to every Hamiltonian we must add the spin-rotation-gravity contribution

δH ≈ −Ω⊕ · S + ΩP · S , (35)

where Ω⊕ and ΩP = B⊕/c refer to the Earth’s rotation frequency and the corresponding
gravitomagnetic precession frequency, respectively. In fact, we have approximately

ΩP =
G

c2r5 [3(J · r) r− Jr2] . (36)

In the recent GP-B experiment [59,60], the non-Newtonian gravitomagnetic field of the
Earth has been directly measured and the prediction of general relativity has been verified
at about the 19% level.

In Equation (35), the difference in the energy of a spin-1/2 particle polarized ver-
tically up and down relative to the surface of the Earth is given by h̄Ω⊕ ≈ 10−19 eV
and h̄ΩP ≈ 10−29 eV. For recent attempts to measure the spin-gravity term, see [61,62].
Furthermore, the gravitomagnetic field depends upon position; therefore, there exists a
gravitomagnetic Stern–Gerlach force−∇(ΩP ·S) on a spinning particle that is independent
of its mass and hence violates the principle of equivalence and the universality of free
fall. This force naturally leads to a differential deflection of polarized beams. For various
implications of the spin-gravity coupling, see [63–75].

We now wish to establish a general correspondence between the gravitomagnetic
Stern–Gerlach force and the Mathisson spin-curvature force for a steady-state configuration.
Projecting the gravitomagnetic Stern–Gerlach force, fµ = −∂µHSG on the orthonormal
tetrad frame λµ

(α), we have

f(0) = 0 , f(i) = −
1
c

∂i Bj S(j) . (37)
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Here, f(0) vanishes because the gravitomagnetic field is assumed to be independent of time.
On the other hand, the Mathisson spin-curvature force projected on the tetrad frame λµ

(α)

is given by F(0) = 0 and

F(i) = c ∗R(i)(0)(j)(0) S(j) . (38)

We want to show that f(i) reduces to F(i) in the correspondence limit.
In an arbitrary gravitational field, one can project the Riemann tensor onto an or-

thonormal tetrad frame Θµ
α̂ adapted to an observer; the measured components of the

curvature are then
Rµνρσ Θµ

α̂ Θν
β̂ Θρ

γ̂ Θσ
δ̂ . (39)

Taking the symmetries of the Riemann tensor into account, one can express Equation (39) in
the standard manner as a 6 × 6 matrix with indices that range over the set
{01, 02, 03, 23, 31, 12}. The general form of this matrix is[

E H
HT S

]
, (40)

where E and S are symmetric 3× 3 matrices and H is traceless. Here, E, H and S represent
the measured gravitoelectric, gravitomagnetic and spatial components of the Riemann
curvature tensor, respectively. If the spacetime is Ricci flat, then Equation (40) takes the form[

E H
H −E

]
, (41)

where E and H are now symmetric and traceless. That is, in the Ricci-flat case, the Riemann
curvature tensor degenerates into the Weyl conformal curvature tensor whose gravitoelec-
tric and gravitomagnetic components are then

Eâb̂ = Cαβγδ Θα
0̂ Θβ

â Θγ
0̂ Θδ

b̂ , Hâb̂ = C∗αβγδ Θα
0̂ Θβ

â Θγ
0̂ Θδ

b̂ , (42)

where C∗αβγδ is the unique dual of the Weyl tensor given by

C∗αβγδ =
1
2

ηαβ
µν Cµνγδ , (43)

since the right and left duals of the Weyl tensor coincide.
In our GEM scheme, gµν = ηµν + hµν and the gauge-invariant curvature tensor is

given by

Rµνρσ =
1
2
(hµσ, νρ + hνρ, µσ − hνσ, µρ − hµρ, νσ) . (44)

We recall that to lowest order λµ
(α) ≈ δ

µ
α and hence in the exterior of a GEM source, we

have the Weyl tensor in the form (41) with symmetric and traceless matrices given by

Eij = −
1
c2 Φ,ij + O(c−4) =

1
c2 Ej,i + O(c−4) (45)

and
Hij = −

1
c2 ∂iBj +

1
c3 εijk

∂Ek
∂t

+ O(c−4) . (46)

It follows from these results and Equations (37) and (38) that for a stationary GEM field,
the gravitomagnetic Stern–Gerlach force in the correspondence limit is the same as the
Mathisson spin-curvature force.

The spin interactions discussed in this paper all involve Hamiltonians that are similar
to that of the traditional Zeeman effect. Moreover, the gravitational Larmor theorem can
be invoked to connect spin-gravity coupling with the spin-rotation coupling. The local
equivalence between magnetism and rotational inertia was first established via Larmor’s
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original theorem [76]. The gravitational Larmor theorem is an expression of Einstein’s local
principle of equivalence of gravitation and inertia [49,77].

Consider a steady-state configuration with exterior metric (14). In this stationary
gravitational field, the temporal coordinate can be subjected to a simple scale transforma-
tion of the form t 7→ (1 + Φ0/c2)t, where Φ0 is a constant such that |Φ0| � c2. The only
consequence of this transformation is that −g00 = 1− 2Φ0 7→ 1− 2(Φ−Φ0)/c2, while
the other terms in the metric remain unchanged since we neglect all terms of O(c−4). In a
sufficiently small neighborhood around any event in the exterior GEM spacetime, we can
replace the metric by that of an accelerated system in Minkowski spacetime. The resulting
metric is to linear order of the form (ηµν + `µν)dXµdXν, where [2,49]

`00 = −2 aL · X , `0i = (ΩL × X)i , `ij = 0 . (47)

This has the form of a first-order perturbation where aL is the constant translational acceler-
ation and ΩL is the constant rotational frequency of the accelerated system. A comparison
with the GEM metric reveals that the corresponding gravitoelectric and gravitomagnetic
potentials are given by

Φ−Φ0 = −aL · X , A = −1
2

ΩL × X . (48)

We neglect the spatial curvature of the GEM metric in this analogy. Moreover, E = −∇Φ =
aL and B = ∇×A = −ΩL are the corresponding fields. It is clear that the spin-rotation
HamiltonianHSR = −S ·ΩL corresponds to the spin-gravity HamiltonianHSG = S ·B via
the gravitational Larmor theorem.

3. Linear Gravitational Waves

The general linear approximation of general relativity involves GEM fields of massive
systems as well as linearized gravitational waves. The purpose of this section is to discuss
spin-gravity coupling for linearized gravitational waves; in particular, we are interested in
the corresponding Stern–Gerlach force. For related studies, see [78–85] and the references
cited therein.

Consider a free linear gravitational radiation field, which can be expressed as a
Fourier sum of plane monochromatic components each with frequency ωg and wave
vector kg, ωg = c|kg|. The gravitational potential of the radiation is given by the sym-
metric tensor h̄µν, which is a perturbation on the background Minkowski spacetime;
that is, gµν = ηµν + h̄µν(x), where xα = (ct, x, y, z). In the transverse-traceless (TT) gauge,
h̄µν

,ν = 0, h̄0µ = 0 and h̄µ
µ = 0. In this gauge, the gravitational potentials h̄ij(x) each

satisfies the standard wave equation.
For the sake of definiteness, let the incident radiation be a monochromatic plane wave

propagating along the x direction. Then, h̄ij can be written as

(h̄ij) =

0 0 0
0 h+ h×
0 h× −h+

 , (49)

where
h+ = h̃+ cos[ωg(t− x) + ϕ+] , h× = h̃× cos[ωg(t− x) + ϕ×] (50)

represent the ⊕ (“plus”) and ⊗ (“cross”) linear polarization states of the radiation. Here,
(h̃+, ϕ+) and (h̃×, ϕ×) are constants associated with the independent states of the radia-
tion field.

It is a general result that in a spacetime with a metric of the form −dt2 + gij(x)dxidxj,
observers that remain permanently at rest in space follow geodesic world lines. Thus
imagine this class of geodesic observers each at rest in space with a 4-velocity vector
eµ

0̂ = δ
µ
0 in the spacetime under consideration here. To each such observer, we associate an



Entropy 2021, 23, 445 8 of 12

adapted orthonormal tetrad frame eµ
α̂ that is parallel propagated along its world line. It is

straightforward to show that

eµ
α̂ = δ

µ
α −

1
2

h̄µ
α . (51)

The projection of the curvature tensor (44) in the case of the incident gravitational wave on
the tetrad frame (51) results in Rα̂β̂γ̂δ̂ = Rµνρσ eµ

α̂ eν
β̂ eρ

γ̂ eσ
δ̂. Here, eµ

α̂ is in effect δ
µ
α in our

linear approximation scheme and the GEM components of curvature can be represented as
in Equation (41) with

Eij =
1
2

ω2
g h̄ij , Hij =

1
2

ω2
g

0 0 0
0 h× −h+
0 −h+ −h×

 . (52)

For measurement purposes, it proves interesting to set up a quasi-inertial Fermi
normal coordinate system with coordinates Xµ̂ = (cT, X̂, Ŷ, Ẑ) based on the nonrotating
tetrad frame (51) along the world line of an arbitrary fiducial static geodesic observer.
Here, T = t is the proper time of the reference observer fixed at (x, y, z) = (x0, y0, z0).
The spacetime metric in the Fermi frame is given by

− ds2 = gµ̂ν̂ dXµ̂dXν̂ (53)

where
g0̂0̂ = −1− R0̂î0̂ ĵ X îX ĵ , (54)

g0̂î = −
2
3

R0̂ ĵîk̂ X ĵXk̂ (55)

and
gî ĵ = δij −

1
3

Rîk̂ ĵl̂ Xk̂X l̂ . (56)

In these expansions, we have neglected third and higher-order terms. In close analogy with
the GEM case, we can define the gravitoelectric potential Φ̂ and gravitomagnetic vector
potential Â via g0̂0̂ = −1 + 2Φ̂ and g0̂î = −2Âi; that is,

Φ̂ = −1
2

R0̂î0̂ ĵ X îX ĵ , Âi =
1
3

R0̂ ĵîk̂ X ĵXk̂ . (57)

Similarly, the corresponding fields can be defined as in Equation (17); in fact, to lowest
order we find

Êi = R0̂î0̂ ĵ X ĵ , B̂i = −
1
2

εijk R ĵk̂
0̂l̂ X l̂ . (58)

Concentrating on the incident gravitational wave under consideration in this section,
Equation (52) implies

Φ̂ = −1
4

ω2
g [h+(Ŷ

2 − Ẑ2) + 2h×ŶẐ] (59)

and
Â1 =

2
3

Φ̂ , Â2 =
1
6

ω2
g X̂ (h+Ŷ + h×Ẑ) , Â3 =

1
6

ω2
g X̂ (h×Ŷ− h+Ẑ) . (60)

Moreover, the relevant GEM fields are

Ê1 = 0 , Ê2 =
1
2

ω2
g (h+Ŷ + h×Ẑ) , Ê3 =

1
2

ω2
g (h×Ŷ− h+Ẑ) , (61)

B̂1 = 0 , B̂2 = −Ê3 , B̂3 = Ê2 , (62)

which are clearly transverse to the direction of wave propagation, |Ê| = |B̂| and Ê · B̂ = 0.
For the incident wave, the gravitoelectric and gravitomagnetic potentials are defined via
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the g0̂µ̂ components of the Fermi metric and the remaining spatial components can be
expressed as

(gî ĵ) =

1 + Â1 Â2 Â3
Â2 1− ξ+ −ξ×
Â3 −ξ× 1 + ξ+

 , (63)

where
ξ+ =

1
6

ω2
g h+ X̂2 , ξ× =

1
6

ω2
g h× X̂2 . (64)

Within this Fermi coordinate system, let us imagine the class of observers that stay
spatially at rest. It is straightforward to show that a proper orthonormal tetrad frame Λµ̂

α̃

adapted to this class of observers is given in (t, X̂, Ŷ, Ẑ) coordinates by

Λµ̂
0̃ = (1 + Φ̂, 0, 0, 0) , (65)

Λµ̂
1̃ = (−2Â1, 1− 1

3 Φ̂, 0, 0) , (66)

Λµ̂
2̃ = (−2Â2,−Â2, 1 + 1

2 ξ+, 0) , (67)

Λµ̂
3̃ = (−2Â3,−Â3, ξ×, 1− 1

2 ξ+) , (68)

where the tetrad axes are primarily along the Fermi coordinate axes.
Consider now a spinning test particle held fixed in space at (X̂, Ŷ, Ẑ) by a reference

observer in the Fermi frame. Projecting the spin vector Sµ̂ in the Fermi frame on the tetrad
frame Λµ̂

α̃ of the local reference observer, Sα̃ = Sµ̂Λµ̂
α̃, we find S0̃ = 0, as before, and

dSĩ
dt̃

=

[
DΛµ̂

ĩ
dt̃

Λµ̂ j̃

]
S j̃ , (69)

where t̃ is the proper time of the reference observer and dt = (1 + Φ̂)dt̃. A detailed
calculation reveals that to lowest order in X̂, Ŷ and Ẑ within the Fermi coordinate system

DΛµ̂
ĩ

dt̃
Λµ̂ j̃ = ∂j Âi − ∂i Âj ; (70)

hence,
dSĩ
dt̃

= εijk B̂j Sk̃ . (71)

Thus, as before, the dominant effect is that the spin vector precesses with an angular
velocity given by the local gravitomagnetic field. We note that Λµ̂

α̃ differs from δ
µ
α by

terms linear in the perturbation; hence, the gravitomagnetic field in Equation (71) is in
effect the field measured by the reference observer. The corresponding Stern–Gerlach force,
fµ̂ = −∂µ̂(S · B̂), to lowest order in X̂, Ŷ and Ẑ as measured by the reference observer, is
f0̃ = 0 and

f1̃ = 0 , f2̃ = 1
2 ω2

g(h×S2̃ − h+S3̃) , f3̃ = − 1
2 ω2

g(h+S2̃ + h×S3̃) . (72)

On the other hand, the Mathisson force (24) as measured by the reference observer is given
by F0̃ = 0 and

Fĩ = Hĩ j̃ S j̃ , (73)

where Hĩ j̃ is given to lowest order by Equation (52). This is a consequence of the fact that in

our approximation scheme Λµ̂
α̃ is in effect given by δ

µ
α for the calculation of the measured

components of the curvature tensor. It is then evident that the resulting components of the
Mathisson force for the gravitational wave field under consideration in this section coincide
with those of the Stern–Gerlach force given by Equation (72) in the correspondence limit.
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4. Discussion

The Mathisson–Papapetrou equations for a spinning test particle together with the
Frenkel–Pirani supplementary condition imply that the spin vector of a test pole-dipole
particle is Fermi–Walker transported along its world line [57]. For a spinning test par-
ticle held spatially at rest by a fiducial observer in the Ricci-flat region of an arbitrary
gravitational field within the framework of linearized general relativity, the Fermi–Walker
equation for the spin vector indicates that its measured components undergo a precessional
motion with an angular velocity that is given by the locally measured gravitomagnetic field.
For an intrinsic quantum spin, there is therefore a spin-gravitomagnetic field coupling
Hamiltonian associated with such precessional motion that can be obtained from Heisen-
berg’s equation of motion. The gravitomagnetic field generally depends upon position;
therefore, there is an accompanying Stern–Gerlach force connected with such a spin-gravity
coupling. We show that under appropriate conditions, this Stern–Gerlach force reduces in
the correspondence limit to Mathisson’s classical spin-curvature force.
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