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INTRODUCTION

Many decisions are guided by expectations about their outcomes. For instance, we may decide to
visit a restaurant because we anticipate the food to be outstanding. How these expectations are
represented in the brain, and how they allow us to make adaptive choices are important questions
for understanding the neural basis of behavior.

Work across species has revealed brain areas that signal expected rewards (Haber and Knutson,
2010; Kahnt, 2018). This work typically focuses on neural correlates of the value of choice
options (Padoa-Schioppa, 2011), that is, how desirable an option is. Activity in many brain
areas, including the striatum, ventromedial prefrontal cortex and orbitofrontal cortex (OFC), is
correlated with expected value. However, expected outcomes are more than their value—they have
a specific identity. Even though we may equally desire pizza funghi and spaghetti arrabiata, they
are not the same, and representing expectations about the identity of outcomes is important for
adaptive decision-making.

In this opinion, I will summarize recent work from my lab that has shown how the lateral
OFC represents expectations about specific outcomes, how these expectations are learned, and
how they can be used for adaptive decision-making. Finally, I will summarize evidence that
disrupting activity in OFC networks that represent specific outcome expectations impairs adaptive
behavior. Together, these findings support the view that the OFC contributes to expectation-guided
decision-making by enabling us to simulate the consequences of our choices.

NEURAL REPRESENTATIONS OF OUTCOME EXPECTATIONS

Recent studies have shown that the OFC represents not only expectations about the value of
future outcomes but also their identity (Howard and Kahnt, 2021). For instance, in one study, we
used food odors as specific rewards and selected one sweet and one savory odor for each subject
that were matched in rated pleasantness (i.e., value) (Howard et al., 2015). We then lowered the
concentration of the food odors to create a set of low-intensity odors, which were rated as less
pleasant than the high-intensity odors. The four food odors were then paired with different visual
stimuli, such that each odor was reliably predicted by a different symbol. Finally, subjects were
presented with these symbols while undergoing functional magnetic resonance imaging (fMRI).
Multi-voxel pattern analysis (Kahnt, 2018) to the fMRI responses evoked by the symbols revealed
that activity patterns in the lateral OFC, anterior cingulate cortex, and hippocampus differentiated
between the two expected food odors, whereas activity patterns in the medial OFC represented the
value of the odors, independent of their identity. These findings are in line with other work from
our lab (Howard and Kahnt, 2017) as well as with studies showing that activity patterns in the lateral
OFC represent values that are tied to specific reward categories, whereas activity in the medial OFC
is independent of reward category (Mcnamee et al., 2013).
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LEARNING OF OUTCOME EXPECTATIONS

Outcome expectations are based on associations between
predictive stimuli and rewards, and these associations need to
be learned and updated through experience. Work in non-
human primates has shown that dopamine neurons in the
midbrain contribute to learning the value of rewards by signaling
reward prediction errors, or the difference between received
and expected rewards (Schultz et al., 1997). We hypothesized
that midbrain activity encodes a similar signal for identity
prediction errors, which may be used for learning reward
identity expectations.

In one experiment, hungry subjects were presented with
visual symbols that predicted one of two preference-matched
food odors (e.g., strawberry or potato chips) in either low
or high intensity (Howard and Kahnt, 2018). As in previous
studies, subjects reported a higher preference for the high-
intensity odors, but there was no preference difference between
the sweet and savory food odors. After a number of trials of
receiving the predicted odor, either the identity (e.g., subjects
expected strawberry but received equally-preferred potato chips)
or the intensity (e.g., subjects expected potato chips in low
intensity but received the preferred high-intensity odor) of the
odor was unexpectedly changed. fMRI activity in the midbrain
showed signatures of value-based prediction errors, increasing
when subjects received the more preferred high-intensity odor
after expecting the less preferred low-intensity odor. However,
activity in the samemidbrain region also increased when subjects
received strawberry after expecting potato chips, in line with the
signaling of value-neutral identity prediction errors. Importantly,
value- and identity-based prediction errors were found in the
same part of the midbrain and were correlated, suggesting that
they may originate from the same neural population. Similar
findings have been observed in a study that recorded activity
from dopamine neurons in rats (Takahashi et al., 2017), as
well as in other human imaging studies (Boorman et al., 2016;
Schwartenbeck et al., 2016; Suarez et al., 2019).

A question that follows is whether midbrain identity
prediction errors actively shape identity learning in downstream
areas, or whether they merely act as a permissive gating (i.e.,
salience) signal to direct attention and boost learning (Bromberg-
Martin et al., 2010). We addressed this question, reasoning
that if identity prediction errors conveyed salience information
without providing specific information, there should be no
difference between the midbrain response to reward B when A
was predicted and themidbrain response to reward Awhen Bwas
predicted. In contrast, if identity prediction errors actively shape
learning in downstream targets, they should contain specific
information such that midbrain responses differ between these
two cases. In line with the latter idea, we found that midbrain
fMRI patterns in humans and dopamine ensemble responses in
rats contain information about the specific identity of the error
(Stalnaker et al., 2019), suggesting they could directly update
identity expectations in downstream areas, such as OFC.

Indeed, we found that the magnitude of identity prediction
error response in the midbrain was correlated with how much
identity expectations in the lateral OFC changed after an

identity error (Howard and Kahnt, 2018). This suggests that
identity expectations in the lateral OFC are updated through
a mechanism that involves identity prediction errors in the
dopaminergic midbrain.

USING EXPECTATIONS FOR INFERENCE

In many cases, we can learn the expected value of choice options
through direct experience. For instance, we can learn the value of
an item on a restaurant menu by ordering it. However, for many
other decisions in life, we simply have not had the opportunity
to directly learn values in this way. This especially applies to
decisions that are less frequently or only indirectly experienced,
like deciding to try out a new restaurant or whether to visit a
new country. Also, the values we have learned from previous
decisions may have changed since we last made that choice,
and using these old values would lead to maladaptive decisions.
In these situations, value expectations need to be computed by
mentally simulating or inferring the value of the option based
on incomplete information. Specific outcome expectations allow
us to do this because they are part of a model of the relevant
environment which we can use to simulate the consequences of
our actions.

Such simulations can be studied in the devaluation task. In
a typical experiment, subjects first learn to associate different
sensory cues with different foods, e.g., M&Ms and peanuts
(Rudebeck et al., 2013; Murray et al., 2015; Reber et al., 2017).
After one of the rewards is devalued by feeding the food to satiety,
subjects can make choices between the sensory cues. To access
the current value of the choice option, subjects must simulate
what outcome they will receive by making a particular choice and
infer its current value. This allows them to avoid selecting the
cue that predicts the devalued outcome. In contrast, if they use
the previously learned value, they will make choices that result in
both the valued and the devalued outcome.

We have used transcranial magnetic stimulation (TMS) to test
whether outcome identity expectations represented in the lateral
OFC are necessary for adaptive responding in the devaluation
task (Howard et al., 2020). Hungry participants first learned
associations between visual symbols and sweet or savory food
odors and were then allowed to make choices between these
symbols. Stimulation coordinates in the lateral PFC were selected
for each participant based on resting-state fMRI connectivity
with lateral OFC. After a session of continuous theta burst
stimulation (cTBS), which has inhibitory after-effects lasting for
50–60min (Huang et al., 2005), or sham stimulation, subjects
ate a meal that was matched to either the sweet or the savory
food odor. After this devaluation procedure, subjects could
again make choices between the cues. Targeting the lateral OFC
with cTBS had profound effects on subjects’ choices after the
meal. Whereas, subjects in the sham group adaptively stopped
selecting symbols that predicted the devalued odor, subjects
in the cTBS group continued to select these stimuli. This
shows that OFC activity is required for using specific outcome
expectations for making inferences about the current value of
choice options.
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A different type of inference can be probed in the sensory
preconditioning task (Brogden, 1939; Hoffeld et al., 1960). In this
task, subjects first learn associations between sensory stimuli A
and B, and C and D (A → B, C → D). Then, the second cue of
each pair (B and D) is paired with either a reward or no reward
(B → reward, D → no reward). Finally, responses to all stimuli
(A, B, C, and D) are probed. Humans and other animals show
stronger responding to stimulus A compared to stimulus C in
this final test (Sadacca et al., 2016; Sharpe et al., 2017; Wang et al.,
2020b). This pattern of responding is compatible with the idea
that subjects mentally step through the associations A → B and
B→ reward to infer that A→ reward.

Activity in the OFC correlates with learning of the stimulus-
stimulus associations during the initial learning phase (Sadacca
et al., 2018; Wang et al., 2020b), suggesting that the OFC
represents the associative structure of the task. In other words,
stimulus-stimulus associations appear to be represented in the
same way as associations between a sensory stimulus and a food
reward. Moreover, OFC is critical for using these associations to
perform mental simulations. Pharmacological inactivation of the
lateral OFC in rats (Jones et al., 2012) as well as cTBS targeting
the lateral OFC network in humans before the final phase of
the sensory preconditioning task impairs responding to cue A,
without affecting responding to cue B (for which subjects had
directly learned the stimulus-outcome associations) (Wang et al.,
2020a). Thus, just like neural representations of specific outcome
expectations, representations of stimulus-stimulus associations
in the lateral OFC network are critical for making mental
simulations required for adaptive decision-making.

DISCUSSION

The work described above outlines the neural mechanisms
underlying expectation-guided decision-making. In brief, the
OFC represents expectations about specific outcomes, and these
expectations are learned through an error-based mechanism
that involves the dopaminergic midbrain. The same networks
that represent outcome expectations also represent expectations
about future events, even if they do not possess any value. Of note,
while we often make decisions between options with outcomes
that belong to very different categories, our experiments used

outcomes from the same reward category (i.e., food). This
can be considered a stronger test of the outcome-specific
coding hypothesis, because differences in neural responses to
different reward categories may not only reflect outcome-specific
coding but also different preparatory or consummatory reward
responses. Thus, results from within category experiments are
likely to generalize to across category settings. Indeed, previous
work on neural representations of different reward categories
has revealed comparable findings (Levy and Glimcher, 2011;
Mcnamee et al., 2013; Gross et al., 2014).

Neural representations of specific outcomes enable us to
perform mental simulations that are required for adaptive
behavior in novel situations or when the value of an outcome
has changed since we last made that decision. In other words,
these representations allow us to flexibly assign value or meaning
to expected outcomes in order to guide our decisions. Together,
the findings discussed here are compatible with the view that the
OFC network contributes to decision-making by representing a
model of the environment, which enables us to make flexible
inferences about the outcomes of our decisions.
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