
sensors

Article

A Comparative Study of Anomaly Detection
Techniques for Smart City Wireless Sensor Networks

Victor Garcia-Font *, Carles Garrigues and Helena Rifà-Pous

Internet Interdisciplinary Institute (IN3), IT, Multimedia and Telecommunications Department,
Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
* Correspondence: vgarciafo@uoc.edu; Tel.: +34-93-326-3726; Fax: +34-93-356-8822

Academic Editor: Rongxing Lu
Received: 15 April 2016; Accepted: 3 June 2016; Published: 13 June 2016

Abstract: In many countries around the world, smart cities are becoming a reality. These cities
contribute to improving citizens’ quality of life by providing services that are normally based on
data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things.
Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs
and to provide additional services. However, the information received at smart city data centers is
not always accurate, because WSNs are sometimes prone to error and are exposed to physical and
computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs
and implement typical attacks. Then, we compare frequently used anomaly detection techniques
to disclose these attacks. We evaluate the algorithms under different requirements on the available
network status information. As a result of this study, we conclude that one-class Support Vector
Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than
the rates achieved with the other compared techniques in a scenario with a maximum false positive
rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.

Keywords: anomaly detection; information security; outlier detection; smart cities; support vector
machines; wireless sensor networks

1. Introduction

In the last few years, cities around the world are building new smart city systems, which rely on
advanced communication protocols and the latest technology to improve their operational structure
and to acquire a data-driven management perspective. In order to gather urban information, smart
cities use elements of the Internet of Things (IoT), such as mobile phones, RFID cards and wireless
sensor networks (WSNs). The data collected by these devices is used in a plethora of applications.
For example, traffic monitoring sensors are used to control traffic lights [1] and wireless meters are
installed in pipes to monitor leaks and ruptures [2]. Moreover, this data gives city managers and other
stakeholders the opportunity to plan future facilities using a better picture of citizens’ behavior and
the real use of the current infrastructures.

The clear benefits provided by smart city technology have stimulated many cities to devote a
considerable part of their innovation efforts to develop their concept of a smart city. This has caused a
significant and fast increase in the number of WSN deployments on the streets, which has resulted in
the emergence of new applications with many different technologies, solutions, requirements, etc.

However, this accelerated deployment of smart city technology has often resulted in leaving
security aside as a secondary issue. For instance, some studies [3,4] have proven that traffic
control systems can be manipulated in real deployments in the United States due to the lack of
cryptographic and authentication systems in the sensors and, in general, because of a systematic lack
of security consciousness.

Sensors 2016, 16, 868; doi:10.3390/s16060868 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 868 2 of 20

Moreover, in order to rapidly deploy WSNs and smart city technology, cities have taken advantage
of services procured from external providers. Nevertheless, outsourcing public services has also raised
security-related concerns [5].

The impact of these outsourcing policies on security can mainly be attributed to two key
factors: the loss of control over network devices and the lack of visibility over the potential security
problems affecting these devices. Indeed, public administration usually outsources not only the
implementation and deployment of their WSNs, but also the administration thereof. In this way,
security countermeasures and system logs are exclusively operated by external providers. Although
service providers are contractually obliged to ensure certain levels of security, in practice, smart city
administrators cannot determine the extent to which the received data is precise and accurate. In
fact, the Royal Academy of Engineering has identified data quality as one of the six major barriers to
effectively optimize smart infrastructures [6].

In order to mitigate the control and visibility problems affecting the data quality of the smart city
data collection systems, in this article we propose the use of anomaly detection algorithms. These
algorithms use the network status information received at the city data centers to determine if the
behavior of the networks is reliable.

However, in the smart city context, performing anomaly analysis using network status information
is a challenging problem, because most WSNs provide different amounts of status information.
Most smart cities combine multiple deployments of WSNs, each one with different objectives and
requirements, and usually installed by different external providers. This results in many different WSN
technologies being used at the same time in different parts of the city, and each providing different
amounts of status information to local council administrators.

Taking all these issues into consideration, we present a comparative study of different anomaly
detection algorithms and we analyze their behavior, taking into account the minimum quantity of
network status information that they require to accomplish their goal. This will undoubtedly help
administrations to implement efficient anomaly detection techniques and to determine the minimum
status information that should be required from external providers in future WSN deployments.

In order to compare the detection capabilities of the different algorithms, we have simulated
WSNs based on real data gathered in actual WSN deployments in the smart city of Barcelona, and we
have also generated anomalies simulating well-known attacks against WSNs. To assess the different
algorithms, we have computed the most widespread metrics in these types of comparative studies. As
far as we know, this is the first comparative study in this field from the smart city perspective.

The rest of this paper is structured as follows: Section 2 contains related work and Section 3
contains background. The simulation and the experimental procedure are explained in Section 4.
Section 5 contains the results of this study. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we first review the types of attacks in WSNs and the countermeasures proposed in
the literature (Section 2.1). Second, we introduce anomaly detection analysis (Section 2.2).

2.1. Attacks in WSNs

The limited computational and energetic constraints of nodes are an obstacle to applying
conventional computer network security countermeasures to WSNs. Furthermore, in these networks,
nodes become more vulnerable when they are placed in unprotected environments like streets. In these
circumstances, attackers can easily capture nodes, access confidential information in their memory
(e.g., cryptographic keys) and reprogram their behavior. It is also common that attackers benefit
from the wireless nature of the communications to intercept the messages or to obstruct frequency
bands to impede the proper reception of some packets. Surveys such as [7,8] summarize the most
popular attacks on WSNs against authenticity, confidentiality, integrity and availability, and also
present some solutions.

Sensors 2016, 16, 868 3 of 20

In order to counter the effects of these attacks and increase the reliability of these networks,
numerous studies have proposed the use of fault tolerance mechanisms. These mechanisms are
intended to add multipath routing capabilities to the networks, thus ensuring connectivity between
nodes even when a link or node fails. A good example of such mechanisms is [9], where the authors
propose two algorithms to repair broken paths in mesh topologies recomputing only small parts of
the topological structure where the broken links are located. This efficient route recovery mechanism
consumes less energy and uses a smaller amount of control packets than other similar algorithms. On
the other hand, in [10], the authors propose a secure mechanism based on path redundancy to offer a
fault and intrusion tolerant routing scheme, which outperforms similar mechanisms in mean time to
failure, energy consumption computation overhead and resiliency.

Even though these mechanisms are highly recommendable for WSN providers to increase their
network reliability levels, they are not applicable on a global scale in a smart city. As previously
mentioned, most smart cities combine multiple WSN technologies and configurations, some of
which are incompatible with the definition of alternative paths (e.g., in networks with a star or
a tree topology).

On the other hand, a large number of studies have focused on preventing attacks on WSNs
against authenticity, confidentiality, integrity and availability. Surveys such as [7,8] summarize the
most popular attacks and also present some solutions.

Problems related to authentication and confidentiality are normally tackled with cryptographic
solutions. The first WSN nodes were designed with minimum processing power, which makes legacy
systems based on these networks incapable of running any cryptographic algorithm. However, in
the last few years, manufacturers have developed more powerful nodes and new protocols have
been designed to take into account these cryptographic requirements. For example, the most popular
communication protocols for WSN, e.g., 802.15.4 and ZigBee, include different security modes based
on symmetric cryptography [11]. Asymmetric cryptography has also been proposed in [12] through
an SSL protocol for WSNs.

Cryptography is also a mechanism to avoid integrity attacks. Checksums and Message
Authentication Codes (MACs) are the usual countermeasures to impede unnoticed modifications of
packets in transit. The destination node of an altered packet discards it if the received packet and the
code generated by the message integrity mechanism do not match. However, integrity attacks are
hardly noticed by city administrators since most WSNs do not send information to the base station
indicating the reasons why packets were dropped. Thereby, the traces of this type of attack can be
assimilated to the traces of attacks against data availability.

Attacks against availability normally focus on breaking communication in certain areas and
depleting node batteries. Representative attacks against this principle are selective forwarding and
jamming. In a selective forwarding attack, the attackers capture some nodes of the network with
routing activities. Then, the captured routers forward only certain packets from other nodes. Selective
forwarding can affect several services if it is performed in a gateway or another node shared by multiple
WSNs. In a jamming attack, attackers send a high power signal to disrupt wireless transmissions from
legitimate nodes. This type of attack not only affects the target network, but also other networks using
the same frequency band.

Although the literature proposes solutions to avoid attacks against data availability, they are
not always effective or applicable. For instance, frequency hopping spread spectrum [13] is used
to avoid certain types of jamming attacks by constantly changing the transmission channel within
the frequency band of the protocol. However, jammer devices currently available on the market can
jam all the channels used by several protocols at the same time. Attacks against availability are very
hazardous because they slow down networks, drop a large amount of packets, deplete node batteries,
can compromise several city services and there are no effective countermeasures against them. The
best mitigation approach against these type of attacks is a good detection strategy. Therefore, this
article focuses on discovering data availability attacks.

Sensors 2016, 16, 868 4 of 20

2.2. Anomaly Detection

Within the research field of intrusion detection, two types of techniques can be distinguished:
misuse detection and anomaly detection. Whereas the former seeks traces left by the attackers in the
security data (e.g., system logs), the latter analyzes the normal behavior of the system and points out
unusual changes.

Intrusion detection techniques looking for misuses rely on an extensive database of attack
signatures. An attack signature is a sequence of actions that are normally recorded in a security
log. The signature can be used to identify an attacker’s attempt to exploit a known network, operating
system or application vulnerability. Alarms are raised when the detection system discovers a sequence
of events that matches any of the signatures [14]. The main advantage of this type of detection is the
low rate of false positives. In the context of WSNs in smart cities, signature-based detection is useful
to identify attacks targeting networks with regular behavior (e.g., environmental sensors sending
readings every day at the same hour) or highly reliable services. Simple rules can be created in these
two cases to trigger alerts when the expected readings are not received or when a certain number of
packets are lost. Nonetheless, many smart city services do not follow a regular pattern and WSN is an
unreliable technology, where some packets are occasionally not delivered.

Alternatively, intrusion detection techniques looking for anomalies are able to identify changes
in the system that do not match the normal behavior. Anomaly detection has been widely used in
many application domains (see a survey on anomaly detection techniques in [15]). The most common
techniques fall into the scope of statistics, clustering and machine learning. Depending on the types of
samples necessary to process the data, these techniques are divided into supervised, semi-supervised
or unsupervised.

Supervised techniques require a training dataset with labels indicating the category of each
sample (e.g., ‘no attack’, ‘jamming’ or ‘selective forwarding’). Then, a model is generated to classify
new unlabeled samples into one of the defined categories. Semi-supervised techniques require a
training dataset with samples of a single category in order to create a model that classifies new samples
as belonging to that category or not. Finally, unsupervised techniques do not require labeled training
data and are capable of dividing a dataset into various subsets without a previously learnt model.

Depending on the characteristics of the specific scenario and on the requirements of the application,
some algorithms perform better than others. For instance, the authors of [16] compare several
unsupervised approaches based on local outlier factor, near neighbors, Mahalanobis distance and
Support Vector Machines to detect intrusions in conventional computer networks. Their experiments
show that the local outlier factor approach is the most adequate in this context.

Regarding anomaly detection in Intrusion Detection Systems (IDS) for WSNs, Xie et al. [17]
surveys the most popular techniques. Generally, the nodes that contain IDS components gather and/or
analyze network status data concerning anomalous operation activities of their neighbors. When this
occurs, the nodes trigger an alarm at the base station. Anomaly detection techniques have been applied
in multiple applications related to WSNs.

As an example, the authors of [18] use geostatistics and time-series analysis to detect outliers in
readings of meteorological sensors. The authors select temporal and spatial real-data-based outlier
detection (TSOD) as the most appropriate technique in this context. In their experiments, the authors
claim that TSOD has a high performance and it is able to identify all the outliers with a low false
positive rate around 3%. However, these techniques are only applicable to certain scenarios in which
there exists a spatio-temporal correlation and the WSN is dense enough.

Other studies focus on anomaly detection applied to single sensors. As an example, Su et al. [19]
proposes a two-phased algorithm. In the first phase, the algorithm seeks temporal anomalies with
one-class Support Vector Machines (OC-SVM) and, in the second phase, the algorithm reduces false
positives and classifies the anomalies with a supervised K-Nearest Neighbor approach (KNN). For the
first phase, the authors compare OC-SVM with other techniques (i.e., logistic regression, random
forest, linear SVC, complexity invariant distance based KNN and Euclidean distance based KNN).

Sensors 2016, 16, 868 5 of 20

The authors conclude that OC-SVM outperforms the other techniques achieving a 96% detection rate
in their experiments.

In [20] Mahalanobis distance is used to detect insider attacks with high detection accuracy and
robustness (i.e., the false positive rate stays low even though the number of outlying sensors increases).
Some authors claim that anomaly detection techniques based on the distance to the neighbors should
not be used in WSN due to high computational complexity [21]. Nevertheless, from the point of view
of smart city administrators, these techniques can be considered because anomaly analysis can be
computed in data centers using powerful computers.

In [22], the authors use one-class quarter-sphere Support Vector Machines (QSSVM) in two
new anomaly detection algorithms: LADS and LADQS. These algorithms are suitable to run in
constrained nodes due to their low computational complexity. Moreover, their experiments show a
high performance, e.g., 95% true positive rate and a false positive rate below 10%.

The authors of [23] use an improved Autoregressive Integrated Moving Average (ARIMA) model
to predict anomalies in WSN through network traffic analysis in the nodes. The experiments in the
article show an accuracy higher than 96% and a false positive rate lower than 3%.

Although some of the previously mentioned anomaly detection techniques and IDS perform well
in detecting attacks, they are not a generalizable solution in an heterogeneous context such as the smart
city. This is due to the fact that, on the one hand, some techniques excessively depend on the context
of the WSN. On the other hand, IDS are normally designed ad-hoc to be embedded in some or all the
nodes of specific WSNs. Therefore, IDS can only be considered as a first protection mechanism to be
implemented by WSN providers for their specific networks. From the centralized perspective of the
smart city administration, the techniques must not require access to the WSN nodes nor knowledge of
the specific technology used by each external provider.

3. Background

The following sections describe the anomaly detection techniques compared in this article. In
the smart city context, it is not possible to assume that data from all the possible attack categories is
available in the training dataset (i.e., some attacks are unknown until new vulnerabilities are disclosed).
Accordingly, supervised techniques are not suitable in this context. Regarding semi-supervised and
unsupervised techniques, it is also necessary not to base the attack detection on the previous knowledge
of the problem. For instance, some statistical techniques assume specific distributions of the data.
However, this is unknown in many smart city services and sometimes the data behavior is variable
depending on the time of day, the season of the year, the weather conditions, etc.

Moreover, smart city services usually provide multivariate data, where several features define
each sample. These features are the basic information used by the detection algorithms to identify
outliers within a dataset. In this context, samples with attacks have to be marked as outliers. Therefore,
in this article, several multivariate semi-supervised and unsupervised techniques (that do not require
previous knowledge about the scenario) are compared in order to identify attack samples. The
compared techniques are the most frequently used methods in the literature for this purpose, and they
are based on Mahalanobis distance, local outlier factor, hierarchical clustering and OC-SVM.

Apart from these techniques, we have considered other more recent methods from the area of
machine learning. For example, algorithms based on random forests [24] have been used successfully in
many scenarios of different domains, but their popularity nowadays has not reached the levels of SVM.
Another family of algorithms that is certainly worth considering is deep learning. In this regard, recent
advances show that this is a very promising field. As an example, algorithms based on deep belief
networks [25] convolutional neural networks [26] or recursive neural networks [27] have been used
successfully in several scenarios to improve the performance obtained with previous techniques. In
the area of anomaly detection, additionally, the authors of [28] have used deep learning in combination
with other techniques to identify outliers, and they have obtained promising detection results.

Sensors 2016, 16, 868 6 of 20

However, the use of deep learning for anomaly detection is a research field that is still too unripe.
Deep learning techniques, in general, require costly training processes, which is something easily
attainable in fields such as computer vision, speech recognition, etc. Nevertheless, in the case of smart
city WSNs, obtaining large training datasets is much more complex due to their dynamic nature. This
dynamic behaviour involves retraining the models generated by the machine learning algorithms
frequently, thus making it difficult to work with huge training datasets and applying the deep learning
techniques successfully.

3.1. Mahalanobis Distance

Mahalanobis distance measures the number of standard deviations that an observation is from
the mean of a distribution. This measure can be used to detect outliers in multivariate data, because
outlier observations do not have normal values in one or more dimensions. Hodge et al. [29] surveys
outlier detection methodologies and compares Mahalanobis distances with other proximity-based
outlier detection techniques.

3.2. Local Outlier Factor

Local Outlier Factor (LOF) is a degree measuring the isolation of a point in a vector space with
respect to its neighbors [30]. In order to compute this degree of isolation, LOF is based on the concepts
of reachability distance and local reachability density (lrd). The reachability distance between two
points p and q is the maximum value between the distance between p and q and the farthest distance
between q and its k nearest neighbors. The lrd for the point p is the inverse of the average reachability
distance between p and its k neighbors. Finally, the LOF computes the average ratio of the lrd of p
with the lrd of its k neighbors. LOF values smaller than 1 indicate high densities, LOF values greater
than 1 indicate low densities and LOF values close to 1 indicate average density spaces. Outliers are
considered to be in low density regions.

In [30], the authors of LOF suggest a lower and an upper bound for the k value. The lower
bound for k can be considered as the minimum amount of nearby points that can mark out a more
isolated nearby point as an outlier. It is considered good practice to select a k higher than 10 to remove
unwanted statistical fluctuations. On the other hand, the upper bound for k indicates the maximum
number of nearby points that can potentially be considered outliers. A group of k− 1 or less nearby
points require other points in the vector space to have k points to compute the LOF. This implies that
the LOF values for the points in the group increases and becomes similar to the LOF of the isolated
points. Therefore, either some isolated points are considered normal or the points in the group are
considered outliers. In their experiments, the authors of LOF indicate that the algorithm performs well
selecting values of k between 10 and 20.

3.3. Hierarchical Clustering

Hierarchical clustering is a type of analysis that aims at partitioning a dataset in groups of data
(i.e., clusters) according to a similarity measure and creating a tree-based structure that eases the
anomaly analysis. This clustering analysis is performed using two types of approaches: top-down or
bottom-up [31]. In this work we focus on agglomerative hierarchical clustering, which is a bottom-up
approach, where initially each sample of the dataset falls in a different cluster and, in each step of the
algorithm, two clusters are selected according to a similarity measure and combined in a new cluster.
This process ends when there is only one cluster that includes all the samples. A common similarity
measure can be computed using the Euclidean distance in Ward’s method [32]. With this method,
two clusters with the minimum average distance from any sample in one cluster to any sample in the
other cluster are merged in each step.

Agglomerative hierarchical clustering can be used to compute outlier ranking factors for the
samples in the dataset. Outliers are theoretically more dissimilar to other observations and they should
be more resistant to be merged in a new cluster. Thereby, various methods have been proposed to

Sensors 2016, 16, 868 7 of 20

obtain the outlier factors with this type of clustering, such as linear, sigmoid or sizeDiff [33]. In this work
we use sizeDiff.

3.4. Support Vector Machines

Classification techniques based on Support Vector Machines (SVM) have proven to be effective
in several contexts related to intrusion detection [34,35]. Basically, classification techniques based on
machine learning require two steps. First, a dataset is used to train a learning model. Then, the trained
model is used to classify new data samples. Several features define each sample of the datasets. The
SVM classification process represents the training dataset in a n-dimensional vector space, n being
the number of features of the training data. Then, it defines a hyperplane (i.e., a n− 1 dimensional
plane) that separates (with a maximum margin) the samples from the different classes. The Support
Vectors (SV) are the subset of training samples that are near the hyperplane and that define it. Finally,
the hyperplane acts as a frontier to classify other samples.

In this article we use one-class Support Vector Machines (OC-SVM), which are a special case of
semi-supervised SVMs that do not require attack labeled data. OC-SVMs build a frontier to classify
new samples as normal or outlier. In SVM, different types of kernel functions are available to build the
most adequate hyperplane for each application. In this work, we use a Radial Basis Function (RBF)
kernel, which can learn complex regions [15].

4. Simulation and Anomaly Detection Analysis

In this section, we first mention some challenges in testing security solutions for smart cities
(Section 4.1). Second, we explain how we overcome these challenges in this work and we briefly
describe the procedure that we use to evaluate different anomaly detection algorithms (Section 4.2).
The other sections contain information about the different steps in the analysis: the data collection
(Section 4.3), the simulation (Section 4.4), the feature selection (Section 4.5) and the anomaly analysis
(Section 4.6).

4.1. Smart City Security Simulation Challenges

Smart cities can be considered as very heterogeneous scenarios, where many technologies,
applications and different suppliers coexist. Thus, the implementation of software simulators that
realistically reflect the complexity of the smart city WSNs is very complicated. In recent years,
simulators have been used to test new protocols and to assess the security techniques that protect
simple WSNs in very specific contexts [36,37]. Among the most popular WSN simulators, we can find:
OMNET++ [38], Castalia [39], Cooja [40] and NS-2 [41].

From a technological perspective, replicating WSN configurations from different providers to
simulate several smart city scenarios is a very arduous task. This is motivated by the extensive
variety of existing hardware on the market and the wide availability of communications protocols
for WSNs. Furthermore, although some of the previously mentioned simulators implement realistic
signal propagation algorithms, none does so with a model that can take into account complex urban
components, such as walls, traffic, etc. Moreover, simulators also lack realistic event generation engines
to reproduce the dynamics of the citizens and the other elements interacting with the urban WSN.
For example, Castalia offers multiple distribution functions to simulate the events sensed by the
sensors. Nonetheless, selecting the appropriate distribution and modeling the appropriate behavior
for the different applications is complex and can lead to unrealistic conclusions. Recently, the authors
of CupCarbon [42] proposed a simulator for an easy integration of WSNs and elements of the IoT in
smart cities. However, this simulator, which is intended as a supplement to other simulators, is still
immature and it does not implement all the layers of the communication stack.

Performing simulations to test security components poses additional difficulties. On the one
hand, reproducing computer attacks requires a high technological expertise and a high investment in

Sensors 2016, 16, 868 8 of 20

manpower. On the other hand, many attacks exploit unknown vulnerabilities and, therefore, they are
not a priory replicable in controlled simulated environments.

Moreover, the testing of security issues in controlled contexts using real hardware is complicated
in a smart city. For example, many WSN applications in the cities cannot be easily deployed at a
similar scale in a realistic testbed because they would require an infrastructure as big and dynamic as
a city. In addition, attack tests in operational WSN are generally incompatible with some application
requirements (e.g., 24/7 availability) and can be detrimental to third parties (e.g., jamming attacks to
ZigBee can also provoke interferences to WiFi users).

Therefore, it is necessary to combine the large amount of data that is already gathered by smart city
providers on the streets with the use of existing simulators to evaluate the consequences of computer
attacks and to determine the most appropriate intrusion detection techniques and the appropriate
security procedures to resolve these issues.

4.2. Experimental Procedure

In order to overcome the barriers discussed in the previous section, we use real data from deployed
services in Barcelona to feed a WSN simulator that will generate data following realistic patterns.
Running experiments in the simulator provides the flexibility to test different communication protocols
and network configurations and it is also a safe way to execute computer attacks. This section presents
how we use this mechanism to collect a smart city WSN dataset with and without attacks, and how
we compare four anomaly detection techniques to detect intrusions based on Mahalanobis distance,
local outlier factor, hierarchical clustering and one-class Support Vector Machines. We also compare
the performance of these techniques under different amounts of available network status information,
taking into account three different levels of permitted false positive rates.

The pipeline in Figure 1 shows a general picture of the complete process of the analysis. This
process consists of the following steps:

1. Data collection: we gather raw sound data over a period of 14 days from the streets of Barcelona
(Section 4.3).

2. Simulation (Section 4.4):

(a) We use the raw data in a simulator to generate WSN data with comprehensive information
about all the communication layers. The simulation is executed multiple times (one time
without including any attack and one time for each of the attacks) resulting in a dataset
containing samples with and without attacks.

(b) The simulation data is aggregated in time intervals.

3. Feature selection: we filter the features of the dataset according to those available at the simulated
WSN (Section 4.5). As previously stated, the main goal of this article includes minimizing the
amount of network status information required to detect anomalies. Thus, we select the features
taking into account the simulated availability of network status information.

4. Anomaly analysis (Section 4.6). We select one of the available detection techniques and we
proceed with the following sub-steps:

(a) Training phase: we train a model or we setup the parameters required by the detection
technique.

(b) Validation/Test phase: we test the performance of the technique to distinguish between
the samples that were generated with and without attacks. At this stage, we compute the
metrics to compare the different techniques.

We repeat steps three and four with three different feature sets for each of the four detection
techniques that we compare in this study. We discuss the results taking into account the different
situations in Section 5.

Sensors 2016, 16, 868 9 of 20

Figure 1. Pipeline of the simulation and the experimental process.

4.3. Data Collection

The first step in this study is the collection of real urban data. The scenario for this simulation
is based on data gathered during 14 days from sound meters deployed in the city of Barcelona. The
sound meters, which are installed on the streets by a service provider, send their readings to the smart
city central servers. The layout of the sensor nodes is represented in Figure 2. The outcome of this first
step is a dataset with raw sound data.

Figure 2. Schema and topology of the simulated WSN. The layout of the sensor nodes (i.e., nodes 1-10)
reproduces the layout of real sound meters deployed in Barcelona over a 140 m × 140 m terrain. The
topology and the base station (i.e., node 0) location are setup ad-hoc for the simulation.

As Figure 2 shows, the WSN contains a reduced number of sensors belonging to a single provider,
even though networks gathering data from a city service can be much more complex, involving many
more nodes and several providers. In case of anomalies, however, the network should be divided in
smaller sections, because this allows administrators to reduce the search for the specific compromised

Sensors 2016, 16, 868 10 of 20

equipment to a smaller area with fewer nodes and less providers. It falls beyond the scope of this
article and remains as future work to find an optimal procedure to divide large WSNs into smaller
ones in a scalable manner.

4.4. Simulation

The raw data from the sound readings obtained in the previous step is used in the second step
to build a realistic simulated scenario of a smart city service with Castalia 3.3 simulator [39]. This
simulator can aggregate information from all the layers involved in the communication between
the sensors and the base station using different configurations in a WSN. In the studied real WSN
implementations, most of this network status information is currently not disclosed by service
providers and, therefore, it is unavailable at the smart city data centers. Thus, in this paper we
are analyzing the effects of including this information to detect attacks.

In order to use the real sound readings in the simulations, we implemented an application
module [43] in Castalia that replays the exact sending behavior of the real sound devices. In this way,
the simulated sensors acquire the same sending patterns as the real sensors deployed on the streets.

The simulation also takes into account that WSNs are unreliable networks in which packets can be
lost even in non-attack circumstances. To mimic this behavior, Castalia’s physical and communication
layers lose some packets. This circumstance is paramount in order to evaluate the detection techniques
in a realistic scenario, where communications are not always perfect. Moreover, we also include two
nodes from which no messages are received because of failed communication and inactivity. The
simulated WSN uses the CC2420 [44] communication module, configured in TMAC [45] and follows a
multihop tree topology as it can be seen in Figure 2.

In step 2, the simulation runs to generate data with and without attacks. The implemented attacks
exemplify two easy ways to attack WSNs, which can also be disruptive for third party WSNs in smart
cities. Moreover, the attacks cover different levels of affectation in terms of the number of compromised
nodes in the network and in terms of disrupted packets. The following are the implemented attacks:

• Constant jamming. Attack at the physical and link layers, where the attackers send a high power
signal to a legitimate node in order to avoid the correct reception of legitimate packets from other
nodes. Besides disrupting application packets, this attack has also an effect on MAC protocols,
because the attacker also jams control packets and occupies the channel for a long time, which
disrupts the coordination among nodes and impedes other nodes from starting their transmission.
We implemented this attack in three situations: near node 4 (affecting 4 nodes in the lower area of
the network), near node 9 (affecting 3 nodes in the higher area of the network) and near the base
station (affecting all the nodes in the network).

• Selective forwarding. Attack at the network layer, where the attackers have captured the base
station and they drop a percentage of random packets before re-transmitting them to the smart
city control center. We implemented this attack in four levels: a selective forwarding dropping
30% of the packets, 50%, 70% and 90%.

Besides simulating the WSN events in step 2 Castalia aggregates the outcome in time intervals.
This outcome is mainly a set of variables containing network status information about the
communication protocol for each node. For instance, the number of radio packets received with
interferences during a certain period of time.

The size of the time window is a paramount parameter in the detection process of attacks
concerning data availability. On the one hand, short attacks can get obscured among a plethora of data
in large time windows. On the other hand, datasets in small time windows sometimes do not contain
enough variability to be able to distinguish between normal and attack situations.

Having a too large or too small time window also depends on the type of monitored service.
For instance, during the 14 days of the sound data gathering process, we measured in Barcelona an
average of 3085 messages per hour per sensor from a parking service and 100,057 messages per hour

Sensors 2016, 16, 868 11 of 20

per sensor from an electrical meter service. This implies that an attack against the electrical meters
during a few minutes drops several messages and becomes easily visible, whereas the same attack
against the parking sensors does not always leave traces in the data since a lack of messages from the
parking sensors can be normal for several minutes. In the simulation for this article, we divide the
14 day sound data in 30 min time windows. As a result, the dataset contains 5.344 samples of eight
classes (i.e., one class for the 668 samples with no attack and one class for each of the seven attacks).
Each sample contains information such as the number of received application packets and the battery
used during the interval.

4.5. Feature Selection

As previously stated, the main goal of this paper is to evaluate several semi-supervised and
unsupervised techniques in different situations considering different degrees of network status
information availability. To achieve this goal, this status information is converted into features in a
vector space, which is then explored by the anomaly detection algorithms to identify the attacks. The
feature vectors extracted from the WSN data determine the set of variables included in the learning
models of these algorithms. These variables are the basic knowledge to decide if each sample in the
dataset contains anomalies.

In other machine learning applications, a large number of features are gathered and a feature
extraction transformation (e.g., Principal Component Analysis [46]) is executed prior to classification in
order to reduce the dimensionality of the vector space. However, in our context, the necessary features
have to be chosen from the inception of the process. This is due to the fact that adding extra features
requires computing, sending and forwarding more information from the WSN nodes, and so, would
have a negative impact on the network performance and the sensors battery life. Therefore, in this
article, we compare the performance of the detection algorithms, taking into account three different
situations related with the available features:

• Feature Vector 1 (FV1). This includes data aggregated from the minimum information that any
WSN always sends (i.e., the sensor readings and the timestamp). The aggregated features are: the
number of application packets received at the central server and the hour of the day.

• Feature Vector 2 (FV2). This includes FV1 fields plus the data extracted and aggregated from
supplementary fields included in the packets (i.e., the sequence number of the application packet
and the battery level). The aggregated features are: the ones in FV1 and also the number of lost
application packets and the consumed energy.

• Feature Vector 3 (FV3). This includes FV2 fields plus data aggregated from the principal
components of the WSN communication protocol in the physical, link, network and application
layers. The additional features included in this feature vector per node are: the number of proper
radio transmissions with and without interferences; the number of failed radio transmissions due
to interference, the low sensitivity and incorrect reception state; the number of received MAC
ACK and CTS.

The necessary information to build FV1 and FV2 is already available in some real WSN
implementations in Barcelona, whereas the extra information required to aggregate the data to build
FV3 is currently not available in any implementation. In fact, with FV3, we are evaluating the case
where administrators use all the available features to train and test the models. Even though not all
the features are necessarily relevant to disclose attacks, we are testing the resistance of the algorithms
to increasing the vector dimensionality with non-relevant features.

The outcome of the feature selection step is the dataset from the previous step filtered according
to one of the feature vector descriptions.

Sensors 2016, 16, 868 12 of 20

4.6. Anomaly Analysis

The anomaly analysis [43] step compares four different techniques using R [47]. The first technique
is implemented with the stats [47] package and it is based on Mahalanobis distance. The second
technique computes the LOF score with DMwR [33]. For the third technique, we compute an outlier
score using agglomerative hierarchical clustering analysis according to Ward’s clustering method [32].
This score is obtained with the method sizeDiff through the function outliers.ranking in stats. Finally, we
use the e1071 [48] package for the fourth technique: a one-class classification with OC-SVM.

The anomaly analysis comprises three basic sub-steps for each of the compared techniques: the
training, the validation and the test phases. In order to perform these sub-steps, first of all, our study
takes the filtered dataset obtained in the feature selection step and divides it as shown in Figure 3. As
this figure shows, the attack samples are not included in the training dataset (a), because the detection
techniques that we use in this article are semi-supervised or unsupervised. Regarding the validation
and test datasets, each of them is divided into 8 additional datasets ((b) to (i) in the figure), resulting
in a total of 17 datasets (16 + 1 training dataset). As we will describe in the next section, we use
these datasets to run 72 experiments to evaluate the four anomaly detection techniques proposed in
Section 2.2.

Once we have these dataset partitions, basically, we will use the training dataset to tune the
parameters required by the algorithms. We will use the validation dataset internally during the
development of the experiments to estimate the performance of the algorithms. Finally, we will use
the test dataset just once to obtain the results published in this paper. The following sections include
more details about these datasets and the actions taken in the training (Section 4.6.1), validation and
test phases (Section 4.6.2).

Figure 3. Size of the dataset partitions. The validation and test (val/test) datasets are partitioned in the
same manner and contain the same number of samples of each attack type.

4.6.1. Training Phase

The main responsibility of the training phase is to find the best parameters for the algorithms and
to fit the models. We use the training dataset, which contains only samples without attacks, to perform
these two tasks.

Before training the models and selecting the parameters, we first normalize and standardize the
features in all the datasets (i.e., substracting the mean and dividing by the standard deviation for each
feature) and then we identify the features that have a zero variance in the training dataset. These
features are removed from the three datasets (i.e., training, validation and test). Thereby, the features
that do not provide any information for the detection process are eliminated. We use the remaining
features in the training dataset to train the models and to find the best parameters for the algorithms

Sensors 2016, 16, 868 13 of 20

considering three different levels of false positive rate: permissive (false positive rate < 15%), restrictive
(false positive rate < 10%) and very restrictive (false positive rate < 5%). From now on, we will refer
to these levels as the permitted false positive rate (PFPR). We consider that a rate higher than 15%
overwhelms administrators with an excessive number of false alarms.

In order to select the optimum parameters for the OC-SVM, we use grid search [49]. In this
method, a grid with parameter values is exhaustively explored in order to select the values that give
the best performance using the training dataset. OC-SVM requires the set up of two parameters:
ν and γ. We fix the value of ν to the PFPR since the training dataset does not contain any samples with
attacks and the ν value is a higher limit on the fraction of outliers in the training dataset [50]. We use
grid search to find the best value for γ using svm.tune [48] configured in a 10 fold cross-validation
repeated 3 times [51]. This function uses the classification error as a performance measure to decide
the best value for γ.

Before the different detection techniques can be compared, an additional step has to be carried
out, since the OC-SVM technique returns a binary value (which simply indicates if the sample is an
outlier or not) and the LOF, Mahalanobis and hierarchical clustering techniques return an outlier score
(in our context, outliers will be considered as attacks). Thus, the outlier score must be translated into a
decision on whether the sample is considered an outlier or not. In order to do so, for each of these
score-based techniques, we select a threshold score beyond which the sample is considered an outlier.
This threshold score is determined as the threshold where the false positive rate in the training dataset
is equal to the PFPR. The procedure is as follows:

1. The outlier score is computed for each sample in the training dataset using the corresponding
detection algorithm. This results in a list L of scores.

2. Any sample in the training dataset identified as attacked should be considered as a false positive
(FP), since this dataset does not contain any attack. Therefore, the maximum amount of allowed
false positives in the training dataset is defined by the PFPR (i.e., FP ≤ |L| ∗ PFPR).

3. The |L| ∗ PFPR highest score in L is set as the threshold.

Furthermore, LOF also requires the definition of the parameter k. In this article, we have
determined that k = 10 is a good choice following the indications of [30], as we described in Section 3.2.

4.6.2. Validation and Test Phase

The validation and test datasets are used to evaluate the performance of the algorithms in
72 experiments: (1 with all the attacks together + 7 with each attack separately) x 3 feature vector
definitions x 3 PFPR levels. As Figure 3 shows, these datasets contain the same number of samples
and each is divided into several partitions. Dataset (b) contains half of the dataset without attacks
and the other half with attacks, with equal proportion of samples from each of the seven attack types.
This dataset allows us to validate and test the behavior of the detection algorithms in a general way,
taking into account all the attacks. Moreover, we also create validation and test datasets (c) to (i) that
only include samples of a single attack. These datasets allow us to evaluate the performance of the
algorithms for each of the different attacks separately. We balance the number of samples with and
without attack in each of the datasets using sampling with replacement [52].

In the validation and test phases, we use the detection algorithms to decide whether each sample
has to be considered as an attack or not. Then, we count the correct identifications of attacks as true
positives, the incorrect identifications of attacks as false positives, the correct identifications of no
attacks as true negatives and the incorrect identifications of no attacks as false negatives. Then, we
compute the metrics described below. The training and validation phases are iteratively conducted to
explore the most suitable configurations of the algorithms. These configurations are then applied in
the test phase to obtain the results that we show in next section.

The metrics we use in this study evaluate the detection results for the different anomaly detection
techniques, taking into account the cases where the algorithms correctly detect an attack, the cases

Sensors 2016, 16, 868 14 of 20

where the attacks are not detected and also the cases where the algorithms incorrectly point out an
attack that has not occurred. These metrics, which have been widely used to assess IDSs and machine
learning algorithms [16], are the following (see details in Table 1): the true positive rate (also known as
detection rate, sensitivity or recall), which measures the percentage of attacks that have been properly
detected; the false positive rate (also known as the false alarm rate), which indicates the percentage of
normal samples misclassified as attacks; and the f-score, which is used as a general overview of the
performance of the algorithm. This metric takes into account the number of true positives over the
arithmetic average of predicted positives and real positives.

Table 1. Metrics.

True positive rate (tpr)
true positives

true positives + false negatives

False positive rate (fpr)
false positives

false positives + true negatives

F-score
true positives

true positives + (false negatives + false positives)/2

5. Results and Discussion

In this section, we show the most relevant results of the 72 experiments. As we mentioned,
these experiments evaluate the detection algorithms using the different feature vector definitions
for the different PFPR on the test dataset partitions shown in Figure 3. Only the most important
information is included in this section (Figure 4, Tables 2 and 3). The remaining results are shown in
the supplementary materials.

Filtering the datasets according to the feature vector definition FV2 and using OC-SVM is the
optimal approach for attack detection in the context described in this article. Table 2 (sorted by the true
positive rate column) presents the performance of the algorithms using samples with all the attack
types in the test dataset (b) and filtering the features according the three feature vector definitions.
The top rows in the table show that OC-SVM is the technique performing the best in terms of true
positive rate and false positive rate. For all the PFPR, OC-SVM performs better than any of the other
techniques. The minimum difference in the performance occurs with a permissive PFPR. In this case
the true positive rate using OC-SVM is 37% higher than using LOF, 28% higher than using Mahalanobis
distance and 26% higher than using hierarchical clustering. With a very restrictive PFPR (Figure 4),
which is the most challenging configuration to disclose attacks, the difference in the performance
is the highest. In this case the true positive rate using OC-SVM is 73% higher than using LOF, 56%
higher than using Mahalanobis distance and 300% higher than using hierarchical clustering. In this
last configuration, the true positive rate using OC-SVM is over 75% and the f-score over 85%.

From a theoretical point of view, the results suggest that a large amount of samples with attack
lie too close to samples without attack in the vector space. Therefore, techniques based on distances
(i.e., Mahalanobis, LOF and hierarchical clustering) cannot distinguish between the two types of
samples in many cases (specially in the most restrictive situations). However, in OC-SVM, the results
suggest that the separating hyperplane resulting from the training process is closely adjusted to the
data without attacks. As a result, samples with attacks lie, in most cases, outside the frontier defined
by this hyperplane, even when these samples are very near to the ones without attacks.

Sensors 2016, 16, 868 15 of 20

Table 2. Results sorted by TPR using test dataset (b) with samples of all the attacks.

FV PFPR Technique F-score FPR TPR

FV3 very restrictive ocsvm 0.872 0.033 0.798
FV3 restrictive ocsvm 0.857 0.033 0.774
FV2 very restrictive ocsvm 0.853 0.024 0.762
FV2 restrictive ocsvm 0.853 0.024 0.762
FV3 permissive ocsvm 0.843 0.030 0.750
FV1 very restrictive ocsvm 0.6 0.708 0.729
FV1 restrictive ocsvm 0.599 0.696 0.723
FV2 permissive ocsvm 0.809 0.024 0.696
FV1 permissive ocsvm 0.583 0.681 0.690
FV2 permissive hierarchical clustering 0.665 0.211 0.552
FV2 permissive mahalanobis 0.670 0.149 0.542
FV2 restrictive mahalanobis 0.655 0.098 0.511
FV2 permissive lofactor 0.641 0.149 0.507
FV3 permissive hierarchical clustering 0.616 0.220 0.495
FV2 very restrictive mahalanobis 0.645 0.048 0.487
FV3 permissive mahalanobis 0.621 0.149 0.484
FV2 restrictive lofactor 0.631 0.098 0.484
FV3 restrictive mahalanobis 0.598 0.098 0.448
FV2 very restrictive lofactor 0.601 0.048 0.44
FV3 permissive lofactor 0.569 0.149 0.428
FV3 restrictive hierarchical clustering 0.545 0.140 0.401
FV3 restrictive lofactor 0.547 0.098 0.395
FV3 very restrictive mahalanobis 0.535 0.048 0.374
FV2 restrictive hierarchical clustering 0.517 0.098 0.366
FV3 very restrictive lofactor 0.514 0.048 0.354
FV1 permissive hierarchical clustering 0.394 0.158 0.265
FV3 very restrictive hierarchical clustering 0.340 0.054 0.210
FV2 very restrictive hierarchical clustering 0.311 0.071 0.191
FV1 restrictive hierarchical clustering 0.258 0.101 0.156
FV1 permissive lofactor 0.251 0.149 0.154
FV1 restrictive lofactor 0.195 0.098 0.113
FV1 permissive mahalanobis 0.124 0.149 0.071
FV1 very restrictive hierarchical clustering 0.122 0.057 0.067
FV1 very restrictive lofactor 0.117 0.048 0.064
FV1 restrictive mahalanobis 0.112 0.098 0.062
FV1 very restrictive mahalanobis 0.046 0.048 0.024

Table 3. Results of several cases exceeding the PFPR. Cases where PFPR<FPR are highlighted.

FV Attack PFPR Technique F-score FPR TPR

FV2 Selective forwarding 30% very restrictive ocsvm 0.811 0.117 0.762
FV2 Selective forwarding 30% very restrictive lofactor 0.218 0.048 0.125
FV2 Selective forwarding 30% very restrictive mahalanobis 0.598 0.048 0.437
FV2 Selective forwarding 30% very restrictive hierarchical clustering 0.003 0.071 0.002
FV2 Selective forwarding 50% very restrictive ocsvm 0.82 0.054 0.732
FV2 Selective forwarding 50% very restrictive lofactor 0.502 0.048 0.343
FV2 Selective forwarding 50% very restrictive mahalanobis 0.609 0.048 0.449
FV2 Selective forwarding 50% very restrictive hierarchical clustering 0.003 0.071 0.002
FV2 Selective forwarding 30% restrictive ocsvm 0.811 0.117 0.762
FV2 Selective forwarding 30% restrictive lofactor 0.348 0.098 0.221
FV2 Selective forwarding 30% restrictive mahalanobis 0.613 0.098 0.464
FV2 Selective forwarding 30% restrictive hierarchical clustering 0.111 0.098 0.062

Furthermore, as we can see in the supplementary materials, using the features defined by FV2,
OC-SVM also gives the best results for all the metrics in 18 of the 21 experiments when using test
datasets (c) to (i), which contain only samples of a single type of attack (i.e., 7 attacks × 3 feature vector

Sensors 2016, 16, 868 16 of 20

definitions). However, in three experiments (Table 3), the false positive rate exceeds the PFPR. In the
experiment with 30% selective forwarding, the false positive rate exceeds the very restrictive PFPR by
6.7 percentage points and the restrictive PFPR by 1.7 percentage points. In the experiment with 50%
selective forwarding, the false positive rate exceeds the very restrictive PFPR by less than 1 percentage
point. Although these three experiments show the false positive rate as slightly over the PFPR, the
other 18 experiments show that OC-SVM is generally the most suitable in this context.

(a) FV1. (b) FV2. (c) FV3.

Figure 4. Results using the test dataset with samples of all the attacks filtering the features according
to the three feature vector definitions with a very restrictive PFPR. The plots show the metrics f-score
(f), the false positive rate (fpr) and the true positive rate (tpr). The captions below each plot indicate the
feature vector definition used in each case.

Unlike filtering features with FV2 or FV3, when filtering is performed with FV1, datasets with
and without attacks show only a slight variation. For example, as Table 4 shows, when data in the
feature vectors are normalized and we compute the mean of the standard deviation among all the
features, with FV1 the difference between including and excluding attacks is minimal (i.e., 0.48 for the
training dataset and 0.45 for the test dataset). On the other hand, this difference is larger with the other
two feature vector definitions (i.e., 0.39 for the training dataset and 0.60 for the test dataset with FV2).
Including only features from FV1 makes attack samples and normal samples to lie very close in the
vector space. Therefore, the performance of all the compared techniques is generally very poor in this
case as it can be seen in Table 2. With FV1, the highest true positive rate is achieved when dealing
with attacks that affect a large number of nodes (i.e., 90% selective forwarding attack and jamming
attack near the base station). In this case, the technique based in hierarchical clustering achieves a
true positive rate around 30% if PFPR is permissive. Hence, in the scenarios where only the features
in FV1 are available, none of these techniques is suitable. Therefore, we can conclude that public
administrations should never allow WSN providers to supply so little network status data.

Table 4. Mean of the standard deviation of all the features of the training dataset (a) and the test dataset
(b) with all the attacks for each feature vector definition.

FV Dataset Std. Mean

FV1 training dataset (a) 0.48
FV1 test dataset (b) 0.45
FV2 training dataset (a) 0.39
FV2 test dataset (b) 0.60
FV3 training dataset (a) 0.57
FV3 test dataset (b) 0.79

Finally, Figure 4 also shows that OC-SVM is the only technique resistant to the inclusion of too
many features for the algorithms. With the extra features included in FV3, the rest of the algorithms

Sensors 2016, 16, 868 17 of 20

decrease their performance. SVMs do not depend on the size of the vector space to be able to properly
generalize [53]. This technique shows more resistance to high dimensionality and to the inclusion of
correlated features.

Furthermore, in the scenario using the extra features included in FV3, the detection performance of
the OC-SVM algorithm slightly improves in some cases. However, as previously stated, these features
are currently not sent in any of the analyzed services in Barcelona. Besides, sending extra features can
be detrimental for the network nodes and, therefore, the slight increment in the performance is not
worth the effort of adding the extra features in FV3.

6. Conclusions

One of the main goals of smart city systems is to collect data from the streets, send it to the city
central servers and process it in order to improve municipal services, city planning and the operational
functions of certain facilities. Nevertheless, street data is normally gathered using WSNs, which can
be easily unreliable and prone to attacks. Furthermore, some public administrations outsource the
deployment and operation of these networks to external providers, losing a direct security control over
their services. Thus, it is important that smart city administrators verify that the information received
from service providers is correct and free of attacks.

In this article, we compared diverse techniques to analyze whether the data received from smart
city WSNs is the result of the normal operation of the network or whether it contains some type
of anomaly. We used real data from the smart city of Barcelona to simulate WSNs and implement
typical attacks. Then, using this data, we compared four anomaly detection techniques based on
different principles: Mahalanobis distance, local outlier factor, hierarchical clustering and OC-SVM.
We used various feature vectors definitions to identify the optimal network status fields that the
service providers have to include to effectively detect attacks. We also considered three scenarios with
different maximum levels of permitted false positive rates. As a result of this work, we conclude that
OC-SVM is the most suitable technique in the smart city scenario of this article. Moreover, we justified
that the optimal network status information that should be gathered for proper attack detection must
include the sequence number of the application packet and the battery level. Considering the most
restrictive case with a permitted false positive rate lower than 5%, our experiments achieved a true
positive rate over 75%. This value is at least 56% higher than the rates achieved with any of the other
compared techniques.

This study is, as far as we know, the first contribution that allows pointing out attacks from the
central perspective of the smart city administrators. However, there are still unresolved research issues
to address in the future. For example, it is necessary to provide a methodology to set up the parameters
for OC-SVM to adjust the false positive rate closer to the required PFPR and to improve the detection
performance against attacks with low affectation (e.g., 30% and 50% selective forwarding). It is also
important to develop a methodology to automatically set up the time window size to aggregate the
data before fitting the detection algorithms. A procedure is required to divide large networks in areas
with a reduced and manageable number of sensors to apply anomaly detection in a scalable manner.
Finally, it is also necessary to experiment with other WSN fields that help identify the specific attack in
each situation.

Acknowledgments: This work is partially funded by the Ministry of Economy and Competitiveness through
the projects CO-PRIVACY (TIN2011-27076-C03-02) and SMARTGLACIS (TIN2014-57364-C2-2-R) and for the
Government of Catalonia through the subvention of the industrial doctorate ECO/2497/2013 jointly conducted
with Cast Info. Barcelona City Council and openTrends deserve particular thanks.

Author Contributions: Victor Garcia-Font and Helena Rifà-Pous devised the research project presented in the
paper; Carles Garrigues and Helena Rifà-Pous designed the experiments; Victor Garcia-Font implemented the
experiments and analysed the results and Victor Garcia-Font and Carles Garrigues wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 868 18 of 20

References

1. Tubaishat, M.; Qi, Q.; Shang, Y.; Shi, H. Wireless sensor-based traffic light control. In Proceedings of the
Conference on Consumer Communications and Networking, Las Vegas, NV, USA, 10–12 January 2008;
pp. 702–706.

2. Stoianov, I.; Nachman, L.; Madden, S.; Tokmouline, T.; Csail, M. PIPENET: A wireless sensor network for
pipeline monitoring. In Proceedings of the International Symposium on Information Processing in Sensor
Networks, Cambridge, MA, USA, 25–27 April 2007; pp. 264–273.

3. Perlroth, N. Smart City Technology May Be Vulnerable to Hackers. Available online:
http://bits.blogs.nytimes.com/2015/04/21/smart-city-technology-may-be-vulnerable-to-hackers/
(accessed on 8 February 2016).

4. Ghena, B.; Beyer, W.; Hillaker, A.; Pevarnek, J.; Halderman, J.A. Green lights forever: analyzing the security
of traffic infrastructure. In Proceedings of the 8th USENIX Workshop on Offensive Technologies, San Diego,
CA, USA, 19 August 2014.

5. Government Sector Outsourcing; Technical Report; Tholons: New York, NY, USA, 2010.
6. Smart Infrastructure: The Future; Technical Report; The Royal Academy of Engineering: London, UK, 2012.
7. Kavitha, T.; Sridharan, D. Security vulnerabilities in wireless sensor networks: A survey. J. Inf. Assur. Secur.

2010, 5, 31–44.
8. Modares, H.; Salleh, R.; Moravejosharieh, A. Overview of security issues in wireless sensor networks.

In Proceedings of the Third International Conference on Computational Intelligence, Modelling and
Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 308–311.

9. Yang, T.; Sun, Y.; Taheri, J.; Zomaya, A.Y. DLS: A dynamic local stitching mechanism to rectify transmitting
path fragments in wireless sensor networks. J. Netw. Comput. Appl. 2013, 36, 306–315.

10. Challal, Y.; Ouadjaout, A.; Lasla, N.; Bagaa, M.; Hadjidj, A. Secure and efficient disjoint multipath
construction for fault tolerant routing in wireless sensor networks. J. Netw. Comput. Appl. 2011, 34,
1380–1397.

11. Radmand, P.; Domingo, M.; Singh, J.; Arnedo, J.; Talevski, A.; Petersen, S.; Carlsen, S. ZigBee/ZigBee
PRO security assessment based on compromised cryptographic keys. In Proceedings of the International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Fukuoka, Japan, 4–6 November 2010;
pp. 465–470.

12. Jung, W.; Hong, S.; Ha, M.; Kim, Y.J.; Kim, D. SSL-Based lightweight security of IP-based wireless sensor
networks. In Proceedings of the 2009 International Conference on Advanced Information Networking and
Applications Workshops, Bradford, UK, 26–29 May 2009; pp. 1112–1117.

13. Mpitziopoulos, A.; Gavalas, D.; Pantziou, G.; Konstantopoulos, C. Defending wireless sensor networks from
jamming attacks. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio
Communications, Athens, Greece, 3–7 September 2007; pp. 1–5.

14. Kim, I.; Oh, D.; Yoon, M.K.; Yi, K.; Ro, W.W. A Distributed Signature Detection Method for Detecting
Intrusions in Sensor Systems. Sensors 2013, 13, 3998–4016.

15. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15:1–15:58.
16. Lazarevic, A.; Ertöz, L.; Kumar, V.; Ozgur, A.; Srivastava, J. A Comparative Study of Anomaly Detection

Schemes in Network Intrusion Detection. In Proceedings of the Third SIAM International Conference on
Data Mining, San Francisco, CA, USA, 1–3 May 2003; pp. 25–36.

17. Xie, M.; Han, S.; Tian, B.; Parvin, S. Anomaly detection in wireless sensor networks: A survey. J. Netw.
Comput. Appl. 2011, 34, 1302–1325.

18. Zhang, Y.; Hamm, N.A.S.; Meratnia, N.; Stein, A.; van de Voort, M.; Havinga, P.J.M. Statistics-based outlier
detection for wireless sensor networks. Int. J. Geogr. Inf. Sci. (GIS) 2012, 26, 1373–1392.

19. Su, J.; Long, Y.; Qiu, X.; Li, S.; Liu, D. Anomaly Detection of Single Sensors Using OCSVM_KNN. In Big Data
Computing and Communications; Springer: Cham, Switzerland, 2015; pp. 217–230.

20. Liu, F.; Cheng, X.; Chen, D. Insider Attacker Detection in Wireless Sensor Networks. In Proceedings
of the International Conference on Computer Communications, Honolulu, HI, USA, 13–16 August 2007;
pp. 1937–1945.

21. Shahid, N.; Naqvi, I.H.; Qaisar, S.B. Characteristics and classification of outlier detection techniques for
wireless sensor networks in harsh environments: A survey. Artif. Intell. Rev. 2015, 43, 193–228.

Sensors 2016, 16, 868 19 of 20

22. Cheng, P.; Zhu, M. Lightweight anomaly detection for wireless sensor networks. Int. J. Distrib. Sens. Netw.
2015, 2015, 3.

23. Yu, Q.; Jibin, L.; Jiang, L. An Improved ARIMA-Based Traffic Anomaly Detection Algorithm for Wireless
Sensor Networks. Int. J. Distrib. Sens. Netw. 2016, 2016, 9653230.

24. Désir, C.; Bernard, S.; Petitjean, C.; Heutte, L. One class random forests. Pattern Recognit. 2013, 46, 3490–3506.
25. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006,

18, 1527–1554.
26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems 25; Curran Associates, Inc.: Red Hook, NY,
USA, 2012; pp. 1097–1105.

27. Socher, R.; Lin, C.C.; Manning, C.; Ng, A.Y. Parsing natural scenes and natural language with recursive
neural networks. In Proceedings of the 28th International Conference on Machine Learning, Washington,
DC, USA, 28 June–2 July 2011; pp. 129–136.

28. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-Dimensional and large-scale anomaly
detection using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134.

29. Hodge, V.J.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126.
30. Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers.

In Proceedings of the International Conference on Management of Data—SIGMOD, Dallas, TX, USA,
15–18 May 2000; Volume 29, pp. 93–104.

31. Rokach, L.; Maimon, O. Data Mining and Knowledge Discovery Handbook; Springer: New York, NY, USA, 2005;
Chapter: Clustering methods, pp. 321–352.

32. Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms
Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295.

33. Torgo, L. Data Mining with R, learning with case studies; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010.
34. Este, A.; Gringoli, F.; Salgarelli, L. Support vector machines for TCP traffic classification. Comput. Netw.

2009, 53, 2476–2490.
35. Kaplantzis, S.; Shilton, A.; Mani, N.; Sekercioglu, Y.A. Detecting selective forwarding attacks in wireless

sensor networks using support vector machines. In Proceedings of the 3rd International Conference on
Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, Melbourne, Austrilia, 3–6 December
2007; pp. 335–340.

36. Joshi, S.; Jaiswal, A.K.; Tyagi, P.K. A Novel Analysis of T Mac and S Mac Protocol for Wireless Sensor
Networks Using Castalia. Int. J. Soft Comput. Eng. 2013, 2, 128–131.

37. Ponomarchuk, Y.; Seo, D.W. A Lightweight and Effective Jamming Detection in Electronic Shelf Label
Systems. In Proceedings of the 4th International Conference on Ubiquitous Information Technologies &
Applications, Fukuoka, Japan, 20–22 December 2009; pp. 1–6.

38. Varga, A. The omnet++ discrete event simulation system. In Proceedings of the European Simulation and
Modelling Conference, Prague, Czech Republic, June 2001; p. 7.

39. Pediaditakis, D.; Tselishchev, Y.; Boulis, A. Performance and scalability evaluation of the Castalia wireless
sensor network simulator. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, Malaga, Spain, 15–19 March 2010; p. 53.

40. Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-level sensor network simulation with cooja.
In Proceedings of the Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006;
pp. 641–648.

41. Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.; Heidemann, J.; Helmy, A.; Huang, P.; McCanne, S.; Varadhan, K.;
Xu, Y.; et al. Advances in Network Simulation. IEEE Comput. 2000, 33, 59–67.

42. Mehdi, K.; Lounis, M.; Bounceur, A.; Kechadi, T. CupCarbon: A multi-agent and discrete event wireless
sensor network design and simulation tool. In Proceedings of the SIMUTools 2014 7th International ICST
Conference on Simulation Tools and Techniques, Lisbon, Portugal, 17–19 March 2014; pp. 126–131.

43. KISON. A comparative study on anomaly detection techniques for smart city wireless sensor networks
(Source code). Available online: http://einfmark.uoc.edu/technology/get/id/2 (accessed on 9 June 2016).

44. CC2420. 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver; Technical Report; Texas Instruments: Dallas,
TX, USA, 2014. Available online: http://www.ti.com/lit/ds/symlink/cc2420.pdf (accessed on 9 June 2016).

http://einfmark.uoc.edu/technology/get/id/2
http://www.ti.com/lit/ds/symlink/cc2420.pdf

Sensors 2016, 16, 868 20 of 20

45. Van Dam, T.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks.
In Proceedings of the International Conference on Embedded Networked Sensor Systems, Los Angeles, CA,
USA, 5–7 November 2003; pp. 171–180.

46. Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002.
47. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2015.
48. Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. e1071: Misc Functions of the Department of

Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2015. R package version 1.6-6 (software
package). Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on
9 June 2016).

49. Zhuang, L.; Dai, H. Parameter optimization of kernel-based one-class classifier on imbalance learning.
J. Comput. 2006, 1, 32–40.

50. Chang, C.C.; Lin, C.B. Training v-support vector classifiers: Theory and algorithms. Neural Comput. 2001,
13, 2119–2147.

51. Refaeilzadeh, P.; Tang, L.; Liu, H. Encyclopedia of Database Systems; Springer: New York, NY, USA, 2009;
chapter Cross-Validation, pp. 532–538.

52. Som, R.K. Practical Sampling Techniques; Marcel Dekker, INC.: New York, NY, USA, 1995; Chapter: Simple
random sampling, pp. 38–40.

53. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression.
Neural Netw. 2004, 17, 113–126.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cran.r-project.org/web/packages/e1071/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Attacks in WSNs
	Anomaly Detection

	Background
	Mahalanobis Distance
	Local Outlier Factor
	Hierarchical Clustering
	Support Vector Machines

	Simulation and Anomaly Detection Analysis
	Smart City Security Simulation Challenges
	Experimental Procedure
	Data Collection
	Simulation
	Feature Selection
	Anomaly Analysis
	Training Phase
	Validation and Test Phase

	Results and Discussion
	Conclusions

