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Rough set theory, presented by Pawlak in 1981, is one of the most well-known methods for communicating ambiguity by
estimating an item based on some knowledge rather than membership. +e concept of a rough function and its convexity and
differentiability in regard to its boundary region are discussed in this work.+e boundary notion is also used to present a new form
of rough programming issue and its solutions. Finally, numerical examples are provided to demonstrate the proposedmethod and
emphasize its advantages over other approaches.

1. Introduction

Rough set theory has been used to a wide range of problems.
In rough set theory, knowledge is said to be dependent on
the ability to classify objects, and the indiscernibility rela-
tion, which is an equivalence relation, is used to represent it
formally [1]. +e indiscernibility relation generates an ap-
proximation space made up of indiscernible item equiva-
lence classes that spans the entire universe. Pawlak et al. [2]
established the concept of a rough set, and one of the most
prominent theories to explain ambiguity using the boundary
area of a set rather than membership is Pawlak’s theory [3].
A rough set, on the one hand, is distinct from ordinary and
fuzzy sets in terms of concept. A characteristic function
identifies an object in an ordinary set; however, in a fuzzy set,
the data’s uncertainty is reflected by a partial degree of
membership between 0 and 1 [4]. A rough set, on the other

hand, approximates an object based on some prior
knowledge. +e following are some examples of rough
mathematical programming problems:

(i) 1st class: using a rough feasible set and a crisp
objective function and solving mathematical pro-
gramming problems

(ii) 2nd class: problems in mathematical programming
with a crisp feasible set and a rough target function

(iii) 3rd class: problems requiring a rough feasible set
and a rough objective function in mathematical
programming

In rough mathematical programming problems, the
ideal solution set is characterized in a rough sense by four
optimal sets, each spanning a distinct level of feasibility and
optimality [5] (Table 1).
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(1) FOss is the set of solutions that are certain to be
feasible and certain to be optimal

(2) FOsp signifies the set of all possible optimal solutions
that are certain to be practicable

(3) FOps is a term that refers to a collection of all po-
tentially viable and unquestionably optimal
alternatives

(4) FOpp signifies the collection of all possible and
optimal solutions

+e viable region in the second class is a crisp set;
therefore, FOps � FOss and FOpp � FOsp.

It is clear that FOss ⊆ FOsp ⊂ FOpp, FOss ⊂ FOps ⊂
FOpp, and FOss � FOsp ∩ FOps.

Pawlak et al. [2] and Pawlak [3] were the first to propose
the concept of a rough set [3]. Only in these instances,
rough set theory is used to represent unclear data, and we
just contribute to the “postprocessing step” of the data
mining process. Rough multiple objective programming
(RMOP) problems are the name for these innovative tasks,
and they are grouped into three groups based on where the
problem’s roughness appears. +ere are many applications
for the rough set theory such as artificial intelligence, expert
systems, civil engineering [6–10], medical data analysis
[11], data mining (Munakata; [12, 13], Pattern recognition
[14]; and [15], and decision theory [16] and [15,17–20], and
[21–23]. After turning the random rough variables in the
constraint set into crisp ones, Xu and Yao [24] suggested an
interactive technique to solve a class of multiobjective
programming problems with random rough coefficients.
Osman et al. [25] investigated a method for solving a
multiobjective transportation issue with rough parameters
using a solution approach. Attaya [26] described and solved
various objective programming problems with a degree of
vagueness in their formulation. Brikaa et al. [27] solved
constrained matrix games with fuzzy rough payoff matrices
using an effective fuzzy multiobjective programming
method. In their proposed model, Ghosh and Roy [28] built
a multiobjective product mixing fixed-charge trans-
portation problem with truckload constraints, and an extra
cost that was considered as a type-I fixed charge was ex-
plored, as well as truck load limits. In a neutrosophic
context, Ahmad et al. [29] proposed a new approach for
addressing multilevel linear fractional programming
problems, with the objective function coefficients repre-
sented by rough intervals.

+e concept of a rough function, and its convexity and
differentiability depending on its boundary region, which
are are all important concepts to understand, is introduced
in this study. In addition, using the concept of a border

region, a novel sort of rough programming challenge is
investigated, as well as its answers. Many authors studied the
roughness in the optimization problems [30–34].

In terms of its boundary region, this research explores
the concept of a rough function, as well as its convexity and
differentiability, using inspiration from the above literature.
Moreover, the boundary notion is also used to present a new
form of rough programming issue and its solutions. It has
the distinction due to the inclusion of the following feature
time in literature:

(1) Rough multiobjective programming problem
(2) Kuhn–Tucker. Saddle point of rough programming

(RP) problem
(3) Optimal solution-based scenario

+e following are the study’s key goals:

(i) To distinguish between many forms of optimal so-
lutions for a rough multiobjective programming
issue.

(ii) To use a numerical example to validate the suggested
study

+e rest of the paper can be summarized as shown in
Figure 1.

2. Preliminaries

Some rough function definitions and convexity based on its
boundary region are recalled in this part.

Definition 1 (see [5]). In the rough mathematical pro-
gramming problem, the optimum value of the objective
function is a rough number f∗ specified by lower and upper
approximation bounds, denoted by f∗(UAI) and f∗(LAI);
respectively.

If f∗(UAI) � f∗(LAI), then the optimal value f∗ is exact,
otherwise, f∗ is rough.

Roughness can be found everywhere in the rough
mathematical programming problem. Rough feasibility and
rough optimality are two novel concepts that have piqued
our interest. Only in the first and third classes, where the
feasible set is a rough set, rough feasibility does arises. +e
following solutions have varying degrees of feasibility:

(i) If a solution x ∈ X belongs to the lower approxi-
mation of the feasible set, it is certain to be feasible

(ii) If a solution x ∈ X belongs to the upper approxi-
mation of the feasible set, it is possibly feasible

(iii) If a solution x ∈ X does not belong to the upper
approximation of the feasible set, it is most likely
not feasible

(iv) Rough optimality can be found in a variety of rough
mathematical programming problems, with vari-
able degrees of optimality, as demonstrated below:

(v) if f(x) � f∗(UAI), the solution x ∈ X is unques-
tionably optimal

(vi) if f(x)≥f∗(UAI), a solution is possibly optimal

Table 1: Optimal solution set covering the different possible degree
of feasibility and optimality.

Optimality
Possibly Surely

Feasibility Possibly FOpp FOps
Surely FOsp FOss
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(vii) if (x)<f∗(UAI), a solution x ∈ X is unquestionably
not optimal

In rough mathematical programming problems, the
optimal solution sets are defined in a rough sense by four
optimal sets covering the different possible degree of fea-
sibility and optimality.

Definition 2. Let 􏽥f
R
: Rn⟶ R and r, �r, r<�r; we suppose

that a set of functions U(U � f(x), f(x): Rn⟶ R􏼈 􏼉) is
called the universe set. +e set of functions fj􏽮 􏽯 ⊂ U is a

lower approximation L(􏽥f
R
(x)) of 􏽥f

R
(x) which is denoted

by fLAI(x) and is defined by fLAI(x) � fj(x) ∈ U:􏽮

|fj − 􏽥f
R
|< r}, and the set of functions fk􏼈 􏼉 ⊂ U is an upper

approximation U(􏽥f
R
(x)) of 􏽥f

R
(x) which is symbolized by

fUAI(x) and is characterized with fUAI(x) � fk(x) ∈ U:􏼈

|fk − 􏽥f
R
|< r}, where fLAI(x)􏼈 􏼉 ⊂ fUAI(x)􏼈 􏼉. +e function

􏽥f
R
(x) is called rough function if fLAI(x)≠fUAI(x).

Definition 3. +e boundary of the rough function 􏽥f
R
(x) is

F(x) � fUAI(x) − fLAI(x), where fLAI(x) and fUAI(x) are
the lower and upper approximation of 􏽥f

R
(x).

Definition 4. Let 􏽥f
R
: Rn⟶ R and u, 􏽢u ∈ R, u< 􏽢u. We

suppose that the universal set
V(V � f(x): tfn: qRnh⟶ R􏼈 􏼉). +e set of functions
fi􏼈 􏼉 ⊂ V is the lower and upper approximation of 􏽥f

R
which

is denoted by fLAI(x) and fUA(x), respectively, and they are
defined as

f
LAI

(x) � f ∈ V: fj − 􏽥f
R

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌< u􏼚 􏼛, (1)

f
UAI

(x) � f ∈ V: fj − 􏽥f
R

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌< 􏽢u􏼚 􏼛. (2)

+e function 􏽥f
R is called rough function if

f
LAI

(x)≠f
UAI

(x). (3)

Definition 5. +e boundary function of the rough function
􏽥f

R
is F(x) � fUAI(x) − fLAI(x), where fLAI and fUAI are

defined in (1) and (2), respectively.

Definition 6. A rough function 􏽥f
R is said to be convex if the

boundary function F(x) is convex.

Definition 7. Let X be an open set on X. An interval-valued
function f: X⟶ R with f(x) � [fLAI(x), fUAI(x)] is
called weakly differentiable at x0 ∈ X if the real-valued
functions fLAI and fUAI are differentiable at x0.

3. Problem Statement and Solution Concepts

A rough programming (RP) problem can be stated as

(RP)min 􏽥f
R
(x). (4)

Subject to

X � x ∈ Rn
: hr(x)≤ 0, r � 1, m􏼈 􏼉, (5)

where fLAI
k (x) and fUAI

k (x) are the lower and upper ap-
proximations of 􏽥f

R
(x), respectively, and fLAI

k (x)≤

Section 2
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point of rough programming
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Section 5
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in the cases of differentiability

Section 6
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and comparion of the proposed
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•.

Section 7

Presents the comparision of the
proposed approach with
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Section 8
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Figure 1: Layout of the remaining paper.
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􏽥f
R

k (x)≤fUAI
k (x), k � 1, K, and X represents the convex

crisp feasible region, and hr(x), r � 1, 2, . . . , m are the
convex and continuous functions.

In order to solve the (RP) problem, let us solve the
following boundary problem (BP):

(BP)minF(x) � f
UAI

(x) − f
LAI

(x). (6)

Subject to

X � x ∈ Rn
: hr(x)≤ 0, r � 1, 2, . . . , m􏼈 􏼉, (7)

where X is the convex set and hr(x), r � 1, 2, . . . , m are the
convex and continuous functions.

+e BP can be separated into the following two sub-
problems as

(LAP)maxf
LAI

(x). (8)

Subject to

X � x ∈ Rn
: hr(x)≤ 0, r � 1, m􏼈 􏼉,

(UAP)minf
UAI

(x).
(9)

Subject to

X � x ∈ Rn
: hr(x)≤ 0, r � 1, 2, . . . , m􏼈 􏼉, (10)

where fLAI(x) and fUAI(x) are the concave and convex
functions, respectively.

Let the optimal solutions of (LAP) and (UAP) be
denoted by fLAI(x∗) � max

x∈X
fLAI(x), and

f
UAI

x
∗

( 􏼁 � min
x∈X

f
UAI

(x), (11)

respectively.

Definition 8. x∗ is said to be the optimal solution of the RP
problem if fLAI(x∗)≤ 􏽥f

R
(x∗)≤fUAI(x∗) where SL and SU

are the sets of the solutions of problems (LAP) and (UAP),
respectively.

Definition 9

(1) A solution x∗ ∈ SL ∩ SU, F(x∗) � 0 is called a surely
optimal solution of the RP

(2) x∗ ∈ SL ∩ SU, F(x∗)≠ 0 is called a possibly optimal
solution of the RP

(3) x∗ ∈ SL ∩ SU is called a nearly possibly optimal so-
lution of the RP

Lemma 1. If x∗ is the solution of (BP), then x∗ is the solution
for (LAP) and (UAP).

Proof. Let x∗ be a solution of BP; then,

f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁≤f
UAI

(x) − f
LAI

(x);∀x. (12)

We suppose that x∗ is not a solution for (LAP) and
(UAP), then there exists an x ∈ X such that fUAI(x)≤
fUAI(x∗) implies that

fUAI(x) − fLAI(x) < fUAI(x∗) − fLAI(x), fLAI(x∗)<
fLAI(x) which leads to

f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁>f
UAI

x
∗

( 􏼁 − f
LAI

(x). (13)

+us, fUAI(x) − fLAI(x)<fUAI(x∗) − fLAI(x∗) con-
tradicts that x∗ is a solution of BP.+erefore, x∗ is a solution
of the two problems (LAP) and (UAP). □

4. Rough Kuhn–Tucker Saddle Point

We consider the rough problem

min 􏽥f
R
(x). (14)

Subject to

X � x ∈ Rn
: hr(x)≤ 0, r � 1, m􏼈 􏼉,

f
LAI

(x)≤ 􏽥f
R
(x)≤f

UAI
(x).

(15)

+e rough Kuhn–Tucker saddle point for problem (15)
takes the form

􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
crhr x

∗
( 􏼁 + cm+1 f

LAI
x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + cm+2
􏽥f

R
x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓,

≤ 􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1 f

LAI
x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + c
∗
m+2

􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓,

≤ 􏽥f
R
(x) + 􏽘

m

r�1
c
∗
r hr(x) + c

∗
m+1 f

LAI
(x) − 􏽥f

R
(x)􏼒 􏼓 + c

∗
m+2

􏽥f
R
(x) − f

UAI
(x)􏼒 􏼓,

(16)

or
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1 − cm+1 + cm+2( 􏼁􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
crhr x

∗
( 􏼁 + cm+1f

LAI
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
(x) + 􏽘

m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1f

LAI
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
(x) + 􏽘

m

r�1
c
∗
r hr(x) + c

∗
m+1f

LAI
(x) − cm+2f

UAI
(x).

(17)

Theorem 1. If (x∗, c∗r ), where c∗r ≥ 0, r � 1, m + 2, and
􏽐

m+1
r�1 c∗r is a rough Kuhn–Tucker saddle point (KTSP), then x∗

is a solution of RP.

Proof. We assume that (x∗, c∗r ), r � 1, m + 2 is a rough
KTSP; then, for cr ≥ 0, cr ∈ Rm+2, we get

1 − cm+1 + cm+2( 􏼁􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
crhr x

∗
( 􏼁 + cm+1f

LAI
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
x
∗

( 􏼁 + 􏽘
m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1f

LAI
x
∗

( 􏼁 − c
∗
m+2f

UAI
x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
(x) + 􏽘

m

r�1
c
∗
r hr(x) + c

∗
m+1f

LAI
(x) − c

∗
m+2f

UAI
(x).

(18)

From the first inequality, we have

1 − cm+1 + cm+2( 􏼁􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
crhr x

∗
( 􏼁 + cm+1f

LAI
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
(x) + 􏽘

m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1f

LAI
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

(19)

or

1 − cm+1 + cm+2 + 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
x
∗

( 􏼁 + 􏽘
m

r�1
cr − c

∗
r( 􏼁hr x

∗
( 􏼁

+ cm+1 − c
∗
m+1( 􏼁f

LAI
x
∗

( 􏼁 − cm+2 − c
∗
m+2( 􏼁f

UAI
x
∗

( 􏼁≤ 0,

(20)

which implies to

cm+1 − c
∗
m+1􏼠 􏼡 f

LAI
x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + cm+2 − c
∗
m+2􏼠 􏼡 􏽥f

R
x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓 + 􏽘
m

r�1
cr − c

∗
r( 􏼁hr x

∗
( 􏼁≤ 0. (21)

+is inequality is true for all cr, c∗r , cm+1,

c∗m+1, cm+2, c∗m+2. In the case cm+1 � c∗m+1 and cm+2 � c∗m+2,
we have 􏽐

m
r�1(cr − c∗r )hr(x∗)≤ 0. We assume that

cr � c∗r , r � 1, 2, . . . , i − 1, i + 1, . . . , m and c∗i � ci − 1.
+en, hr(x∗)≤ 0. By repeating this for all i, we have

hr(x∗)≤ 0, and hence, x∗ is the feasible point. Since c∗r ≥ 0
and hr(x∗)≤ 0, we get 􏽐

m
r�1c
∗
r hr(x∗)≤ 0. Again from the first

inequality, where cm+1 � c∗m+1 and cm+2 � c∗m+2, and by
setting cr, we obtain 􏽐

m
r�1c
∗
r hr(x∗)≥ 0. Hence,

􏽐
m
r�1c
∗
r hr(x∗) � 0. +us,

Computational Intelligence and Neuroscience 5



cm+1 − c
∗
m+1( 􏼁 f

LAI
x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + cm+2 − c
∗
m+2( 􏼁 􏽥f

R
x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓 + 􏽘
m

r�1
cr − c

∗
r( 􏼁hr x

∗
( 􏼁≤ 0. (22)

By taking cm+1 � c∗m+1 − 1 and cm+2 � c∗m+2 − 1, we have
(cm+1 − 1 − c∗m+1)(fLAI(x∗) − 􏽥f

R
(x∗)) + (cm+2 − 1 − c∗m+2)

(􏽥f
R
(x∗) − fUAI(x∗)) + 􏽐

m
r�1crhr(x∗)≤ 0. +is leads to

f
LAI

x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + 􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓

+ 􏽘
m

r�1
crhr x

∗
( 􏼁≤ 0.

(23)

Since the inequality is valid for each cr ≥ 0, then for
cr � 0, we get

f
LA

x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + 􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓≤ 0,

f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁≤ 0.

(24)

Taking cm+1 � c∗m+1 + 1 and cm+2 � c∗m+2 + 1, we have

cm+1 + 1 − c
∗
m+1( 􏼁 f

LAI
x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + cm+2 + 1 − c
∗
m+2( 􏼁 􏽥f

R
x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓 + 􏽘
m

r�1
crhr x

∗
( 􏼁≤ 0. (25)

+us,

f
LAI

x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + 􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓

+ 􏽘
m

r�1
crhr x

∗
( 􏼁≤ 0.

(26)

Since the inequality is valid for each cr ≥ 0, then for
cr � 0, we have

f
LAI

x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + 􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓≤ 0,

f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁≥ 0.

(27)

Hence from (24) and (27), we conclude
fLAI(x∗) � 􏽥f

R
(x∗) � fUAI(x∗) (i.e., x∗ is a surely optimal

solution for the RP)
From the second inequality, we have

1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
x
∗

( 􏼁 + 􏽘
m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1f

LA
x
∗

( 􏼁 − cm+2f
UAI

x
∗

( 􏼁,

≤ 1 − c
∗
m+1 + c

∗
m+2( 􏼁􏽥f

R
(x) + 􏽘

m

r�1
c
∗
r hr(x) + c

∗
m+1f

LAI
(x) − c

∗
m+2f

UAI
(x).

(28)

Since 􏽐
m
r�1c
∗
r hr(x∗) � 0, then

1 − c
∗
m+1 + c

∗
m+2( 􏼁 􏽥f

R
x
∗

( 􏼁 − 􏽥f
R
(x)􏼒 􏼓≤ 􏽘

m

r�1
c
∗
r hr(x) + c

∗
m+1 f

LAI
(x) − f

LAI
x
∗

( 􏼁􏼐 􏼑

+ c
∗
m+2 f

UAI
(x) − f

UAI
x
∗

( 􏼁􏼐 􏼑􏽥f
R

x
∗

( 􏼁 − 􏽥f
R
(x)≤

􏽐
m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

hr(x)

+
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

(x) − f
LAI

x
∗

( 􏼁􏼐 􏼑 +
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

(x) − f
UAI

x
∗

( 􏼁􏼐 􏼑.

(29)

For x∗ ∈ SL ∩ SU, we have fLAI(x)≤fLAI(x∗) and
fUAI(x)≥fUAI(x∗). Since 􏽐

m+1
r�1 cr � 1 and c∗m+1 � c∗1+

c∗1 + · · · + c∗m, then 1 − c∗m+1 + c∗m+2 ≤ 0 which implies to

􏽥f
R
(x∗)≤ 􏽥f

R
(x), x ∈ X. Hence, x∗ is a possible
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optimalsolution of the rough problem. For x∗ ∈ SL, x∗ ∉ SU,
we obtain fLAI(x∗)≥ fLAI(x) and

􏽥f
R

x
∗

( 􏼁 − 􏽥f
R
(x)≤

c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

(x) − f
UAI

x
∗

( 􏼁􏼐 􏼑.

(30)

Now, there are two cases: □

Case 1. fUAI(x∗) − fUAI(x)≤ 0;∀x ∈ X implies that x∗ is a
nearly possibly optimal solution.

Case 2. fUAI(x∗) − fUAI(x)> 0.
Let x∗ be not a nearly possible optimal solution of rough

problem; then, there is x ∈ X: 􏽥f
R
(x)< 􏽥f

R
(x∗). Since

x∗ ∈ SL, x∗ ∉ SU, so x∗ is not a solution for the boundary
problem BP, i.e., there is x:

f
UAI

(x) − f
LAI

(x)<f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁, f
LAI

x
∗

( 􏼁

− f
LAI

(x)<f
UAI

x
∗

( 􏼁 − f
UAI

(x).
(31)

(i) If fUAI(x∗)<fUAI(x), then fLAI(x∗)<fLAI(x).
+is contradicts that x∗ ∈ SL, and hence, x∗ must be
a nearly possible optimal solution for the RP
problem.

(ii) If fUAI(x∗)>fUAI(x), then we may write
fUAI(x∗) � fUAI(x) + θ, θ> 0, which implies to
fLAI(x∗) − fLAI(x)< θ, θ> 0. +en, we have two
cases:

(a) fLAI(x∗)>fLAI(x), which is not considered, where
x∗ ∈ SL

(b) fLAI(x∗)<fLAI(x), which contradicts that x∗ ∈ SL,
and hence, x∗ must be a nearly possible optimal
solution for the RP problem

For x∗ ∈ SU, x∗ ∉ SU, we obtain fUAI(x∗)≤ fUAI(x)

and

􏽥f
R

x
∗

( 􏼁 − 􏽥f
R
(x)≤

c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

(x) − f
LAI

x
∗

( 􏼁􏼐 􏼑.

(32)

So, there are two cases:

Case 3. fLAI(x∗) − fLAI(x)≤ 0;∀x ∈ X; this implies that x∗

is a nearly possibly optimal solution.

Case 4. fLAI(x∗) − fLAI(x)> 0.
Let x∗ be not a nearly possible optimal solution of the

rough problem; then, there is x ∈ X: 􏽥f
R
(x)< 􏽥f

R
(x∗). Since

x∗ ∈ SU, x∗ ∉ SL, so x∗ is not a solution for the boundary
problem (BP), i.e., there is x ∈ X:

f
UAI

(x) − f
LAI

(x)<f
UAI

x
∗

( 􏼁 − f
LAI

x
∗

( 􏼁, f
UAI

(x)

− f
UAI

x
∗

( 􏼁<f
LAI

(x) − f
UA

x
∗

( 􏼁.
(33)

(i) If fLAI(x)<fUAI(x∗), then fUAI(x)<fLAI(x∗).
+is contradicts that x∗ ∈ SU, and hence, x∗ must be
a nearly possible optimal solution for the (R − MOP)

problem.
(ii) If fLAI(x)>fUAI(x∗), then we may write

fLAI(x∗) � fLAI(x) + θ, θ> 0, which implies to
fUAI(x) − fUAI(x)< θ, θ> 0 +en, we have two
cases:

(a) fLAI(x∗)>fLAI(x∗), which is not considered, where
x∗ ∈ SU

(b) fUAI(x∗)<fUAI(x), which contradicts that x∗ ∈ SU,
and hence, x∗ must be a nearly possible optimal
solution for the RP problem

5. Rough Function Differentiability

A rough function 􏽥f
R
(x) is said to be differentiable if its

boundary.
F(x) � fUAI − fLAI is differentiable. +en,
F − F(x∗) � (δ/δx)F(x∗)(x − x∗) +ϑ(x∗, c(x − x∗))

‖x − x∗‖, or equivalently
􏽥f

R
− 􏽥f

R
(x∗) � (δ/δx)􏽥f

R
(x∗)(x − x∗) +ϑ(x∗,c(x− x∗))

‖x − x∗‖, where

lim
ϑ⟶0

ϑ x
∗
, δ x − x

∗
( 􏼁( 􏼁 � 0. (34)

5.1. Kuhn–Tucker’s Conditions under Roughness. +e rough
Kuhn–Tucker (KT) conditions for the RP problem takes the
form

δ
δx

􏽥f
R

x
∗

( 􏼁 + 􏽘
m

r�1
c
∗
r hr x

∗
( 􏼁 + c

∗
m+1

δ
δx

f
LAI

x
∗

( 􏼁 − 􏽥f
R

x
∗

( 􏼁􏼒 􏼓 + c
∗
m+2

δ
δx

􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓 � 0,

c
∗
r hr x

∗
( 􏼁 � 0, r � 1, m;c

∗
m+2

􏽥f
R

x
∗

( 􏼁 − f
UAI

x
∗

( 􏼁􏼒 􏼓 � 0; c
∗
r ≥ 0, r � 1, m + 2.

(35)

Let 􏽐
m+1
r�1 c∗r � 1. +en,
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1 − c
∗
m+1 + c

∗
m+2( 􏼁

δ
δx

􏽥f
R

x
∗

( 􏼁 + c
∗
m+1

δ
δx

f
LAI

x
∗

( 􏼁 − c
∗
m+2

δ
δx

f
UAI

x
∗

( 􏼁 + 􏽘
m

r�1
c
∗
r

δ
δx

hr x
∗

( 􏼁 � 0, (36)

or, in other words

δ
δx

􏽥f
R

x
∗

( 􏼁 +
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

δ
δx

f
LAI

x
∗

( 􏼁 −
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

δ
δx

f
UAI

x
∗

( 􏼁

+
􏽐

m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

δ
δx

hr x
∗

( 􏼁 � 0

􏽐
m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

δ
δx

hr x
∗

( 􏼁 � 0,

r � 1, m,

c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

x
∗

( 􏼁 � 0

c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

x
∗

( 􏼁

c
∗
r ≥ 0,

r � 1, m + 2.

(37)

Theorem 2. Let 􏽥f
R
, fUAI, and h be the convex and differ-

entiable functions at x∗, and let f LAI be a concave and dif-
ferentiable at x∗ ∈ X. We suppose that f UAI(x∗) >0 and
fLAI(x∗)> 0. If (x∗, c∗r ), where c∗r ≥ 0, r � 1, m + 2 is a so-
lution of the KT conditions, then x∗ is a solution for RP

Proof. Let (x∗, c∗r ) be a solution of the rough KTconditions.
Since 􏽥f

R
is a convex and differentiable at x∗, we get

􏽥f
R

− 􏽥f
R
(x∗)≥ δx/δ􏽥f

R
(x∗)(x − x∗). Since δ/δx􏽥f

R
(x∗)

� c∗m+2/(1 − c∗m+1 + c∗m+2)δ/δxfUAI(x∗) − c∗m+1/(1 − c∗m+1
+c∗m+2)δ/δxfLAI(x∗) − 􏽐

m
r�1 c∗r /(1 − c∗m+1 + c∗m+2) hr(x∗),

and fUA, fLA, and hr are differentiable, then

f
UAI

− f
UAI

x
∗

( 􏼁 �
δ
δx

f
UAI

x
∗

( 􏼁 x − x
∗

( 􏼁 + ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
,

f
LAI

− f
LAI

x
∗

( 􏼁 �
δ
δx

f
LA

x
∗

( 􏼁 x − x
∗

( 􏼁 + ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
,

hr − hr x
∗

( 􏼁 �
δ
δx

hr x
∗

( 􏼁 x − x
∗

( 􏼁 + ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
.

(38)

+en,
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􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UA

− f
UA

x
∗

( 􏼁 − ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
􏼐 􏼑

−
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

− f
LAI

x
∗

( 􏼁 − ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
􏼐 􏼑

−
􏽐

m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

hr − hr x
∗

( 􏼁 − ϑ x
∗
, c x − x

∗
( 􏼁( 􏼁x − x

∗
( 􏼁.

(39)

Since limϑ⟶0ϑ(x∗, δ(x − x∗)) � 0, then

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

− f
UAI

x
∗

( 􏼁􏼐 􏼑 −
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

− f
LAI

x
∗

( 􏼁􏼐 􏼑

−
􏽐

m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

hr − hr x
∗

( 􏼁( 􏼁.

(40)

From the Kuhn–Tucker conditions,

􏽐
m
r�1c
∗
r

1 − c
∗
m+1 + c

∗
m+2( 􏼁

hr x
∗

( 􏼁 � 0,

r � 1, m,

c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

x
∗

( 􏼁 � 0,

c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

x
∗

( 􏼁 � 0.

(41)

+en, the following inequality 􏽥f
R
(x) − 􏽥f

R
(x∗)≥

c∗m+2/(1 − c∗m+1 + c∗m+2)f
UAI − c∗m+1/(1 − c∗m+1 + c∗m+2)f

LAI

−􏽐
m
r�1c
∗
r /(1 − c∗m+1 + c∗m+2)hr is valid for each c∗r ≥ 0, r �

1, m + 2, and for c∗r � 0, we have

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

−
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

.

(42)

If c∗m+1; c∗m+2 > 0, then from the Kuhn–Tucker condi-
tions, we obtain 􏽥f

R
(x∗) � fLAI(x∗) and 􏽥f

R
(x∗) �

fUAI(x∗). +en, x∗ is a surely optimal solution of the RP
problem.

If x∗ ∈ SL ∩ SU, then fUAI(x∗)≤fUAI(x);∀x ∈ X and
fLAI(x∗)≥fLAI(x);∀x ∈ X, and then we grt

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

x
∗

( 􏼁

−
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

x
∗

( 􏼁.

(43)

In addition, from the Kuhn–Tucker conditions
􏽥f

R
− 􏽥f

R
(x∗)≥ 0, this leads to 􏽥f

R
(x∗)≤ 􏽥f

R
(x), i.e., x∗ is a

possibly optimal solution.
If x∗ ∈ SL, x∗ ∉ SU, then fLAI(x∗)≥fLAI(x);∀x ∈ X,

and we have

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

x
∗

( 􏼁 −
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

x
∗

( 􏼁,

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

.

(44)

From the assumption that fUAI(x∗)> 0, and x∗ is not
solution for BP, c∗m+2/(1 − c∗m+1 + c∗m+2) � 0.

Hence, 􏽥f
R

− 􏽥f
R
(x∗)≥ 0 leads to 􏽥f

R
(x∗)≤ 􏽥f

R
;∀x. +en,

x∗ is a nearly possibly optimal solution for RP.
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If x∗ ∈ SU, x∗ ∉ SL; then, fUAI(x∗)≤fUAI(x); ∀x, and
we have

􏽥f
R
(x) − 􏽥f

R
x
∗

( 􏼁≥
c
∗
m+2

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
UAI

x
∗

( 􏼁

−
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

x
∗

( 􏼁.

(45)

From KT conditions, we have

􏽥f
R

− 􏽥f
R

x
∗

( 􏼁≥
c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

f
LAI

. (46)

From the assumption that fLAI(x∗)> 0, and x∗ is not
solution for BP,

c
∗
m+1

1 − c
∗
m+1 + c

∗
m+2( 􏼁

� 0. (47)

+us, 􏽥f
R
(x) − 􏽥f

R
(x∗)≥ 0, which implies to

􏽥f
R
(x∗)≤ 􏽥f

R
(x); ∀x. +en, x∗ is a nearly possibly optimal

solution for RP. □

6. Numerical Example

We consider the following problem 􏽥f
R
(x): X⟶ R with

fLAI(x) � x1 + x2 fUAI(x) � 1/3x3
1 − 2x2

1 − 10x2 + 100 and
consider the following RP problem as

(RP)min 􏽥f
R
(x). (48)

Subject to

X � x1, x2( 􏼁 ∈ R2
: x1 + x2 ≤ 10, 3.5≤ x1 ≤ 6, x2􏽮

≤ 6, x1 + x2 ≥ 1􏼉.
(49)

+en,

(LAP)minf
LAI

(x) � x1 + x2. (50)

Subject to

x ∈ X,

(UAP)minf
UAI

(x) �
1
3
x
3
1 − 2x

2
1 − 10x2 + 100.

(51)

Subject to

x ∈ X. (52)

Hence, the BP is

(BP)minF(x) � f
UAI

(x) − f
LAI

(x). (53)

Subject to

x ∈ X. (54)

+e solution of the LAP is SL � (5, 5){ }, and the solution
of the UAP is SU � (1 − λ)(6, 4) + λ(4, 6), 0≤ λ≤ 1{ }. +en,

(1) +ere is no one-size-fits-all answer (Definition 9.1)
(2) +e best conceivable solution is (5,5), where

(5, 5) ∈ SL ∩ SU and F(5, 5)≠ 0 (Definition 9.2)
(3) +e nearly possibly solution is (1 − λ)(6, 4)+{

λ(4, 6), 0≤ λ≤ 1}∪ (5, 5){ } (Definition 9.3)

7. Discussion

+e proposed approach is compared to some existing lit-
erature in this section to show the benefits of the proposed
approach. Table 2 investigates this comparison in the case of
some parameters

8. Concluding Remarks and Future Works

+is paper introduces the concept of a rough function, as
well as its convexity and differentiability based on its
boundary region. +e boundary area notion has also been
used to investigate a new sort of rough programming
challenge and its answers. +is research could be expanded
to include more fuzzy-like structures in the future (such as
interval-valued fuzzy sets, neutrosophic sets, pythagorean
fuzzy sets, and spherical fuzzy sets), andmore discussion and
suggestions could also be included in the future studies. +e
key features of this study can be summarized as follows:

+e proposed study can be extended by developing

(i) Intuitionistic fuzzy set with a possibility interval
value

(ii) Intuitionistic fuzzy set with a probability interval
(iii) Fuzzy hypersoft expert set is a possibility
(iv) Possibility fuzzy pythagorean set
(v) Possibility picture fuzzy set
(vi) For example, a spherical fuzzy set

+e following are some ideas for further research:

Table 2: Comparisons of different researchers’ contributions.

Author’s name Weighting
method

ε− constraint
method

KKT
optimality

Efficient
solution

Parametric
study Environment

Khalifa [30] √ × × √ × Rough set
Osman et al. [25] × × × √ × Fuzzy set
Ammar and Emsimir [31] √ × √ √ × Fuzzy set
Ahmed [35] × × √ √ × Fuzzy set
Ammar and Al- Al- Asfar
[32] √ × √ √ × Fuzzy set

Our investigation √ √ √ √ √ Rough set

10 Computational Intelligence and Neuroscience



(1) For rough multiobjective programming, determine
the link between rough weights and rough
parameters

(2) An investigation of duality in the context of a ru-
dimentary multiobjective programming problem

(3) A parametric study of a rough programming issue in
which the objective function has roughness

(4) A parametric investigation of a rough programming
problem with rough constraints

(5) Determine the link between the rough weights and
the rough parameter in rough multiobjective
programming

(6) A duality investigation on the problem of rough
multiobjective programming

(7) A parametric analysis of a rough programming
problem in which the goal function and restrictions
are both rough [36–38]
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