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Abstract

Background: Solid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to
resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been
investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for
paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. We
aimed to elucidate the impact of hypoxia on the sensitivity of MB cells to chemo- and radiotherapy.

Methods: We used two MB cell line (D283-MED and MEB-Med8A) and a widely used glioblastoma cell line
(U87MG) for comparison. We applied a range of molecular and cellular techniques to measure cell survival, cell
cycle progression, protein expression and DNA damage combined with a transcriptomic micro-array approach in
D283-MED cells, for global gene expression analysis in acute and chronic hypoxic conditions.

Results: In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to
chemotherapy and X-ray irradiation. This acquired resistance upon chronic hypoxia was present but less
pronounced in MEB-Med8A cells. Using transcriptomic analysis in D283-MED cells, we found a large transcriptional
remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and
repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN
complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was
associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound
dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide
was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon
chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism,
independent of the DNA damage pathway.

Conclusion: Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving
the alteration of the response to DSB in D283-MED cells, but also highlight the cell type to cell type diversity and
the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation
therapeutic protocols.
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Background

Medulloblastoma (MB) is a malignant embryonal brain
tumour originating from neural stem cells or
granule-cell progenitors of the cerebellum, due to a de-
regulation of signalling pathways involved in neuronal
development such as Wnt or Sonic Hedgehog (SHH)
[1]. It is one of the most common brain tumours in chil-
dren accounting for 15-20% of all paediatric CNS tu-
mours. MB is a heterogeneous cancer with distinct
genetic variants, classified into 4 principal subgroups;
Wnt, SSH, Group 3 and Group 4, based on their tran-
scriptome [2, 3] reviewed in [4]. More recent classifica-
tion using genome wide DNA methylation and gene
expression data resulted in the division of these 4 groups
into 12 sub-groups [5]. Treatment of MB generally in-
volves surgery followed by a combination of radiother-
apy and cytotoxic chemotherapy. In very young children,
surgery is followed by chemotherapy alone due to the se-
vere effects of radiation therapy on the developing brain
[6]. Recent studies have explored the use of proton beam
therapy for MB, which triggers fewer detrimental side ef-
fects, as a result of reduction in irradiation of healthy
brain tissue [7].

Despite a marked improvement in the 5-year survival
rate for MB patients, 40% succumb to the disease, dem-
onstrating the limitations of the current therapies.
Group 3 MB have the worst overall survival (~ 50%) even
after extensive treatment [2, 8, 9]. One reason for treat-
ment failure is the resistance to chemo- or radiothera-
peutic interventions. In both MB patients and MB cell
lines such resistance has been observed and attributed
to mutations in specific signalling pathways in the case
of targeted therapies [10], or to mutations in the p53 sig-
nalling pathway [11-15]. For example, in the SHH group
p53 mutations correlate with poor treatment outcome
[16]. In addition to the intrinsic mutations in cancer
cells conferring resistance, extrinsic factors such as
tumour hypoxia have been implicated in chemo- and
radioresistance in a range of tumour types [17-20].

Tumour hypoxia is generated by irregular and tortu-
ous vasculature formed within solid tumours, hence
causing a poor delivery of oxygen and nutrients to cells.
Hypoxia is associated with malignancy and tumour ag-
gressiveness, by increasing tumour cell proliferation, me-
tastasis and treatment resistance [21-23]. Hypoxic
markers are, therefore, commonly associated with poor
prognosis in many tumour types including breast cancer,
glioblastoma and neuroblastoma [24-26]. Interestingly,
carbonic anhydrase IX (CalX), a robust marker of hyp-
oxic tumours [27], is expressed in 23% of all MBs and is
associated with poor prognosis [28], suggesting that
tumour hypoxia impacts on MB progression and/or
management. The critical impact of tumour hypoxia on
drug resistance and malignancy has been reported for a
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large number of cancers. However, very little is known
about the effect of hypoxia on MB beyond, for example,
a recent study showing that the hypoxia inducible factor
(HIF-1) can influence the ability of MB cells to prolifer-
ate [29].

Here we demonstrate that chronic hypoxia (>4 days)
triggers resistance in a common MB cell line,
D283-MED, to cell death induced by etoposide or X-ray
irradiation. The effect of chronic hypoxia on chemo-
and radio-sensitivity was comparable to that observed in
a classic glioblastoma cell line (U87MG). To understand
the mechanisms underlying the observed resistance in
the D283-MED MB cells, we assessed changes in global
gene expression driven by a long-term hypoxic exposure
using a transcriptomic approach. We identified that the
DNA double strand break (DSB) sensing machinery
MRE11/RAD50/NBN, known as the MRN complex, was
largely repressed. The MRN complex is recruited to sites
of double-strand breaks as part of the Homologous Re-
combination Repair (HRR) and Non-Homologous End
Joining (NHE]) pathways. We further explored the con-
sequences of such downregulation on the subsequent ac-
tivation of the DNA damage response and apoptotic
signalling pathways. Upon chronic hypoxia, we observed
a reduced activation by etoposide of Ataxia Telangiecta-
sia Mutated (ATM), a serine/threonine kinase recruited
to double strand breaks. This was associated with re-
duced p53 stabilisation and transcriptional activity.
Overall, this study demonstrates that the dampening of
the DNA damage response to DSB triggered by chronic
hypoxia strongly contributes to treatment resistance in
hypoxic conditions in MB cells.

Methods

Reagents

Etoposide (E1383) was from Sigma. Tissue cell culture
mediums were supplied by Gibco Life Technologies and
foetal calf serum from Harlan Seralab (UK). Cyclophilin
A (Ab3563), anti-mouse (Ab6808), MRE11l (ab214),
ATM (ab3240), ATM serine 1981 (ab81292) and Vincu-
lin (ab129002) antibodies were from Abcam. p53 BC-12
(sc-126) and NBN (sc-8589) antibodies were from Santa
Cruz. p53 serine 15 (PC386) antibody was from CalBio-
chem. Anti-rabbit (7074) antibody was from Cell Signal-
ling. Cy3-anti mouse antibody was from sigma (C2181).

Cell culture

D283-MED and U87MG were purchased from ATCC.
MEB-Med8A cells were kindly provided by Prof T.
Pietsch (University of Bonn, Germany). D283-MED were
maintained in modified Eagle’s medium (MEM) with
10% ECS, 1% non-essential amino acid and 1% sodium
pyruvate. MEB-Med8A cells were maintained in Dulbec-
co’s MEM (DMEM) with 10% FCS. US87MG cells were
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maintained MEM with 10% FCS and 1% sodium pyru-
vate. Cells were typically cultured and maintained at 37 °
C and 5% CO, in a humidified incubator. For hypoxic
conditions (1% O,) cells were manipulated and incu-
bated in a hypoxic workstation (Don Whitley Scientific,
UK). All cells were regularly tested for mycoplasma
infection.

Quantitative real time PCR (qPCR)

RNA was extracted with RNeasy Mini kit (Qiagen,
Germany). 1ug of RNA were used for cDNA synthesis
using SuperScript® VILO kit according to the manufac-
turer’s protocol (Invitrogen). Quantitative qPCR was per-
formed as described in [30]. Primers sequences were as
follows: Cyclophilin A: Forward: GCTTTGGGTCCAGG
AATGG; Reverse: GTTGTCCACAGTCAGCAATGGT;
MDM2: Forward: GCAAATGTGCAATACCAACA; Re-
verse: CTTTGGTCTAACCAGGGTCTC; PUMA: CCTG
GAGGGTCCTGTACAAT; Reverse: CACCTAATTGG
GCTCATCT; p21: GACTCTCAGGGTCGAAAACG; Re-
verse: TAGGGCTTCCTCTTCCAGAA; NBN AGAA
TTGGCTTTTCCCGAACT; Reverse: CAAGAAGAG
CATGCAACCA. MRE11l Forward: TCAGTCAAGCT
CCTCTGGGA; Reverse: AGTCCAGCAGTGGGAATTT
CT; RAD50: TGCTTGTTGAACAGGGTCGT; Reverse:
TCACTGAATGGTCCACGCTC. Fold change was calcu-
lated based on the threshold of amplification cycle for
each reaction using the 2-CT method [31], where target
genes were normalised to cyclophilin A and the control.

Microarray analysis

D283-MED cells were cultured in 10 cm dishes. Reverse
transcriptome amplification of extracted RNA was con-
ducted using Transplex® Whole Transcriptome Amplifi-
cation kit (Sigma) from 3 different replicate per time
point. NimbleGen 12x135k format array slide was uti-
lised for the microarray experiment, whereby each tran-
script was represented by 3 probes. Statistical analysis of
data was conducted using Matlab (script written by
Damon Daniels, University of Manchester), with cluster-
ing based on k-means. All microarray raw and normal-
ised data are available on NCBI: http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE106959).

Kaplan Meier plots

The R2: Genomics Analysis and Visualization platform
(http://r2.amc.nl) was used to interrogate the Cavalli me-
dulloblastoma dataset. Overall patient survival with high
and low expression of the hypoxic genes VEGF, GLUT1
and CA9 was explored using the R2 platform and
Kaplan Meier plots were generated.
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MTS assays

For irradiation treatment, cells were treated in 35 mm
dishes with 30-80 Gy x-ray irradiation in a CellRad Faxi-
tron (130-150kV, 5mA), before seeding into a 96 well
culture plates. Etoposide treatment was conducted dir-
ectly in pre-seeded 96 well plates, with treatment of
20 uM—100 uM etoposide. Cisplatin was also added dir-
ectly to cells plated in 96 well plates at concentrations
ranging from 1 to 5 ug/ul, doses which are comparable
to plasma levels obtained 1h after IV injection in clinic
[32]. CellTiter 96°Aqueous One Solution (Promega) was
added to wells and incubated for 2—4-h at 37°C at the
end of each treatment time point. Measurements were
obtained with a plate reader at 492nm (Multiskan,
Thermo Scientific).

ViaCount assays

D283-MED cells were cultured on 6 well plates, 24h
prior drug treatments. The cells were treated with eto-
poside (20 uM) or left untreated (control). At the end
each time point, cells were prepared according manufac-
turer protocols for FACS analysis. Samples were ran
using a ViaCount analysis on a GUAVA flow cytometry
(Guava EasyCyte Plus). Percentages of viable cells were
measured using the Guava ViaCount software.

Cell cycle analysis

D283-MED cells were cultured on 6 well plates in either
normoxia or hypoxia, with or without etoposide treat-
ment. The preconditioned cells were centrifuged and re-
suspended in HBSS (200 ul) and stained with 25l of
propidium iodide [10 ug/ml]. FACS analysis was per-
formed using GUAVA flowcytometry (Guava EasyCyte
Plus). Percentage of cells in each cell cycle phase was
calculated using Guaava Express Pro software.

Immunostaining

D283-MED were plated on polyornithine [100 pg/ml]
pre-treated coverslips 16 h prior to treatment. Cells were
fixed with paraformaldehyde (4%), and washed in PBS.
PBS containing 1% BSA and 0.1% Triton-X was used for
blocking and permeabilisation of cells, followed by pri-
mary antibody incubation with yH2AX for 16 h, and sec-
ondary antibody incubation for 30 min. Cells were then
stained with DAPI (Hoechst, 1 pl/ml in PBS) for 5 min.
Coverslips were mounted onto glass slides using Dako
mounting medium. Images were obtained using Leica
DM2500 microscope (Leica) and quantified using AQM
Advance 6 software (Kinetic Imaging Ltd., UK).

Western blotting

Conducted as described in [30]. In brief, 20-40 pug of
protein was resolved on a 10% SDS-PAGE gel and trans-
ferred to nitrocelloulose membrane (0.2 pM) before
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incubation in primary and secondary antibody. Amer-
sham ECL Prime Western Blotting Detection Reagent
(GE Healthcare) was used for development of signal, and
a G:BOX gel imaging system (Syngene, UK) used for de-
tection. Western blot quantification was conducted with
Image] 1.45s open source software (National Institutes
of Health, USA).

Comet assay

D283-MED cells were cultured in a 12 well plate directly
before drug treatments. Cells were collected by centrifu-
gation and re-suspended in 1 ml ice-cold PBS. The sam-
ples were diluted with pre-warmed agarose and loaded
on the slide provided by the OxiSelectTM comet assay
kit. Subsequently, the Comet assay procedures were per-
formed as per manufacturer’s protocol, followed by alka-
line electrophoresis. Vista dye was added immediately
after electrophoresis for DNA staining. Slides were then
imaged using Leica DM2500 microscope. Images were
analysed and quantified using the Image] 1.45s open
source software (National Institutes of Health, USA).

Statistical analysis

Statistical significance t-test was performed using Origi-
nPro 8.6.0 (OriginLab Corporation, USA) for mean
comparisons.

Results

Long term hypoxia induces etoposide and X-ray
irradiation resistance in MB and glioblastoma cells
Tumour hypoxia is usually associated with poor patient
survival. In medulloblastoma, tumours with increased
expression of VEGE, GLUT1 or CA9, markers indicative
of tumour hypoxia, result in reduced overall patient sur-
vival (Fig. 1). Such reduced survival rate for hypoxic
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tumours can be attributed, in part, to hypoxia-induced
chemo- and radioresistance. Indeed, hypoxia has previ-
ously been associated with increased drug resistance in a
number of tumours including glioblastoma, hepatocellu-
lar carcinoma and breast tumours [18, 33, 34]. Medullo-
blastoma exhibit poor response to chemo- and
radiotherapeutic interventions [35, 36], yet the possibility
that this could be explained by tumour hypoxia is unex-
plored. We used two MB cell lines: D283-MED (repre-
sentative of Group3/4) [37, 38], and MEB-Med8A
(representative of Group 3) [39, 40], to assess the effects
of hypoxia pre-conditioning on cell sensitivity to chemo-
therapeutic treatment and X-ray irradiation. The results
were compared with the classic glioblastoma cell line
U87MG. Glioblastomas have been extensively described
to be hypoxic, with oxygen concentration measured
around 1% O, or below [41, 42], with a strong correl-
ation between regional hypoxia and poor patient survival
[43]. Here we used 1% O, for hypoxic conditions as this
level can induce a hypoxic response (increased levels of
HIF-1a) without affecting cell proliferation or survival in
a range of brain tumour cell lines [30].

The D283-MED and MEB-Med8A cell lines display
differential sensitivity to etoposide and cisplatin [14, 44],
hence a range of doses have been used for both drugs.
The cells were exposed to 1% O, for 1day (acute hyp-
oxia) or for 5days (chronic hypoxia) prior to drug treat-
ment. The cells subsequently remained under hypoxic
conditions during treatment. Control samples were cul-
tured and treated at atmospheric O, levels (normoxia,
21% O,). For D283-MED cells, MTS survival assays
showed that 5 days of hypoxic preconditioning triggered
significant resistance to etoposide, with a cell viability of
~74% in hypoxic cells treated with etoposide compared
to ~ 14% in normoxic conditions (Fig. 2a). In contrast, 1
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day of hypoxic preconditioning did not induce any sig-
nificant resistance, suggesting that the duration of hyp-
oxic exposure is critical to alter the cell response to
drugs. The hypoxia-induced resistance to etoposide was
also observed in MEB-Med8A cells, although to a lesser
extent and with high variability thereby without reaching
statistical significance (Fig. 2b; p =0.57). The U87MG
glioblastoma cells displayed similar results to the
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D283-MED cell line (Fig. 2c), with 5 day preconditioning
resulting in significantly higher cell viability compared to
the normoxic controls. Results for the D283-MED cell
line were reproduced with the cell viability assay Via-
Count™, to ensure that the MTS results were not biased
by altered mitochondrial activity in hypoxia, and similar
data were obtained (Additional file 1: Figure S1A). Add-
itionally, we investigated the effects of hypoxia on cell
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death induced by cisplatin, an interstrand crosslinking
agent triggering double strand breaks. In all three cell
lines, we observed resistance to cisplatin in hypoxia (Fig.
2d-f), with statistical significance in the MEB-Med8A
and U87MG cells ((p < 0.05); Fig. 2d-f). Acquired resist-
ance was also investigated upon X-ray irradiation. In this
case, the cells were pre-incubated in 1% or 21% O, for 5
days and the cells were irradiated in normoxic condi-
tions to prevent loss of the oxygen enhancement effect
during irradiation treatment [45]. With this protocol we
ensured that only the effects of hypoxia preconditioning
were assessed. Similarly to etoposide treatment, yet to a
lesser extent, resistance to X-ray irradiation upon hyp-
oxic preconditioning was observed for the D283-MED
and the U87MG cell lines (Fig. 2g). The MEB-Med8A
cells showed an inverse trend (Fig. 2g). This counterintu-
itive result may be due to the fact that this cell line ap-
peared stressed by the cooling procedure prior to
irradiation, hence generating variable results.

We further assessed the ability of etoposide to induce
cell cycle arrest in D283-MED cells preconditioned or
not in 1% O,. Hypoxia preconditioning on its own did
not induce any cell cycle alteration (Additional files 1
Figure S1B and C). This important control indicates that
the reduced effect of etoposide in hypoxic precondi-
tioned cells is not due to changes in cell proliferation
agreeing with previous observations in glioblastoma [30].
Etoposide induced a clear G2/M arrest in normoxic cells
(63% of cells in G2/M when treated with etoposide,
compared to 30% for untreated cells). This arrest was
largely diminished in hypoxic cells with only 40% in G2/
M upon etoposide treatment (Additional files 1: Figure
S1B), in line with the effects of hypoxia on
etoposide-induced cell death. Taken together, chronic
hypoxia exposure results in resistance to the chemother-
apeutic agent etoposide induced cell death and cell cycle
arrest, and it also affects the sensitivity to cisplatin and
X-ray irradiation. This resistance is not due to alteration
of the cell cycle by hypoxia (Additional file 1: Figure S1)
or to the absence of oxygen during the irradiation
process, as irradiation was performed in atmospheric
conditions. It, therefore, points to global changes in cell
signalling, resulting in lack of sensitivity to the DNA
damaging protocols used.

Chronic hypoxic exposure induces large transcriptional
remodelling

To investigate the molecular mechanisms driving the
observed hypoxia-induced cell death resistance in
D283-MED, we used micro-array gene expression ana-
lysis to assess the global transcriptomic modifications
triggered by long-term hypoxia. Hypoxia-inducible fac-
tors (HIF) are the main transcription factor family dir-
ectly regulating gene expression in hypoxia. HIF-1 alpha
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(HIF-1a) is the primary isoform governing the expres-
sion of genes whose levels are directly dependent on
oxygen availability. The levels of HIF-la can oscillate
over-time due to the prolyl-hydroxylase negative feed-
back loop [46, 47]. Hence, hypoxia-induced gene expres-
sion was measured at a time point that correlates with
the first peak in HIF-la stabilisation, and at two later
time points subsequent to additional peaks of HIF accu-
mulation (Fig. 3a). Considering all three time points to-
gether, we found that 6124 transcripts were significantly
up- or down-regulated in hypoxia (Fig. 3b). This corre-
sponds to 4303 significantly regulated genes (and 23,611
non-regulated genes). Significantly regulated transcripts
were further analysed globally by clustergram (Fig. 3c),
which showed a large number of genes regulated at late
time points (64 h and 96 h), but less in acute conditions
(6h) (Fig. 3d, e). The genes regulated at the short 6 h
time-point were associated with the hypoxic response
(Additional file 2: Figure S2A). Conversely, at late
time-points, we found genes involved in apoptosis and
the cell cycle (Additional file 2: Figure S2B, C). Most
transcriptional analyses upon hypoxic exposure have
previously been performed after 24—48 h of hypoxia, cor-
responding to more acute conditions. Given the high
number of transcripts regulated only at 64 h and 96 h, it
is likely that many regulatory mechanisms in cellular
adaptation to long term hypoxia have been missed thus
far.

We initially performed a biased analysis and specific-
ally examined the expression of several multi-drug re-
sistance genes. These genes were the obvious candidates
potentially responsible for hypoxia-induced treatment
resistance and had previously been described to have a
role in hypoxia-induced drug resistance in other cellular
models including glioblastoma [48]. However, none of
the well described multi-drug resistance (MDR) genes,
abcbl (mdrl), abccl (mrpl) and abcgl, were
up-regulated in hypoxia (Fig. 4a).

For a non-biased analysis using the k-means clustering
method, the large number of regulated transcripts were
further grouped into 16 smaller clusters based on their
expression profile pattern, to find potential correlation
between groups of genes with similar expression dynam-
ics (Additional file 3: Figure S3A). From this we identi-
fied that genes involved in the response to double strand
breaks were strongly regulated at later hypoxic time
points. The effectiveness of DNA damage response
mechanisms can play a key role in response to chemo-
and radiotherapy. Therefore, we generated heat map
clustergrams of the HRR and NHE] pathways, which are
primarily responsible for the repair of DSB, the most le-
thal form of DNA damage (Fig. 4b and c). Strong regula-
tion was observed for a number of genes involved in
both NHE]J (Fig. 4b) and HRR (Fig. 4c). We further
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focused on HRR pathways as key genes involved in sig-
nal transduction for HRR were down-regulated strongly
by hypoxia. Down-regulated transcripts include brca2
and two members of the MRN complex, mrellA

(MRE11) and Nibrin (NBN). NBN plays a key role in
ATM activation and signal amplification of the DNA
damage response [49]. Therefore, the hypoxia mediated
down-regulation of key components of the HRR pathway
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MRE11A

could be responsible of the altered cellular response to
etoposide.

DNA damage recognition and signal transduction is
dampened in chronic hypoxia

Sensing of DNA damage is a crucial step in the initiation
of double strand break (DSB) repair by the HRR machin-
ery, and its alterations is likely to impact further down-
stream signalling of the repair pathway. The strong
reduction in NBN transcription (70% decrease) (Fig. 5a)
observed in the micro-array was confirmed using qPCR,
which equally showed a decrease of NBN mRNA by 70%
at 96 h (Fig. 5b). Similarly, NBN protein levels were re-
duced by ~ 50% after 96 h of hypoxic exposure (Fig. 5c).
To further understand the effect of chronic hypoxia on

each member of the MRN complex, mRNA levels of
NBN, MRE11 and RAD50 were determined by qPCR
upon 5 days of hypoxic incubation. Hypoxia had little ef-
fect on RAD50 mRNA levels, yet there was significant
down-regulation of MRE11 (~ 53%) comparable to NBN
(Fig. 5d), which was further confirmed at the protein
level (Fig. 5e). Surprisingly, such decreases in NBN and
MREL11 expression was not observed in the U87MG cells
(Additional file 4: Figure S4A).

NBN is responsible for the recruitment and activation
of ATM, which then gets activated through
auto-phosphorylation at the DNA breakage site [50, 51].
Active ATM phosphorylates downstream targets includ-
ing the histone variant H2AX and Chk2, ultimately
resulting in repair of the break or activation of
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pro-apoptotic pathways via p53 stabilisation (reviewed
by [52]). To understand whether the hypoxia-induced
down-regulation of NBN and MRE11 influences ATM
activation, we assessed the level of ATM and ATM
serine 1981 in hypoxic and normoxic D283-MED cells.
Etoposide has the ability to induce replication associated
DSB thus triggering ATM activation, measured by an in-
crease in ATM serine 1981 (Fig. 6). For cells
pre-incubated in 1% O, for 5 days we observed a ~70%
reduction in ATM levels compared to the normoxic con-
trol. Upon etoposide treatment ATM serine 1981 was ~

85% lower in hypoxic cells. This effect of hypoxia on
ATM levels was even stronger when cells were exposed
to more severe hypoxic conditions (0.1% O,) (Fig. 6). In
contrast, in MEB-Med8A and U87MG, hypoxia had little
effect on both ATM and phospho-ATM serine 1981
levels (Additional file 4: Figure S4 B and Additional file
5: Figure S5), in line with the previous observation of
NBN/MREL11 levels being unaffected by hypoxia in the
UB7MG cells.

To ensure that the reduced ATM activation was not a
result of decreased etoposide efficacy in hypoxia, we
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measured the levels of phosphorylated yH2AX, a marker
of double strand breaks. In control non-treated cells,
there was little YH2AX staining in normoxic and hyp-
oxic cells (Fig. 7a), indicating that, as expected, 1% O, is
not sufficient to create DSBs in cells. After 15 min of
etoposide treatment a similar level of YH2AX levels were
observed in normoxia and hypoxia (3.7-fold and 2.9-fold
increase, respectively; non-significant difference), dem-
onstrating that the efficacy of etoposide in generating
DSBs is not affected by the hypoxic conditions alone.
This was further confirmed using an alkaline comet
assay, which showed that hypoxia had no direct effect
on the ability of etoposide to induce DNA strand breaks.
Indeed, etoposide induced a clear comet tail in
D283-MED cells, and no difference of olive tail mo-
ments could be observed between the normoxic and
hypoxic cells at any time point (Fig. 7b). Together, these
experiments demonstrate that etoposide remains fully
functional in a low oxygen environment (1% O,). These
data suggest that as a result of decreased NBN and
MREL11 expression in hypoxic conditions there is a clear
dampening of further down-stream signalling in the
HRR pathway in D283-MED cells.

p53 activation is reduced in chronic hypoxia

An obvious candidate involved in both cell cycle arrest
and apoptosis is p53, a central transcription factor crit-
ical for the effectiveness of DNA damaging agents. We
have previously shown, the essential role of p53 in

etoposide-induced cell death in MB cells [13, 53]. ATM
is directly responsible for p53 stabilisation through phos-
phorylation [54]. Initially we assessed p53 transcriptional
activity in D283-MED by measuring the mRNA levels of
three well described p53 target genes: mdm2 (murine
double minute 2), puma (p53 upregulated modulator of
apoptosis) and p21. Hypoxia (5days at 1% O,) did not
alter the p53 basal activity, as shown by the similar levels
of expression of the target mRNA in all conditions (Fig.
8a). As expected, etoposide treatment strongly induced
the transcription of mdm2, puma and p21 (~32-, ~5-
and ~ 26-fold, respectively; Fig. 8b). However, in cells
preconditioned in hypoxia, no increase in puma mRNA
could be detected and only ~ 3- and ~ 2.5-fold increases
of mdm2 and p21 were observed, which is approxima-
tively 10 times lower than in normoxic cells (Fig. 8b).
The impairment of etoposide-induced p53 transcrip-
tional activity in hypoxic cells was further confirmed by
lower levels of p53 phosphorylation on serine 15 (Fig.
8¢, d), a marker of p53 activation [53]. Again, basal p53
and p53 serine 15 protein levels were similar in both
normoxic and hypoxic cells, yet in hypoxic cells, etopo-
side failed to fully induce p53 stabilisation with three
times lower levels of phosphorylation observed when
normalised to the total amount of p53 (Fig. 8d). Similar
results were obtained for the U87MG glioblastoma cell
line (Additional file 6: Figure S6A, B), suggesting that,
whilst recruiting different mechanisms of resistance,
there is a convergence on the activation of p53 protein.
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was calculated (see methods section). Results shown are the mean + S.EM of 3 independent experiments (n > 100cells). One-Way ANOVA

Discussion

Tumour hypoxia has been extensively correlated with
acquired resistance to cytotoxic drugs and irradiation,
yet the underlying mechanisms are variable between
tumour types. The impact of oxygen deprivation during
treatment as opposed to the cellular experience prior to
treatment has not been untangled so far. Whilst the oxy-
gen enhancement effect, whereby oxygen directly reacts
with broken end of DNA preventing their repair, has
been implicated in reduced effectiveness of radiotherapy
in hypoxia [45, 55], we here demonstrate that the cellu-
lar oxygenation history has a broad impact on cell adap-
tation and sensitivity to DNA damaging agents. To
observe resistance to drug and irradiation a chronic hyp-
oxic preconditioning of several days is necessary, in both
medulloblastoma and glioblastoma cells. Although, the
prolonged hypoxia exposure triggers different adaptive
mechanisms between cell lines, they ultimately converge
on the inability to activate the pro-apoptotic p53 protein,

thereby mediating cell death and cell-cycle arrest
resistance.

Timing and severity of hypoxic exposure impacts how
DNA repair mechanisms are altered

Low oxygen environments such as those experienced
within tumours have previously been reported to influ-
ence the response to DNA damage and its repair
(reviewed in [56, 57]). Hypoxia alone has been reported
to activate ATM, yH2AX and p53 [58-60], however, this
was not the case in our hypoxic conditions (1% O,),
which were much milder than those used in these previ-
ous studies (0-0.2% O,). Additionally, severe hypoxia
has been reported to reduce HRR capacity by the
down-regulation of key repair proteins such as RAD51
and BRCA1 [61-63]. Work by To et al. identified that
moderate hypoxia (1% O,) resulted in transcriptional
downregulation of NBN through HIF-la binding to
the NBN promoter thereby displacing Myc [64],
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supporting our own findings (Fig. 5). Such impact of
chronic hypoxia on HRR was reported to result in in-
creased sensitivity to DNA damaging substances such
as crosslinking agents (Cisplatin, Mytomycin C) and
irradiation [63, 65]. Our data suggest that hypoxia-
induced downregulation of the MRN complex, in
D283-MED cells, results in resistance to DSB indu-
cing agents by impairing signalling events downstream
of the MRN recruitment hence resulting in reduced
p53 activity and apoptosis.

This observed requirement of functional Nibrin and
MRN complex for triggering cell death is supported by
clinical studies, which demonstrated that expression of
Nibrin or an intact MRE11 complex was essential for
good treatment outcome [66—68]. Moreover, Cerosaletti
et al. have demonstrated the active role of NBN in ATM
activation, beyond its role in recruiting MRE11/Rad50

[69]. This mechanism fully support our observations,
where decrease of nibrin expression is associated with a
lack of ATM activation and subsequent absence of p53
stabilisation and activity.

The differing O, levels experienced by cells, are varied
in terms of localisation within the solid tumour and dur-
ation of the hypoxic episodes [26], including cycling
hypoxia [70]. In vitro experiments, trying to recreate
such variety of hypoxic severity and duration have led to
conflicting results rendering studies hard to compare
[71]. We identified that hypoxia-induced resistance to
etoposide required chronic (5 day), rather than acute (24
h), hypoxia. Previous studies investigating hypoxia and
drug resistance primarily utilised acute (6—48h) time
points. For example, resistance to cisplatin and doxo-
rubicin induced by hypoxia in non-small cell lung cancer
was due to incubation in 0.5% O, for only 16 h [72]. Our
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work highlights the necessity to explore both chronic
and acute exposure times to ensure adequate observa-
tion of any potential hypoxia induced resistance in can-
cer models. When considering the impact of hypoxia
duration on DNA repair mechanisms, short exposures
(minutes to hours) are thought to regulate repair pro-
teins through post-translational modifications and
changes to translation efficiency, whereas longer expos-
ure (days-weeks) results in alteration to transcription, as
well as epigenetic modifications [57]. The reported acti-
vation of numerous DNA repair proteins by hypoxia,
such as ATM and p53, as well as the reduced capacity of
HRR was primarily observed after acute and severe hyp-
oxic exposure (16-72h) [58, 59, 61-63, 65]. Our gene
expression analysis identified a significant proportion of
genes involved in DNA DSB repair that were only regu-
lated at later hypoxic time points (64—96 h). This high-
lights the need to extend hypoxia incubation periods for
DNA repair related studies. Thus far the impact of more
chronic moderate hypoxia on DNA repair mechanisms
and the biological and clinical implications may have
been missed.

Heterogeneity of the cellular response to hypoxia
between cell types

We observed a strong hypoxia-induced chemo- and
radio-resistance in the D283-MED cell line (Fig. 2), how-
ever the MEB-Med8A cells did not show the same ex-
tent of resistance. This differing response might be due
to the differences in the molecular signature of these
two cell lines. MEB-Med8A is a Group 3 medulloblas-
toma cell line, with strong associations with classical
Group 3 characteristics, such as myc amplification and
pvtl-myc fusion [39, 40], whereas the grouping affiliation
of D283-MED is more controversial, with a lack of myc
amplification pointing towards Group 4 [37, 38]. It was
previously demonstrated that the p53 and NF-kappaB
function is key in MB cells for an effective response to
DNA damaging agents [13, 14]. For example,
MEB-Med8A has a truncated form of p53, which dir-
ectly impacts on the sensitivity to chemotherapeutic
drugs [13, 14]. Such distinct genetic backgrounds are
likely to also explain their differing response to hypoxia,
reinforcing the view that the genetic make-up of a
tumour is a key factor to consider when selecting thera-
peutic regimens. In addition to the resistance observed
in D283-MED cells, similar effects of hypoxic precondi-
tioning were observed in U87MG cells, a classic glio-
blastoma cell line, in agreement with previous reports
[8, 73]. However, in the U87MG cells, hypoxia did not
influence the level of the MRN complex or ATM activa-
tion (Additional file 4: Figure S4) as it did in the
D283-MED cells, demonstrating again the heterogeneity
in the cellular response to hypoxia, beyond HIF
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activation. Additionally, we did not observe other re-
ported mechanisms of hypoxia-induced resistance such
as the induction of MDR genes [48] in the D283-MED
cells.

The complex and varied response to hypoxia is also
apparent when comparing in vitro cell line models to in
vivo organisms and pre-clinical models. In this case, our
results obtained in vitro mimicked the observations
made in hypoxic tumours in vivo, in terms of resistance
to cancer treatments. Moreover, hypoxia related changes
to DNA repair proteins have been translated to an in
vivo setting. For example, active phospho-ATM is
co-localised with the hypoxic marker CAIX in tumour
xenografts [74] and RAD51 down-regulation was ob-
served in cervical and prostate cancer xenografts [61] as
well as in a glioma model [75].

Conclusions

In conclusion, we have shown that the chemo- and
radio-resistance triggered by a chronic hypoxic exposure
can be explained by a broad gene expression remodelling
of components of the DNA DSB sensing machinery,
subsequently affecting the activation of DNA repair and
pro-apoptotic mechanisms. This suggests that reactiva-
tion of the signalling pathway could re-sensitise cells to
treatment. However, the way cells adapt to the low oxy-
gen levels is diverse with individual cell line or cell-type
specific responses. In this study for example, whilst the
U87MG cells exposed to chronic hypoxia, showed a
similar resistance to treatment and a similar dampened
p53 activation to the D283-MED cells, the mechanism
of alteration of the DNA DSB sensing and repair path-
ways were different. Such diversity in the cellular adapta-
tion, makes it difficult to define global clinical strategies
for hypoxic cell sensitisation. From a clinical perspective,
the development of HIF inhibitors targeting either HIF
mRNA transcription, translation, or HIF stabilisation
[76] might help tackling the treatment resistance prob-
lem by re-sensitising hypoxic tumours. In the U251 glio-
blastoma cells, campothecins (CPTs) analogues can
inhibit the accumulation of HIFla protein [77]. How-
ever, individual tumours react differently to hypoxic epi-
sodes, as highlighted by our own data, which exemplifies
the need to understand how hypoxia impacts tumour
cell biology on an individual tumour basis leading to a
more personalised clinical approach.

Additional files

Additional file 1: Figure S1. Hypoxia alone does not affect the cell
cycle of D283-MED cells. D283-MED cells were pre-incubated in 1% O,
for 5 days or left in normoxia 21% O,. Cells were treated with etoposide
(20 uM) for the indicated time. Cell survival was assessed using ViaCount
assay. (B) Cells were incubated in 21% O, or 5days in 1% O, and treated
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with etoposide (1 uM) for 30 h. Cell cycle profile obtained from the Guava
software. Quantitative data showing the percentage of cells in each
phase, value is calculated by dividing the number of cells in each phase
by the total number of cells for that sample. (C) Cell cycle profiles
obtained from flow cytometry. D283-MED cells were cultured in normoxia
or hypoxia (1% O,) for indicated times. Cell cycle profile quantification
showing percentage of cells in each cell cycle phase. (JPG 3287 kb)

Additional file 2: Figure S2. Expression profile analysis (A) Network
connection of upregulated genes in acute (6 h) hypoxia. IPA network
analysis linking the genes interaction in the 6 h hypoxia expression data.
The connections with HIF-1a are highlighted in light blue demonstrating
a direct connection with two of its target genes, EGLN3 and PFKFB3.
Genes highlighted in red are upregulated in our data at 6 h hypoxia.
Altogether, ~ 30% of the upregulated genes in acute hypoxia have an
interconnection with HIF-1, demonstrating a clear hypoxic response. (B,
Q) Clustergram analysis for apoptosis and cell signalling. An expression
profile was produced for genes involved in (B) apoptosis and (C) cell
signalling for D283-MED cells incubated in 1% O, for 0-96 h.

(JPG 3108 kb)

Additional file 3: Figure S3. k-means clustering of regulated transcripts.
Significantly regulated transcripts from microarray data clustered into one
of 16 groups using k-means. Transcripts with similar expression level are
grouped together in the same cluster. JPG 3008 kb)

Additional file 4: Figure S4. Expression of the MRN complex and ATM
activation are not affected by chronic hypoxia in U87MG cells. U87MG
cells were pre-incubated in 21% O,, 1% O, or 0.1% O, for 5 days prior to
4h 100 uM etoposide treatment where indicated. (A) mRNA levels of
NBN, MRE11, RAD50 were determined by gPCR, normalised to the
housekeeping gene cyclophillin A and shown as fold change relative to
normoxic control. (B) Levels of ATM and ATM serine 1981 determined
using western blotting and densitometry of a representative western blot
measured using Imagel. JPG 2679 kb)

Additional file 5: Figure S5. ATM levels and ATM activation in hypoxic
MEB-Med8A cells. MEB-Med8A cells were pre-incubated in 21% O,, 1% O,
or 0.1% O, for 5 days prior to 4h 50 uM etoposide treatment where
indicated. Levels of ATM and ATM serine 1981 determined using western
blotting and densitometry of a representative western blot measured
using Imagel. (JPG 2299 kb)

Additional file 6: Figure S6. Etoposide induced p53 activity is
dampened by chronic hypoxia in U87MG cells. UB7MG cells were
incubated in 1% O, or 21% O, for 5 days, prior to etoposide treatment
where indicated. Three p53 target genes, MDM2, PUMA and p21 were
assessed by gPCR. (A) Levels of MDM2, p21 and PUMA mRNA with or
without etoposide treatment. Data represented as normalised to
housekeeping gene (cyclophilin A) and fold change with respect to the
untreated control. Data are representative of a single experiment. (B)
Total p53 and phosphorylated p53 serine 15 levels assessed by western
blot. Densitometry quantification of the band intensity was analysed by
ImageJ of a single experiment. Plot represents p53 serine 15 normalised
over the p53 total. (JPG 2722 kb)
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