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A unique volatile signature 
distinguishes malaria infection 
from other conditions that cause 
similar symptoms
Hannier Pulido, Nina M. Stanczyk, Consuelo M. De Moraes & Mark C. Mescher*

Recent findings suggest that changes in human odors caused by malaria infection have significant 
potential as diagnostic biomarkers. However, uncertainty remains regarding the specificity of such 
biomarkers, particularly in populations where many different pathological conditions may elicit 
similar symptoms. We explored the ability of volatile biomarkers to predict malaria infection status in 
Kenyan schoolchildren exhibiting a range of malaria-like symptoms. Using genetic algorithm models 
to explore data from skin volatile collections, we were able to identify malaria infection with 100% 
accuracy among children with fever and 75% accuracy among children with other symptoms. While 
we observed characteristic changes in volatile patterns driven by symptomatology, our models also 
identified malaria-specific biomarkers with robust predictive capability even in the presence of other 
pathogens that elicit similar symptoms.

The presence of disease can alter human odors, including volatile emissions from skin and breath. The potential 
diagnostic value of such changes in volatile chemistry has long been recognized, and volatile-based diagnostics 
are being actively explored for a number of diseases, including several types of cancer1,2. However, a major 
challenge for the development of volatile disease biomarkers is posed by the inherent variability of human 
volatile emissions, which are highly labile and can be influenced by a wide range of genetic, physiological, and 
environmental factors3. In light of this variability, there is reason to speculate that volatile biomarkers might be 
of particular value in diagnosing diseases caused by insect-borne pathogens, which frequently manipulate the 
odors of their hosts in ways that influence vector behavior and might therefore be highly conserved4–6. Indeed, 
a number of recent studies on human malaria have identified characteristic changes in the volatile emissions 
from the skin and breath of infected individuals7–12. Yet, uncertainty remains about the physiological bases of 
these volatile changes and the extent to which they are uniquely caused by malaria or products of pathological 
processes that might be shared with other disease states. Addressing this uncertainty has important implications 
for understanding the diagnostic value of such biomarkers, particularly for use in human populations where 
numerous pathological conditions are widespread and may give rise to similar symptomatology, as is often the 
case for malaria endemic regions.

A number of previous studies have documented malaria-induced changes in human skin7–9 and breath10–12 
volatiles, as well as the volatile emissions of rodent malaria hosts13, while others have characterized the emissions 
of Plasmodium cells grown in vitro14–16. Effects of infection on host odors have also been reported to influence 
vector behavior, with several studies reporting increased mosquito attraction to hosts harboring transmissible 
stages of Plasmodium parasite13,17,18 and at least one showing enhanced attraction to host odor profiles in which 
individual compounds were manipulated to mimic the relative up- or downregulation caused by infection13.

Enhanced vector recruitment during the transmissible stage of infection is hypothesized to facilitate malaria 
transmission19, suggesting that the pathogen may benefit from actively manipulating host volatiles20. To the extent 
that Plasmodium parasites, or other vector-borne pathogens, alter host odors in ways that consistently influence 
vector attraction, they may also generate unique patterns of effects on host volatile profiles—possibly tailored to 
the olfactory responses of particular vector species—distinct from more general changes in volatile emissions 
that arise as mere byproducts of pathology. The presence of such unique signatures of infection might, in turn, 
facilitate the identification of pathogen-specific biomarkers capable of reliably predicting infection status even 
in populations where numerous pathological conditions elicit similar symptoms.
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The identification of such robust biomarkers is of particular interest for malaria, which frequently occurs 
in populations affected by numerous other diseases and ailments that elicit similar symptoms, including fever, 
headaches, diarrhea, vomiting, etc., and might therefore plausibly be expected to have somewhat similar effects on 
underlying physiological processes that also influence volatile emissions. In the case of malaria, disease progres-
sion often entails alternating asymptomatic and symptomatic phases that may recur indefinitely if not treated. 
In a previous study, we reported differential up and down regulation of specific volatile organic compounds in 
both symptomatic and asymptomatic schoolchildren in Kenya7. Yet, while these characteristic changes were 
highly predictive of malaria infection, the specific processes by which the presence of malaria parasites alter 
human volatiles remain almost entirely unknown. One recent study reported that a malaria-derived isoprenoid 
increases the production of several monoterpenes and aldehydes in vitro21, but this does not account for the 
majority of volatile alterations observed by our and other studies7–12 suggesting that the underlying mechanisms 
are likely to be complex.

To explore the extent to which changes in the odors of malaria infected humans are associated with the 
presence of symptoms, we analyzed the volatile profiles of symptomatic children, using volatile data previously 
collected from a large field trial in Western Kenya7. Specifically, we compared the skin volatile profiles of symp-
tomatic schoolchildren who tested positive for malaria to those of children presenting similar (malaria-like) 
symptoms, but who tested negative for malaria. We used a genetic algorithm framework to predict malaria infec-
tion and identify volatile compounds associated with disease status. Our goal was thus to discover which volatile 
changes might be specific to malaria, and which might be caused by infection with other illnesses or conditions.

Results and discussion
Volatile signatures differentiate symptomatic children with and without malaria infec-
tion.  We first explored whether there was a clear signature of malaria infection among symptomatic children. 
In addition to examining differences in the volatile profiles of malaria-infected and uninfected children present-
ing any symptom (i.e., all symptomatic children), we made similar comparisons for non-exclusive subsets of 
children exhibiting the two most commonly observed symptoms in our dataset: fever and diarrhea. For each of 
these three symptom categories, discriminant analysis of principal components (DAPC) revealed clear separa-
tion in the overall volatile composition between individuals with and without malaria infection (Fig.  1, S1), 
with a permutational analysis of variance resulting in significant differences in both arms (pseudo-F1,48 = 2.96, 
p = 0.022) and feet (pseudo-F1,49 = 2.91, p = 0.003). These results indicate that the effect of malaria infection on 
volatile profiles is apparent even when directly compared to other conditions that produce similar symptoms.

We next used a genetic algorithm predictive model trained to recognize malaria infection based on a subset 
of the data (70%) to predict malaria infection status in the remaining test set (30%). For children exhibiting any 
symptom, this model was able to predict malaria status with 75% accuracy (Tables 1 and 2). Given that children 
included in this comparison likely exhibited highly variable physiological states (i.e., different symptomatologies 

Figure 1.   DAPC plots using the first discriminant function show separation between uninfected (blue) and 
malaria-infected (red) symptomatic children (exhibiting fever, diarrhea, vomiting or abdominal pain on the day 
of collection).
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Table 1.   Performance of trained models and 95% confidence intervals when used to predict symptomatic 
malaria infected (SM) vs. symptomatic uninfected (SU) children in the test set. SM with any symptom n = 29, 
fever n = 18, diarrhea n = 11. SU with any symptom n = 22, fever n = 11, diarrhea n = 9.

Any sympt Any sympt Fever Fever Diarrhea Diarrhea

Arm Foot Arm Foot Arm Foot

Accuracy % 75 (43, 94) 66.7 (35, 90) 100 (54, 100) 83.3 (36, 99) 75 (19, 99) 75 (19, 99)

Sensitivity % 85.7 (42, 99) 57.1 (18, 90) 100 (40, 100) 100 (40, 100) 100 (16, 100) 50 (1.2, 99)

Specificity % 60 (17, 95) 80 (28, 99) 100 (16, 100) 50 (1, 99) 50 (1.3, 99) 100 (16, 100)

Top Predictors C5 C8 C8 C5 C8 C9

C9 C31 C9 C8 C9 C17

C12 C44 C17 C12 C17 C51

C15 C49 C27 C15 C52 C52

C17 C50 C50 C20

C20 C51 C51 C27

C22 C52 C52 C31

C38 C55 C56 C38

C44 C56 C44

C49 C62 C49

C50 C50

C52 C51

C62 C52

C55

C62

Table 2.   Compound IDs and selected key compounds. Compounds in bold are important predictors of 
malaria status for children with fever/diarrhea. Asterisks (*) indicate compounds that are key predictors of 
symptom presence/absence in children without malaria.

Compound ID

C5 Toluene

C8 Octane

C9 Hexanal

C12 2,4-dimethylheptane

C14 Ethyl cyclohexane*

C15 2,4-dimethylhept-1-ene

C17 4-hydroxy-4-methylpentan-2-one

C20 Ethylbenzene

C22 m-xylene or p-xylene

C27 o-xylene

C31 Unidentified

C38 Propylcyclohexane

C43 1-ethyl-3-methylbenzene

C44 Benzaldehyde

C49 Unidentified

C50 1,2,4-trimethylbenzene

C51 Decane

C52 Octanal

C55 S(-)-limonene

C56 2-ethylhexan-1-ol

C61 Nonanal*

C62 Dodecane
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arising from the presence of different pathogens and various stages of disease progression) this level of predictive 
accuracy indicates that the volatile signature of malaria infection is relatively robust. Our model exhibited similar 
accuracy (75%) in predicting malaria infection among the subset of symptomatic children with diarrhea; for chil-
dren with fever, however, the model predicted infections status with 100% accuracy (based using arm volatiles) 
(Tables 1 and 2). It also bears noting that only five compounds were required to predict malaria among children 
with diarrhea, compared to greater numbers of compounds required for the other symptom categories. This is 
consistent with the observation that few compounds show significant alteration with malaria infection status 
among children with diarrhea, compared to more extensive differences observed for children with fever (Fig. 2).

The higher level of predictive accuracy for children with fever may reflect distinct features of the pathology 
occurring in malaria-infected children. As Plasmodium completes its lifecycle within the host, fever is typically 
associated with the rupture of mature schizont cells and the release of merozoites that then reinvade red blood 
cells22. The resulting intermittent cyclic fever may cause unique physiological effects compared to other ailments, 
and may also play a role in the downregulation of volatiles, including the compounds that drive the predictive 
accuracy of our model (Fig. 2). Indeed, it is notable that malaria symptomatic children show decreased volatile 
production compared to both malaria-free febrile and asymptomatic children (Fig. 2, S3), as fever might other-
wise be presumed to cause a general upregulation of volatile emissions due to increased body temperature and 
sweating causing increased evaporation of compounds from the skin.

Of the eight volatile compounds selected by our model to predict malaria status from the arms of children 
with fever (Tables 1 and 2), hexanal (C9), decane (C51) and octanal (C52), have been identified as predictors of 
malaria infection in several previous studies7,8,15,16. In the current study, these compounds were also important 
predictors of infection status among children exhibiting any symptom, as well as among the subset of children 
with diarrhea. Hexanal and octanal are also known to serve as host-location cues for mosquitoes, eliciting 
attraction or repellence depending on their concentration23,24. It is thus intriguing that the emission of these 
compounds appears to be specifically influenced by the presence of malaria parasites. As we have previously 
speculated3,7, malaria-induced changes in volatile cues that enhance transmission probability via effects on 
mosquito attraction19 might generate robust biomarkers of infection status.

The presence of symptoms alters volatile profiles in malaria‑free children.  To explore how 
the presence of symptoms itself influences volatile emissions, we next used predictive models, similar to those 
described above, to examine differences between the volatile profiles of symptomatic and asymptomatic chil-
dren who tested negative for malaria infection. Here our models were able to predict the presence of symptoms 
with 60–80% accuracy across the three symptom categories described above (fever, diarrhea, any symptom) and 
using either foot or arm volatiles (Table 3). Several compounds that were important predictors for the presence 

Figure 2.   Volcano plots showing changes in individual compounds in malaria-infected symptomatic children 
relative to malaria-uninfected symptomatic children. Significantly up- or downregulated compounds (p < 0.05 
and absolute fold change > 1.5) are shown in green. Compound IDs are listed in Table 2.
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of symptoms in these models were also important predictors of malaria infection status among symptomatic 
children in our previous analyses, including C8 (octane), C9 (hexanal) and C17 (4-hydroxy-4-methylpentan-
2-one), (Table 1).

Comparing the volatile emissions of malaria-free children exhibiting any symptom to those without symptoms 
revealed significant downregulation of several compounds (Fig. 3), with ethylbenzene (C20) showing the great-
est downregulation in the presence of symptoms for both arm and foot volatiles. When focusing on individual 

Table 3.   Performance of trained models and 95% confidence intervals when used to predict malaria-
uninfected symptomatic (SU) vs. malaria-uninfected asymptomatic (ASU) children in the test set. SU with any 
symptom n = 22, fever n = 11, diarrhea n = 9. ASU n = 16.

Any sympt Any sympt Fever Fever Diarrhea Diarrhea

Arm Foot Arm Foot Arm Foot

Accuracy % 62.5 (24, 91) 77.8 (40, 97) 80 (28, 99) 66.7 (22, 95) 60 (15, 94) 83.3 (36, 99)

Sensitivity % 80 (28, 99) 100 (47, 100) 50 (1.2, 98) 0 (0, 84) 50 (1.2, 98) 50 (1.2, 98)

Specificity % 33.3 (0.8, 90) 50 (6.7, 93) 100 (29, 100) 100 (39, 100) 66.7 (9, 99) 100 (39, 100)

Top Predictors C8 C5 C14 C5 C9 C5

C12 C8 C17 C8 C12 C15

C15 C9 C22 C14 C14 C17

C17 C12 C49 C20 C15 C20

C20 C14 C22 C17 C22

C22 C17 C27 C44 C27

C38 C20 C38 C49 C43

C51 C27 C51 C50 C49

C52 C43 C61 C52 C50

C61 C50 C62 C56

C62 C56 C62

C61

C62

Figure 3.   Volcano plots showing changes in individual compounds in malaria-uninfected symptomatic 
children relative to malaria-uninfected asymptomatic children. Significantly up- or downregulated compounds 
(p < 0.05 and absolute fold change > 1.5) are shown in green. Compound IDs are listed in Table 2.
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symptoms, malaria-free children with diarrhea showed no significant changes in compound levels compared to 
those without symptoms, whereas febrile children without malaria showed an upregulation of several foot volatile 
compounds (Fig. 3), in contrast to the downregulation of compounds seen in febrile children with malaria com-
pared to malaria-free children without symptoms (Fig. S3). The only compound downregulated in febrile children 
without malaria was C17 (4-hydroxy-4-methylpentan-2-one) (Fig. 3), which was further downregulated in 
malaria-infected children compared to febrile children without malaria (Fig. 2). Among upregulated compounds 
in malaria-free febrile children, C9 (hexanal) was previously reported to be downregulated in malaria-infected 
vs uninfected children7. The overlap in compounds identified as important predictors of malaria infection and 
of symptoms in malaria-free children (but with different patterns of up and down regulation) is intriguing and 
may reflect the influences of different pathological conditions on the same underlying physiological processes.

Overlap in volatile biomarkers for malaria and other diseases.  As noted above, the use of volatile 
diagnostics is under investigation or optimization for a number of diseases, including various types of cancer and 
pneumonia, and many studies have examined the volatiles in breath that change dependent on disease status1,2,25. 
In the case of lung cancer, a large-scale trial for diagnostic detection using VOCs is currently underway26. For 
many other diseases, however, significant challenges remain to be overcome prior to the implementation of 
large-scale trials, including the identification of a robust and reproducible set of candidate biomarkers3, which 
can be complicated by the absence of standardized methods for volatile collection and analysis27. In the case 
of malaria, several previous studies have reported successful prediction of infection status based on analysis of 
VOCs; however, there is considerable variation in the predictive compounds identified, likely owing to divergent 
methodologies across studies. Two compounds, hexanal and nonanal, have consistently been found informative 
with respect to with malaria status, each reported in three separate studies from skin and breath volatiles as well 
as in the prediction here of malaria status in symptomatic children (Table 4). Among compounds identified as 
predictors of malaria infection in the current study, hexanal and nonanal, along. with decane and octanal, have 
previously been implicated as disease predictors in studies on other diseases in addition to malaria (Table 4). 
Hexanal, nonanal, octanal and have been identified in the breath of lung and (along with decane) breast can-
cer patients, while nonanal has also been identified as a predictor of colorectal cancer and pneumonia2,25. A 
further comparison of the key predictive compounds from this study and those identified for other diseases 
reveals several compounds that are specific to the differentiation of infection status for malaria, including octane, 
4-hydroxy-4-methylpentan-2-one, o-xylene and 2-ethylhexan-1-ol. This specificity may be related to the efficacy 
of these compounds in distinguishing malaria infections form other conditions that give rise to similar symp-

Table 4.   Volatiles altered by malaria in previous studies, and other diseases (bold). Lung cancer: hexanal, 
octanal, nonanal, 3-hydroxy-2-butanone, 3-methyl-butanal (in vitro)28–30. Breast cancer: hexanal, heptanal, 
octanal, nonanal, decane, limonene, cyclohexane31,32. Colorectal cancer: nonanal33. Prostate: Toluene34. Head 
and neck cancer: isoprene, limonene35,36. Pneumonia: nonanal, ethylbenzene, benzaldehyde, 3-methyl-butanal, 
cyclohexane, dodecane, 3-carene37–40.

Skin Breath In vitro Mice

Current de Boer 2017
De Moraes 
2018

Robinson 
2018 Berna 2015 Shaber 2018 Berna 2018 Kelly 2015 Correa 2017

Capuano 
2019

De Moraes 
2014

Octane
(R)- or (S)-
2-methylbu-
tanal

Toluene Heptanal CO2 Methyl unde-
cane α-terpinene n-butane Hexanal Hexanal Tridecane

Hexanal
(R)- or (S)-
3-methylbu-
tanal

Hexanal Octanal Isoprene Dimethyl 
decane m-cymene n-hexane Styrene N,N-dibutyl-

formamide

4-hydroxy-
4-methylpen-
tan-2-one

(R)- or (S)-
3-hydroxy-
2-butanone

Ethylcyclohex-
ane Nonanal Acetone Trimethyl 

hexane Limonene Toluene Ethylbenzene 2-pyrrolidone

o-xylene 6-methyl-5-
hepten-2-one

4-hydroxy-
4-methylpen-
tan-2-one

(E)-2-octenal Benzene Nonanal Terpinolene 2,3-dimethyl 
heptane

3-methyl-2-
buten-1-ol

Decane 1-dodecene Ethylbenzene (E)-2-decenal Cyclohexane Isoprene Allyl methyl 
sulfide

1,4-dimethyl-
trans-cyclooc-
tane

3-methyl buta-
noic acid

Octanal Dodecanal Propylcy-
clohexane 2-octanone Allyl methyl 

sulfide Tridecane 1-methylthio-
propane 2-hexanone

2-ethylhexan-
1-ol

Methyl dode-
canoate

2-ethylhexan-
1-ol

1-methylthio-
propane α-pinene

(Z)-1-meth-
ylthio-1-pro-
pene

Benzaldehyde

Nonanal Nonanal
(Z)-1-meth-
ylthio-1-pro-
pene

3-carene
(E)-1-meth-
ylthio-1-pro-
pene

Ethylcyclohex-
ane Dodecane

(E)-1-meth-
ylthio-1-pro-
pene

Benzaldehyde

Decane
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toms; however, this remains speculative given that many of the other diseases for which volatile diagnostics have 
been studied do not display similar symptoms. Finally, the recurrence of certain compounds such as hexanal and 
nonanal as predictors of multiple diseases may, again, reflect the influences of different pathological conditions 
on the same underlying processes, but with disease-specific patterns of effects on volatile emissions that can give 
rise to distinct signatures.

Conclusion
Volatile biomarkers hold significant promise for the development of non-invasive techniques for disease 
diagnosis1. However, extensive variation in human volatile emissions, including that due to the presence of 
many different diseases and ailments within human populations, poses a significant challenge. While the robust-
ness of malaria biomarkers across varying genetic and environmental backgrounds still needs to be assessed 
in large-scale trials before they could enter clinical use, the current findings indicate that volatile biomarkers 
can identify malaria infection even in the face of variation elicited by the presence of other symptomatic condi-
tions. Our predictive models identified malaria cases with 100% accuracy for children with fever and with 75% 
accuracy for other symptoms. We also identified specific compounds that are important predictors of malaria 
infection among symptomatic children, as well as compounds that are more generally indicative of the presence 
of symptoms. These results suggest that, while some changes in human volatile profiles are broadly associated 
with the presence of symptomatic disease, malaria elicits specific changes in key compounds that provide a 
unique signature of infection.

Methods
Ethics approval and participant selection.  This study was approved by The Pennsylvania State Uni-
versity (IRB #41,529), ETH Zürich (EK2015-N-59), and the Kenya Medical Research Institute (SERU 391) and 
all experiments were performed in accordance with relevant guidelines and regulations. Before sample collec-
tion, the study and consent form were explained to parents/guardians and their written informed consent was 
obtained.

Participant exclusion criteria included (1) receipt of antimalarial medication during the previous 2 wk; (2) 
chronic disease, such as HIV; (3) not signing (or having a parent sign) the consent form; and (4) refusal of 
malaria treatment.

Symptom categories.  Our analyses were performed on data derived from skin volatile samples (1 h col-
lections from arms and feet) collected from students at 41 primary schools near Mbita Point, Kenya between 
2013 and 20167. Symptoms were self-reported in an initial interview using a standardized questionnaire; symp-
toms indicative of malaria included fever, abdominal pain, rash, diarrhea, vomiting and body aches. For our 
analysis, we sorted children into the categories (1) any symptom (2) fever, (3) diarrhea and (4) asymptomatic. 
The any symptom category comprised children with fever, diarrhea, abdominal pain or vomiting; the fever and 
diarrhea categories were non-exclusive subsets of the any symptom category. Abdominal pain and vomiting were 
not analyzed independently due to low numbers of children with these symptoms. Malaria infection status was 
initially assessed via rapid diagnostic testing (SD Bioline), then confirmed by light microscopy and PCR. For the 
current study, children in the malaria infected category tested positive by both microscopy and PCR.

The dataset used for this study comprised volatile profiles for 114 children. Once categorized into symptoms 
for the below analyses, numbers of children in each category were as follows: malaria infected children with any 
symptom = 29, fever = 18, diarrhea = 11. Malaria-free children with any symptom = 22, fever = 11, diarrhea = 9, 
asymptomatic = 16.

Volatile data.  Arm and foot volatiles were collected simultaneously for 1 h by enclosing the arm (from wrist 
to above the elbow) or foot (to below the knee) in a teflon bag, pushing filtered air through an entry port (arm: 
1.1 L/min, foot: 1.8 L/min) and pulling it through an exit port (arm: 0.8 L/min, foot: 1.1 L/min) where it was 
collected on an adsorbent HaySepQ filter. Compounds trapped on filters were then eluted with 150ul dichlo-
romethane and analyzed by GC–MS (Full methods: De Moraes 20187).

Statistical analyses.  Discriminant Analysis of Principal Components (DAPC)41,42 was used to compare 
the separation of healthy from malaria-infected individuals. These group differences were tested using a permu-
tational analysis of variance (PERMANOVA) with the Euclidean similarity on the scaled data43.

We used a Genetic Algorithm (GA) to predict disease condition and to select one or more sets of compounds 
for each of the symptom subsets to be assessed as a potential biomarker for malaria. Each subset was randomly 
split into 70% for model training and 30% for validation. Using the training set, each model was trained five times 
using a repeated tenfold cross-validation. Genetic Algorithms are feature selection procedures that are conceptu-
ally based on the principle of evolution by natural selection44. They have been used as a promising multivariate 
approach in the analysis of metabolomics datasets45,46. The algorithm works by evolving initial sets of variables 
(chromosomes) from a random population via cycles of replication, recombination and mutation of the fittest 
chromosomes. The iterations were repeated for 100 generations, with a population size of 50 candidate solutions 
for each model and crossover and mutation probabilities of 0.8 and 0.1, respectively. The performance of the 
fittest GA model was used to predict the samples in the validation set. To complement the predictive models, 
a differential analysis between infection statuses was performed using the limma R package47. The GA models 
were formulated with the caret R package48.
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Data availability
All relevant data reported in this paper have been deposited in ETH Zurich’s Research Collection, http://​hdl.​
handle.​net/​20.​500.​11850/​458605 (https://​doi.​org/​10.​3929/​ethz-b-​00045​8605).
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