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a b s t r a c t

Epigallocatechin-3-gallate (EGCG) is a type of catechin found in green tea. EGCG exhibits a

variety of activities, including anti-inflammatory, antidiabetes, antiobesity, and antitumor.

In this review, we focus on the antitumor effects of EGCG. EGCG inhibits carcinogen activity,

tumorigenesis, proliferation, and angiogenesis, and induces cell death. These effects are

associated with modulation of reactive oxygen species (ROS) production. Although EGCG

has a dual function of antioxidant and pro-oxidant potential, EGCG-mediated modulation

of ROS production is reported to be responsible for its anticancer effects. The EGCG-mediated

inhibition of nuclear factor-�B signaling is also associated with inhibition of migration,

angiogenesis, and cell viability. Activation of mitogen-activated protein kinases activity

upregulates the anticancer effect of EGCG on migration, invasion, and apoptosis. In addi-

tion, EGCG could also induce epigenetic modification by inhibition of DNA methyltransferase

activity and regulation of acetylation on histone, leading to an upregulation of apoptosis.
reactive oxygen species Although EGCG promotes strong anticancer effects by multiple mechanisms, further studies

are needed to define the use of EGCG in clinical treatment.
© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access

article under the CC BY-NC-ND license
1. Introduction

Green tea is one of most consumed beverages around
the world.1 It is extracted from the leaves of Camellia
sinensis, which is an evergreen shrub of the Theaceae
family. Green tea is composed of proteins (15–20% dry
weight), amino acids (1–4% dry weight), fiber (26% dry

weight), carbohydrates (5–7% dry weight), minerals and
trace elements (5% dry weight), lipids (5% dry weight), and
polyphenols (30% dry weight).2 Among polyphenols, green
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tea is characterized by the presence of large amounts of
catechins, including epigallocatechin-3-gallate (EGCG), epi-
gallocatechin (EGC), epicatechin-3-gallate, and epicatechin
(EC). Among them, EGCG has been known as the most
powerful protective agent in cancer chemoprevention.3 The
beneficial effects of EGCG are reported in the treatment of
cancer,4 cardiovascular diseases,5 diabetes,6 neurodegener-
ative diseases,7 and liver diseases.8 This review describes
the chemopreventive effect and molecular mechanisms of
EGCG.
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. EGCG

.1. Structure of EGCG

GCG has three aromatic rings (A, B, and D) that are linked
ogether by a pyran ring (C; Fig. 1). The health-promoting
unction of EGCG is attributed to its structure. For example,
he antioxidant activity of EGCG results from the transfer of
ydrogen atom or single-electron transfer reactions, involving
ydroxyl groups of the B and/or D rings.9 Furthermore, the B
nd D rings are associated with an inhibition of proteasome
ctivity in vitro.10 The A ring of EGCG is involved in the inhibi-
ion of heat-shock protein 90.11 The hydroxyl group at the 5′

osition in the B ring also inhibits the growth of Helicobacter
ylori in the stomach.12

.2. Bioavailability of EGCG

preclinical pharmacokinetic study reported that EGCG has
ow oral bioavailability (2–13%) in rodents.13 Multiple pro-
esses contribute to the low bioavailability of EGCG, including
he following: (1) low solubility in the gastrointestinal fluid;
2) slow and hard absorption; (3) fast metabolism and elimi-
ation system; (4) wide tissue distribution. A previous study
y Yang et al14 evaluated the bioavailability of tea catechins
n humans. In that study, 18 individuals were given differ-
nt amounts of green tea (1.5–4 g in 500 mL of water) and the
ime-dependent plasma concentrations and urinary excretion
f tea catechins were evaluated. The maximum plasma con-
entration of EGCG was 326 ng/mL, which was detected at
.4–2.4 hours after ingestion of the tea preparation; the half-
ife of EGCG was 5.0–5.5 hours.14 Over 90% of EGC and EC
ere detected in urine within 8 hours,14 and most EGCG was

xcreted in the bile.15 Furthermore, EGCG is extracted by the
resystemic hepatic system16 and is eliminated by the intesti-
al efflux transporter.17 In another study, rats and mice were
iven a 0.6% green tea polyphenol preparation for 14 days,
nd the distribution of EGCG was observed in multiple tissues.

he highest concentration of EGCG was detected in the large

ntestine (1.1 �M); significant concentrations of EGCG were
lso found in the kidneys, prostate, and lungs.18 Suganuma

ig. 1 – Structure of epigallocatechin-3-gallate.
(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-
-yl]3,4,5-trihydroxy-benzoate. Molecular weight:
58.37.
G 17

et al19 suggested that frequent consumption of green tea aids
in maintaining a high level of EGCG. Therefore, understand-
ing the mechanisms of EGCG’s biological effects could improve
our understanding of its bioavailability as well as its role in
chemoprevention.

3. Anticancer effects of EGCG

3.1. Inhibition of carcinogen activity and
tumorigenesis

The initiation and progression of cancer are related to epi-
genetic alterations, including aberrant DNA methylation and
acetylation. EGCG inhibits tumorigenesis of the lung, oral-
digestive tract, and prostate. In A/J mice, EGCG inhibits
the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone-induced lung tumorigenesis though
inhibition of 8-hydroxydeoxyguanosine formation by antiox-
idant function.20 In addition, EGCG inhibits cisplatin- or
dimethylarsinic acid-induced lung tumorigenesis,21,22 and
diethylnitrosamine-induced liver tumorigenesis through the
inhibition of insulin-like growth factor signaling in obese
and diabetic C57BL/KsJ-db/db mice.23 N-methyl-N′-nitro-N-
nitrosoguanidine-induced carcinogenesis is also blocked by
EGCG treatment in glandular stomach.24 Oral administra-
tion of EGCG inhibits the growth of prostate cancer cells
in xenograft models though the upregulation of apoptosis.25

Although mechanisms of EGCG on anticarcinogenesis and
antitumorigenesis are not clear, the anticancer effect of EGCG
has been reported in multiple cancers.

3.2. Inhibition of tumor proliferation and angiogenesis

Tumor growth is closely related to angiogenesis, which
provides oxygen and nutrients to tumor cells.26 Vascular
endothelial growth factor (VEGF) has been known as an
important angiogenic factor. EGCG inhibits tumor growth and
angiogenesis by the downregulation of VEGF expression in
serum-deprived HT29 human colon cancer cells and in vivo.27

In human pancreatic cancer and breast cancer cells, EGCG
also reduces VEGF expression, resulting in inhibition of tumor
growth and/or angiogenesis.28,29 EGCG inhibits angiogenesis
by the downregulation of VEGF and increases the cytotoxic
T-lymphocyte infiltration into the tumor, thereby reducing
the tumor in UV-induced skin tumors.30 In human colorec-
tal cancer cells, EGCG inhibits tumor growth and activation
of VEGF receptor signaling.31 In addition to inhibition of VEGF
signaling, EGCG also modulates protein tyrosine kinase activ-
ity of epidermal growth factor receptor (EGFR) and Platelet-
derived growth factor receptor (PDGFR), which is implicated as
a contributing factor in the proliferation of cancer cells. EGCG
modulates EGFR singaling through multiple ways: (1) inhibi-
tion of autophosphorylation of EGFR;32 (2) increase of EGFR
phosphorylation at Ser1046/1047 by p38 mitogen-activated
protein kinase (MAPK) in colon carcinoma, resulting in the

downregulation of EGFR expression;33 (3) induction of EGFR
internalization into the endosome;34 (4) modulation of mem-
brane lipid organization, and then inhibition of binding EGF
to EGFR.35 EGCG also inhibits PDGFR �-phosphorylation and
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downstream signaling in cultured vascular smooth muscle
cells and spheroid formation of human glioblastoma cells.36

3.3. Inhibition of tumor migration and invasion

Inhibition of migration and invasion of tumor cells could be a
target of anticancer therapy. EGCG downregulates hepatocyte
growth factor (HGF)-induced matrix metalloproteinase (MMP)-
9 and activation of urokinase-type plasminogen activator
(uPA) to inhibit invasion and metastasis in hypopharyn-
geal carcinoma cells.37 Furthermore, inhibition of HGF-Met
signaling by EGCG also blocks migration and invasion.38,39 In
melanoma cells and oral cavity cancer cells, EGCG decreases
uPA activation and expression of MMP-2 and MMP-9 by
suppression of HGF-Met signaling, respectively.38,39 EGCG
also modulates small guanosine triphosphatase proteins
(Rac and Rho), which are important for cellular migra-
tion, and reduces activation of Rho A, and then inhibits
invasion in the three-dimensional oral squamous cell car-
cinoma models.40 Inhibition of Rac1 activity downregulates
vasodilator-stimulated phosphoprotein expression, which
results in blocking of cell migration and invasion in breast
carcinoma cells.41 In addition, EGCG inhibits migration of
heregulin �1-induced breast carcinoma cells,42 and invasion
of thrombin-induced hepatocellular carcinoma cells.43 EGCG
inhibits medulloblastoma cell migration selectively on colla-
gen through the upregulation of adhesion by induction of �1
integrin expression.44

3.4. Induction of cell death

3.4.1. Caspase-dependent apoptosis
Apoptosis has been known as a key strategy for the elimi-
nation of cancer cells. The ratio between antiapoptotic Bcl-2
families (Bcl-2 and Bcl-xL) and proapoptotic Bcl-2 families
(Bax and Bak) decides the cellular susceptibility against anti-
cancer drugs in cancer cells. Furthermore, BH3-only proteins
(PUMA, Noxa, and Bim) bind with anti-Bcl-2 proteins to inhibit
their functions, resulting in induction of apoptosis. Several
studies have reported that EGCG modulates expression of
the Bcl-2 family of proteins. EGCG induces apoptosis by the
downregulation of Bcl-2 and/or upregulation of Bax expres-
sion in nasopharyngeal carcinoma cells,45 breast carcinoma
cells,46 prostate carcinoma cells,47 hepatoma cells,48 bladder
carcinoma cells,49 and ovarian carcinoma cells.50 Induction
of PUMA by EGCG also leads to apoptosis in colon carci-
noma cells.51 Modulation of the expression of the Bcl-2 family
of proteins by EGCG is one of the important factors for
induction of apoptotic cell death. The p53 tumor suppressor
gene plays a critical roles in the inhibition of tumorigenesis
through cell cycle regulation, checkpoint activation, apopto-
sis, and DNA repair. Therefore, p53-mediated signaling is
involved in apoptosis by anticancer drugs. EGCG could induce
p53-mediated cell death through induction of stabilization
and activity of p53. In both prostate and breast carcinoma
cells, EGCG increases Bax expression, a downstream target

of p53.46,52 Furthermore, EGCG induces p53-mediated nonste-
roidal anti-inflammatory drug-activated gene-1 expression,
which has proapoptotic and antitumorigenic effects, in head
and neck cancer cells.53 EGCG regulates p53 expression, and
Integr Med Res ( 2 0 1 4 ) 16–24

most studies attributed this to the phosphorylation of p53
at the serine residue. Recently, acetylation of p53 by EGCG
was also reported to increase p53 transcriptional activity
by inhibition of class I histone deacetylases.54 By contrast,
Berindan-Neagoe et al,55 reported that the knock down of p53
by small interfering RNA and EGCG have a synergic effect
on the induction of apoptosis in cervical carcinoma cells.
Berindan-Neagoe et al55 suggested that a combination of the
knockdown of p53 and EGCG leads to the activation of alter-
native apoptosis pathways. In addition, EGCG could modulate
phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt)
signaling, which is the activated signaling in most cancers.
EGCG upregulates phosphatase and tensin homolog deleted
on chromosome 10 expressions, which is a negative regulator
of PI3K/Akt signaling, and then increases human pancreatic
carcinoma apoptosis.56 EGCG also induces apoptosis by the
inhibition of PI3K/Akt pathway in bladder carcinoma cells.49

3.4.2. Caspase-independent apoptosis
Apoptosis is mainly modulated by caspases in both intrinsic
and extrinsic pathways. However, apoptosis-induction fac-
tor (AIF) and endonuclease G (EndoG) are also involved in
apoptosis in a caspase-independent manner. Both AIF and
EndoG translocate to nucleus, cleave DNA, and then increase
apoptosis.57 Recently, Lee et al58 reported that EGCG induces
caspase-independent apoptosis in laryngeal epidermoid car-
cinoma cells. Although EGCG markedly decreases cell viability,
caspase activation was not detected. Furthermore, caspase
inhibitor also has no effect on EGCG-induced cell death. Lee et
al58 suggested that EGCG induces the reduction of the mito-
chondrial membrane potential, release of cytochrome c, and
subsequent translocation of AIF and EndoG into the nucleus.

3.4.3. Lysosomal membrane permeabilization-mediated
cell death
Lysosomes are cytoplasmic organelles, which have a lot of
acid hydrolytic enzymes. Lysosome breaks macromolecules
and nonfunctional organelles into small particles, and helps
to reuse them as new materials. Lysosomal proteases are kept
in lysosomes in normal conditions. However, lysosomal mem-
brane damage leads to lysosomal membrane permeabilization
(LMP),59 resulting in the release of acidic contents and pro-
teases. Excessive lysosomal membrane damage increases cell
death, including apoptosis,60 necrosis,61 and LMP-mediated
cell death.62 Among them, LMP-mediated cell death is depend-
ent on cathepsins rather than caspases.59 Recently, Zhang
et al62 reported that EGCG induces nonapoptotic cell death
through LMP in hepatoma cells. In a serum-free medium,
EGCG increases reactive oxygen species (ROS) and cytosolic
vacuolization due to lysosome dilation. Subsequently, cathep-
sins are released from the lysosome into the cytosol, and
cathepsin inhibitors block EGCG-mediated cell death. Thus,
it was suggested that EGCG could have anticancer effects by
the new cell death mechanism (i.e., LMP).

3.4.4. Autophagy

Autophagy is essential for cellular homeostasis through
the degradation of cellular constituents. During autophagy,
cytosolic constituents are sequestered into double membrane
vesicles (autophagosome), and then fuse with lysosome for

dx.doi.org/10.1016/j.imr.2013.12.001
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egradation (autolysosome). Autophagy generally has a pro-
urvival effect on normal cells and cancer cells, but the
eregulation or hyperactivation of autophagy activates cell
eath signals rather than survival signals. The formation of
utophagosomes was measured with induction of LC3 II form
nd beclin-1, and the formation of autolysosomes was exam-
ned with the downregulation of p62. EGCG increases the LC3
I form and degrades p62 in mesothelioma cells.63 When cells
ere treated with autophagy inhibitor (chloroquine), EGCG-

nduced apoptosis is increased.63 Therefore, induction of
utophagy by EGCG activates survival signal in mesothelioma
ells. EGCG-mediated autophagy has protective functions in
ndotoxin-stimulated macrophage,64 palmitate-treated vas-
ular endothelial cells,65 and UVB irradiation-treated retinal
igment epithelial cells.66 However, understanding the effects
f EGCG on autophagy requires further studies.

.5. Adjuvant

he use of EGCG as an adjuvant could enhance anticancer
ffects of drugs through pharmacokinetics modulation. Mul-
idrug resistance acts as a major barrier in drugs-mediated
nticancer effects in cancer cells. A main mechanism
nderlying this multidrug resistance is overexpression of
he P glycoprotein, which acts as an efflux pump of
nticancer agents. The EGCG induces doxorubicin-induced
ultidrug-resistant carcinoma cell death and vinblastine-

nduced drug-resistant cell death through modulation of
-glycoprotein function.67,68 EGCG also overcomes tamoxifen
esistance in breast carcinoma cells by downregulating the
ctivity of P glycoprotein as well as the activity of breast
ancer-resistance protein.69 By contrast, EGCG could directly
ind with the anticancer drugs, resulting in the downregu-

ation of anticancer effects. For example, EGCG binds with
unitinib, which is a multitargeted tyrosine kinase inhibitor.70

n patients with metastatic renal cell carcinoma, EGCG inter-
eres with the anticancer effect of sunitinib, and it is suggested
hat patients who are taking sunitinib should stop drinking
reen tea or at least have an interval of 4 hours between
rinking green tea and taking sunitinib.70 However, although
igh concentrations of EGCG (224 �M) antagonize the antitu-
or effect of bortezomib, low concentrations of EGCG (16 �M)

ad no antagonistic effect in prostate carcinoma xenograft
odels.70 In other words, EGCG did not antagonize the anti-

ancer effect of bortezomib, and therefore the antagonistic
ffect of EGCG might be dependent on species and concen-
rations.

. Modulation of signaling molecules

.1. ROS: antioxidant versus pro-oxidant effects

OSs are critical signaling molecules that modulate anti-
ancer effects. First, EGCG could directly scavenge ROS.
he antioxidant activity of EGCG results from the trans-
er of hydrogen atom or single-electron transfer reactions,
nvolving hydroxyl groups of the B and/or D rings. Elec-
ron paramagnetic resonance (EPR) spectroscopy and density
unctional theory calculations have been used to examine
G 19

the redox properties of the green tea polyphenols, such as
EGCG. Using EPR, it is reported that EGCG reacts with O2–,
which induces oxidation of the D ring.71 Furthermore, EGCG
also could efficiently scavenge OH and O2–.72 The antioxi-
dant effect of EGCG is related to anticancer function. For
example, EGCG reduces cell proliferation and induces apo-
ptosis in low-dose H2O2 (10 �M)-treated colon carcinoma
cells,73 and downregulates 12-O-tetradecanoylphorbol-13-
acetate-mediated oxidative stress in cervical carcinoma
cells.74 In addition, EGCG inhibits adhesion and invasion of
hepatoma cells through its antioxidant properties.75 EGCG
could also indirectly downregulate ROS levels by induction of
antioxidant enzymes. In EGCG-treated colon cancer xenograft
models, EGCG markedly induced nuclear factor erythroid
2-related factor 2 (Nrf2) protein expressions, which is a crit-
ical transcription factor for the expression of antioxidant
enzymes, resulting in the inhibition of tumor growth and
metastasis.76

By contrast, a number of studies suggested the pro-oxidant
effect of EGCG on anticancer function. EGCG under cell culture
conditions is unstable and produces ROS by auto-oxidation.77

EGCG-mediated ROS production is dependent on the con-
centration of EGCG, temperature, pH, and antioxidant levels
in the culture condition. The half-life of EGCG is less than
30 minutes, and H2O2 formation was detected at 25 �M and
10 �M in McCoy’s 5A culture media and in the presence of
HT29 cells, respectively.78 The production of ROS by auto-
oxidation of EGCG is important for its cytotoxic effects in
cancer cells. EGCG induces cell death by ROS production
in pancreatic carcinoma cells,79 in myeloid leukemia,80 in
human lymphoblastoid B cells,81 in hepatocarcinoma cells,82

in mesothelioma cells,63,83,84 in endometrial adenocarcinoma
cells,85 and in laryngeal epidermoid carcinoma cells.58 More-
over, in vivo studies also show that the pro-oxidant effect of
EGCG is related to anticancer effects. Li et al86 reported that
oxidative stress by EGCG is involved in DNA damage-induced
repair response and apoptosis.

4.2. Nuclear factor-�B

Nuclear factor-�B (NF-�B) has been known as a regulator of
gene expression, which plays a critical role in the develop-
ment and progression of various stages of cancer, such as
proliferation, migration, invasion, and apoptosis. In normal
cells, the dimer of NF-�B is sustained in cytosol due to its
interaction with the inhibitors of NF-�B (I�B). When cells are
stimulated by NF-�B activators, such as growth factor and
proinflammatory cytokines, I�B kinase (IKK) phosphorylates
I�B, following which I�B undergoes proteasome-dependent
degradation. EGCG-induced prostate carcinoma apoptosis is
associated with the downregulation of NF-�B activation,
resulting in the downregulation of Bcl-2.52 Downregulation of
NF-�B activity by EGCG is also involved in cyclooxygenase-
2 expression, which is an important enzyme for tumor cell
proliferation, migration, and invasion.87,88 In addition to apo-
ptosis, inhibition of NF-�B by EGCG blocks invasion through

reduction of MMP-9 expression in bladder carcinoma cells
and lung carcinoma cells,89,90 and inhibits proliferation and
migration of colon carcinoma cells.91 Moreover, EGCG inhibits
VEGF production in head and neck carcinomas, suggesting



beta-cell damage in diabetic rats.106 EGCG increases the reduc-
tion of islet cell mass and number of insulin-positive beta
cells through the production of ROS at nanomolar plasma

Fig. 2 – Anticancer effects and molecular mechanisms of
20

the effect of antiangiogenic and antiproliferative activities.92 A
previous study reported that when transgenic prostate adeno-
carcinoma mice are supplemented with green tea polyphenols
in their drinking water there was a reduction in the expression
of NF-�B and IKK compared with control mice.93 The mecha-
nism of NF-�B inhibition by EGCG is suggested by suppression
of IKK activation.94

4.3. MAPKs

MAPKs are composed of extracellular signal-regulated kinase
(ERK), p38 MAPK, and c-Jun N-terminal kinase (JNK), and the
deregulation of MAPK cascades contributes to cancer. Sup-
pression of ERK phosphorylation by EGCG decreases MMP-2
and MMP-9 activity by the downregulation of MMP-2 and
MMP-9 messenger RNA (mRNA) in fibrosarcoma cells,95 and
inhibition of ERK and JNK by EGCG reduces MMP-9 mRNA
expression in phorbol 12-myristate 13-acetate-treated gastric
carcinoma cells.96 By contrast, EGCG promotes proMMP-7 pro-
duction and mRNA expression by the activation of the JNK
pathway in colorectal carcinoma cells.97 In addition to migra-
tion and invasion, MAPK could regulate cell death. Activation
of the JNK pathway is involved in EGCG-induced cytochrome c
release and apoptosis in colorectal carcinoma cells,97 and inhi-
bition of ERK pathway downregulates cell growth and induces
apoptosis in anaplastic thyroid carcinoma cells.98 Regulation
of MAPK signaling by EGCG could be markedly different in
various cell types and depends on the concentration of EGCG.

4.4. Epigenetic modification

Cancer is modulated by both genetic and epigenetic events.
Epigenetic events could alter gene expression without chang-
ing the primary DNA sequence, and epigenetic mechanisms
include DNA methylation and histone acetylation. These
epigenetic changes are involved in the alteration of gene func-
tion and expression, leading to malignant cellular formation.
Among various epigenetic modifications, DNA methylation
is most extensively studied in mammals. Hypermethylation
on the DNA molecule limits the binding of transcription fac-
tors to promoters, resulting in the recruitment of additional
silencing-associated proteins and gene silencing. This meth-
ylation is mediated by DNA methyltransferase (DNMT). EGCG
has been known as an inhibitor of DNMT by direct inhibitory
interaction with the catalytic site of DNMT.99 EGCG reverses
the methylation-mediated downregulation of the tumor sup-
pressor p16INK4a, retinoic acid receptor �, O6-methylguanine
methyltransferase, and the DNA mismatch repair gene human
mutL homolog 1 expression in esophageal cells, and then
reduces cell growth and colony formation.100 Furthermore,
EGCG upregulates tissue factor pathway inhibitor-2 (TFPI-
2), which is inversely related to an increasing degree of
malignancy. EGCG reduces cell growth and increases apo-
ptosis in renal carcinoma cells through the upregulation of
TFPI-2 by EGCG-mediated demethylation.101 In contrast to
methylation, the upregulation of histone acetylation results

in an open chromatin structure associated with transcrip-
tional activation. In skin carcinoma cells, EGCG increases
levels of acetylation on lysine of histone H3 and histone
H4, leading to the upregulation of tumor-suppressor genes,
Integr Med Res ( 2 0 1 4 ) 16–24

p16INK4a and Cip1/p21.102 However, EGCG also suppresses
androgen-mediated transcription and cell growth by the
downregulation of androgen receptor acetylation in prostate
carcinoma cells.103 Recently, Ko et al104 reported that EGCG
could negatively modulate Smad signaling by the inhibition
of acetylation in lung carcinoma cells. The effect of EGCG on
acetylation is controversial and is dependent on cell types and
cell condition.

5. Safety of EGCG

Although tea polyphenols are safe and high consumption
of tea polyphenols (600–1800 mg/day) has no adverse reac-
tion, toxicity of EGCG has also been reported. Schmidt
et al105 reported that EGCG is a major contributor to the
cytotoxic effect of green tea extracts in hepatocytes. Further-
more, treatment with EGCG enhanced high glucose-mediated
EGCG.
EGCG, epigallocatechin-3-gallate; MAPKs,
mitogen-activated protein kinase; NF-�B, nuclear factor-�B;
ROS, reactive oxygen species.

dx.doi.org/10.1016/j.imr.2013.12.001
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oncentrations.106 In addition, there are many studies about
he toxic effects of EGCG in inducing hepatic failure.107–109

. Conclusion

GCG promotes anticancer effects by modulation of mul-
iple processes, including inhibition of carcinogen activity,
umorigenesis, proliferation, and angiogenesis, and induction
f cell death. These effects are associated with modulation
f ROS production, inhibition of NF-�B, down/upregulation of
APKs activation, and regulation of epigenetic change (Fig. 2).
lthough EGCG exhibits a strong anticancer effect in vitro, fur-

her studies are needed to define the use of EGCG in clinical
reatment.
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