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Abstract

Functional brain networks have been shown to undergo fundamental changes associ-

ated with aging or schizophrenia. However, the mechanism of how these factors

exert influences jointly or interactively on brain networks remains elusive. A unified

recognition of connectomic alteration patterns was also hampered by heterogeneities

in network construction and thresholding methods. Recently, an unbiased network

representation method regardless of network thresholding, so called minimal span-

ning tree algorithm, has been applied to study the critical skeleton of the brain net-

work. In this study, we aimed to use minimum spanning tree (MST) as an unbiased

network reconstruction and employed structural equation modeling (SEM) to unravel

intertwined relationships among multiple phenotypic and connectomic variables in

schizophrenia. First, we examined global and local brain network properties in

40 healthy subjects and 40 schizophrenic patients aged 21–55 using resting-state

functional magnetic resonance imaging (rs-fMRI). Global network alterations are mea-

sured by graph theoretical metrics of MSTs and a connectivity-transitivity two-

dimensional approach was proposed to characterize nodal roles. We found that net-

works of schizophrenic patients exhibited a more star-like global structure compared

to controls, indicating excessive integration, and a loss of regional transitivity in the

dorsal frontal cortex (corrected p <.05). Regional analysis of MST network topology

revealed that schizophrenia patients had more network hubs in frontal regions, which

may be linked to the “overloading” hypothesis. Furthermore, using SEM, we found

that the level of MST integration mediated the influence of age on negative symptom

severity (indirect effect 95% CI [0.026, 0.449]). These findings highlighted an altered

network skeleton in schizophrenia and suggested that aging-related enhancement of

network integration may undermine functional specialization of distinct neural sys-

tems and result in aggravated schizophrenic symptoms.
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1 | INTRODUCTION

The brain is a complex system composed of structurally and function-

ally interacting regions. Modeling intricate interactions of neuronal

populations using network languages has demonstrated that brain

regions are interconnected in a manner that seeks a balance between

functional integration and segregation, termed as small-worldness

(Bassett & Bullmore, 2006; Bullmore & Sporns, 2012). Efficient infor-

mation processing in complex systems requires a topological organiza-

tion that balances functional integration, which refers to convergent

information processing in distributed brain regions, and functional

segregation, which refers to region-specific selective processing. The

fine-grained trade-off between integration and segregation changes

throughout the lifespan (Cao et al., 2014; Damoiseaux, 2017; Smit, De

Geus, Boersma, Boomsma, & Stam, 2016) and aberrant topological

organization is widely reported in various neuropsychiatric disorders

(Bassett & Bullmore, 2006). While most previous studies focused on

the influence of a single factor for example, age or disease, several

recent studies suggest an interplay between these factors in neuro-

psychiatric disorders characterized by marked network-level dys-

regulations, particularly schizophrenia (Sheffield & Barch, 2016;

Sheffield, Rogers, Blackford, Heckers, & Woodward, 2019). However,

the exact mechanism underlying possible interactions between aging

and disease-related network disruptions remained unexplored.

In addition to the possible interplay between multiple behavioral

and neurological variables, another key consideration when investigat-

ing brain-behavior associations is the choice of different network con-

struction methods. For example, evident discrepancies have been

reported on the level of global topological organization in the disease

of schizophrenia, with both enhanced integration and segregation of

functional brain networks being reported (van den Heuvel &

Fornito, 2014). The discrepant findings in the previous literature may

reflect that schizophrenia is a highly heterogeneous disorder, or alter-

natively may reflect the application of heterogeneous approaches for

network construction and comparison. For example, network level

analyses have employed weighted or binary networks, different

parcellation schemes, and different normalization procedures (van

Wijk, Stam, & Daffertshofer, 2010). These variances may pose a chal-

lenge to a unified recognition of network alteration patterns in the

disease.

In this study, we aim to employ a set of graph-theoretical and sta-

tistical tools to help address the above-mentioned two problems in a

clinical cohort of schizophrenia patients. First, we used minimum span-

ning tree (MST) algorithm as an unbiased network representation

method. An MST is a connected subgraph with minimum cost from the

original network. Comparisons can then be made based on MSTs con-

structed in different individuals, thus avoiding arbitrary thresholding or

normalization protocols employed in conventional graph theoretical

studies. It has been demonstrated that MST is critical to global network

communication (Van Mieghem & Magdalena, 2005; Van Mieghem &

Van Langen, 2005; Wang, Hernandez, & Van Mieghem, 2008) and the

disruption of MST structure has been found in various neuropsychiatric

disorders (Stam et al., 2014), including in two schizophrenia electroen-

cephalography (EEG) studies (Jonak, Krukow, Jonak, Grochowski, &

Karakuła-Juchnowicz, 2019; Krukow, Jonak, Karpi�nski, & Karakuła-

Juchnowicz, 2019). However, to the best of our knowledge, there was

no previous study, which applied the MST approach, together with rs-

fMRI, to disentangle network-level dysregulations in schizophrenia.

In addition to investigating organizational principles in the global net-

work structure using MST, the characterization of distinct roles of indi-

vidual brain regions in the network is of critical importance to determine

brain-based biomarkers for schizophrenia and to identify targets for

novel neuromodulatory treatments that aim at modulating network level

disruptions in psychiatric disorders, for example, (Zhao et al., 2019). Two

kinds of prominent nodes emerged in previous brain network studies:

hubs and connectors (Sporns & Betzel, 2016). A hub is a node with high

number of links to other nodes, while a connector serves as a “bridge”
between different modules. These two concepts were often mixed and

referred to as “connector hubs” (A. F. Alexander-Bloch et al., 2013;

Brandl et al., 2018; Sporns & Betzel, 2016), because nodes with high cen-

trality would also likely play an important role in network transportation.

Previous analysis based mainly on centrality may not capture the full

spectrum of nodal properties in networks, as it has been found that some

low-degree nodes in biological networks might also be crucial in inter-

module communication (Del Ferraro et al., 2018; Joy, Brock, Ingber, &

Huang, 2005). We propose that it is more appropriate to delineate nodal

roles in MST based on their “connectivity” and “transitivity,” that is, dif-
ferentiating the ability of serving as a hub or an intermodule connector,

where modules are identified as different hubs since clusters are absent

in MST. Under the proposed heuristic two-dimensional framework, we

aimed to investigate how the nodal-level characteristics in MST were

disrupted in schizophrenia.

Secondly, to model the interactions among these variables simul-

taneously, we employed a mediation analysis framework based on

structural equation modeling (SEM) (Kline, 2005). This statistical

framework allows to identify interwoven causal pathways among mul-

tiple variables, and specifically focuses on the mediation effect, where

an intervening variable critically mediates the relationship between an

independent variable and an outcome variable (Baron & Kenny, 1986;

MacKinnon, 2008). Previous studies have demonstrated developmen-

tal and age-related changes in MST integration, such that MST inte-

gration increases with age from childhood to adulthood, that is,

toward star-like configurations (Smit et al., 2016). In older populations,

aging was found to be related to a loss of segregation of distinct
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functional systems (Cao et al., 2014; Ferreira et al., 2016; Geerligs,

Renken, Saliasi, Maurits, & Lorist, 2015). These two trajectories can be

jointly quantified by MST parameters such as leaf fraction. In MST-

based pathology studies, it has been demonstrated that the topology of

MSTs is associated with ADHD symptoms (Y. Wang et al., 2019), cogni-

tive impairment in multiple sclerosis (Tewarie et al., 2014), and illness

duration in schizophrenia (Jonak et al., 2019). In the present study, we

aimed to develop a unified model, which accounts for the intricate

interactions between aging, brain network architecture, and behavior

performances simultaneously. Based on previous research, we specifi-

cally aimed at determining whether alterations in the optimal structure

of brain networks, reflected by MST metrics, was influenced by age

throughout adulthood and whether these alterations play a role in cog-

nitive impairments and clinical symptoms in schizophrenia.

In summary, we examined functional brain network changes as

well as their interaction with aging and cognitive outcomes using MST

algorithm and rs-fMRI data from 40 schizophrenia patients (22–

50 years) and 40 matched healthy control subjects. We tested three

hypotheses for the MST: (1) The regular pattern of network integra-

tion or segregation observed in healthy controls would be dys-

regulated in schizophrenia; (2) Regional level properties, characterized

by connectivity and transitivity, would be disrupted in schizophrenia;

(3) The influence of age on cognitive functions and clinical symptoms

would be partly mediated by MST structure change (Figure 1).

2 | MATERIALS AND METHODS

2.1 | Participants

The data used in this study is from the UCLA Consortium for Neuro-

psychiatric Phenomics (CNP) dataset, which is publicly available in the

OpenfMRI database with accession number ds000030. A detailed

description of the dataset can be found in (Poldrack et al., 2016). All

participants gave written informed consent according to procedures

approved by the Institutional Review Boards at UCLA and the Los

Angeles County Department of Mental Health. Initially, the dataset

includes 130 healthy subjects and 50 schizophrenia patients. During

preprocessing, subjects were excluded if they had missing structural

data, mis-registration between fMRI and sMRI scans, >2 mm (transla-

tion) or 2� (rotation) maximum framewise displacement in the fMRI

scan or failure in fMRI normalization. Data from 98 healthy subjects

and 40 patients adhered to our quality control process. To address

the problem of unbalanced sample size, we used an unbiased bipartite

matching method and obtained a sample of 40 healthy and 40 schizo-

phrenia patients matched by age and gender (Figure S1).

Functional MRI data were collected using a T2*-weighted

echoplanar imaging (EPI) sequence with the following parameters:

slice thickness = 4 mm, 34 slices, TR = 2 s, TE = 30 ms, flip

angle = 90�, matrix 64 × 64, FOV = 192 mm, oblique slice orientation.

The resting fMRI scan lasted 304 s, resulting in 152 images for each

subject. The parameters for the T1 weighted structural image were the fol-

lowing: TR = 1900 ms, TE = 2.26 ms, FOV = 250 mm, matrix = 256 × 256,

sagittal plane, slice thickness = 1 mm, slice number = 176.

2.2 | Behavioral assessment and dimensionality
reduction

All subjects in the present study completed extensive neuropsycho-

logical behavior assessments. In the present study, we focused on two

cognitive dimensions: executive function and working memory, both

of which were reported to be significantly and chronically altered in

schizophrenia (Sheffield & Barch, 2016). Briefly, working memory

F IGURE 1 Overview of the analysis flow in the present study. First,
we construct brain connectivity map from interdependencies between
BOLD signals measured in resting state. Next, the minimum spanning tree
algorithm was used to extract the critical skeleton of the brain network.
We then studied global network properties reflected by MST metrics. In
the meantime, we used the proposed connector-hub classification scheme
to analyze nodal roles. Finally, the global MST metrics were entered into
the mediation model to test the hypothesis that the age-behavior
relationship was mediated by brain network structures
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encompasses the ability to store and retrieve information on short

time scales, whereas executive functions often encompass a broad

range of functions that promote cognitive control and guide behavior.

For the patients, we adopted previously established framework for

classifying schizophrenia symptoms, in which symptoms were divided

into “positive symptoms,” such as delusions hallucinations and disor-

ganization, and “negative symptoms,” including anhedonia, social

withdrawals and flattened affect (Sheffield & Barch, 2016). The sever-

ity of these symptoms was quantified using Scale for the Assessment

of Negative and Positive Symptoms (SANS/SAPS) ratings.

Given that we were concerned with multiple cognitive domains,

each of which is reflected by several different assessments, a reduc-

tion of dimensionality is vital to account for exponentially increasing

model complexity. In SEM, factor analysis is often performed to

extract latent variables underlying multiple manifest variables (scores

from behavior tests in our case). In our study, for the cognitive tests,

the latent cognitive variables were reflected by scores from multiple

behavior tests in the same manner performed in a previous research

(Kebets et al., 2019). In detail, the score of working memory was built

on results of (1) WMS (Wechsler Memory Scale) digital span test;

(2) WMS symbol span test; (3) WMS letter-number sequencing test.

Similarly, executive function was based on (1) D-KEFS (Delis-Kaplan

Executive Function Systems) verbal fluency test; (2) CPT (Continuous

Performance Test)-D prime test; (3) Stroop cognitive conflict test.

For the symptoms, since the factor structure of SANS/SAPS scores

is ambiguous and controversial (Andreasen, Arndt, Alliger, Miller, &

Flaum, 1995; Emsley, Rabinowitz, Torreman, Early, The RIS-INT-35 Early

Psychosis Global Working Group, 2003), we conducted an exploratory

factor analysis (EFA) to identify the underlying factors. The EFA or CFA

(confirmatory factor analysis) represents a common first step in SEM,

where the factor loadings would be later integrated into the model. The

extracted latent factors broadly agree with the validated three-factor

structure (i.e., paranoia, disorganization, and negative symptoms). Demo-

graphics and scores for behavior assessments are summarized in Table 1,

where antipsychotics dosage was converted into chlorpromazine-

equivalent value by using ratios presented in (Kroken, Johnsen, Ruud,

Wentzel-Larsen, & Jørgensen, 2009; Leucht et al., 2014). In total, five

behavioral domains, including three clinical and two behavioral variables

were included in the subsequent correlation and SEM analysis.

2.3 | FMRI data preprocessing

The fMRI data were preprocessed in MATLAB using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm) and Data Processing & Analysis for Brain

Imaging (DPABI) tool (Yan, Wang, Zuo, & Zang, 2016). The following

preprocessing procedures were performed: (1) Removal of the first

2 time points (Di & Biswal, 2018; Kebets et al., 2019; Mellem

et al., 2020); (2) Realignment to adjust head motion; (3) co-Registration to

the structural T1 image; (4) Normalization by using T1 segmented DARTEL

(Ashburner, 2007); (5) Nuisance signal regression, including 24 head

motion parameters, white matter signal and cerebrospinal fluid signal

(Hallquist, Hwang, & Luna, 2013); (6) Linear detrending; (7) Band-pass fil-

tering of 0.01–0.1 Hz; (8) Smoothing with an 8 mm FWHM kernel.

In addition, to test the validity of our results, we performed a

series of validation analysis in which processing strategies were varied

TABLE 1 Demographics and behavior data for subjects

Healthy controls (n = 40) Schizophrenia patients (n = 40)
HC vs. SZ
p value

Age, mean (SD) 37.1 (8.85) 37.4 (8.92) .892

Male/female 29/11 29/11 1

Antipsychotics dosage, mean (SD) N/A 357.8 (1865.0) N/A

Working memory, mean (SD) 62.2 (11.2) 50.2 (10.8) <.001

Executive function, mean (SD) 249.6 (9.1) 240.2 (9.38) <.001

Scale for the Assessment of Negative Symptoms

(SANS), mean (SD)

N/A 1.44 (0.72) N/A

Framewise displacement (translation), mean 0.4019 0.5763 <.001

Framewise displacement (rotation), mean 0.3713 0.3700 .985

Scale for the Assessment of Positive Symptoms

(SAPS), mean (SD)

N/A 0.63 (0.44) N/A

Working memory tests

WMS Digital Span 28.0 (6.3) 23.0 (4.9) <.001

WMS Symbol Span 23.8 (6.7) 17.3 (6.4) <.001

WMS Letter-Number Sequencing 19.8 (2.5) 17.4 (3.3) <.001

Executive function tests

D-KEFS Verbal Fluency 39.9 (10.8) 30.0 (8.5) <.001

CPT-D Prime 322.0 (6.3) 317.5 (11.7) .04

Stroop Conflict Effect 0.98 (0.03) 0.96 (0.05) .05
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and the results were examined. Details of our validation studies were

presented in Section 2.6.3.

2.4 | Network construction

We chose Dosenbach's 160-ROI parcellation scheme (Dosenbach

et al., 2010) to construct functional brain networks. According to the pre-

vious study (Di & Biswal, 2018), bilateral amygdala and parahippocampus

are not covered by Donsenbach's 160 ROIs, and need be added, in order

to cover all of typical subcortical areas, resulting in 164 cortical and sub-

cortical ROIs covering the whole brain. The edges of the network were

defined as Fisher's Z-score transformed correlation coefficients of ROI-

specific time series. As a result, a 164*164 adjacency matrix representing

the network for each subject was obtained.

2.5 | Graph theoretical analysis

2.5.1 | MST generation

The MST of an undirected weighted network is an acyclic subgraph con-

necting all nodes with minimized overall weight. The MST is unique pro-

vided that the weights are unique in the original network, which ensures

us to circumvent the need of thresholding and inclusion of spurious weak

edges. Though there are alternative methods to handle negative edges in

graph theoretic analysis (Schwarz & McGonigle, 2011), in current study

we chose to remove negative edges before the MST generation because

of the requirement of MST algorithm and to be consistent with previous

studies (Stam et al., 2014; Tewarie, van Dellen, Hillebrand, & Stam, 2015;

van Montfort et al., 2018). In addition, since we are concerned with stron-

gest connections in brain network analysis, we converted the connection

weight matrix to distance matrix using dij = 1
wij

prior to subsequent analy-

sis. Kruskal's algorithm (Kruskal, 1956) is then applied to extract the

MST. Briefly, the algorithm starts by removing all edges in the graph and

then adds edges one by one while ensuring the overall weight is minimized

and avoiding formation of loops in the graph. The use of MST allows us to

analyze the critical skeleton of the network, which could be potentially

useful to gain new insight in the pathology of the disease.

2.5.2 | Similarity analysis

To quantify the similarity between MSTs, we simply calculated the

pairwise overlap (Lee & Kim, 2006):

σ a,bð Þ= 1
n−1

Ea
\

Eb
���

���,

where n is the total number of nodes in an MST. In the equation, Ea

and Eb refer to the set of edges of two MSTs a and b respectively,
T

takes the intersection of two sets, and j�j denotes the cardinality of

a set. Thus, the overlap (or survival ratio) calculates how many

edges two MSTs have in common and thus can be a measure of

similarity.

We then performed a nonparametric permutation test to examine

whether there is a difference in terms of network structure between

two groups. A similar approach was used to detect whether the net-

work community structure of schizophrenia patients differs from

healthy subjects (A. Alexander-Bloch et al., 2012). First, the group

membership is randomized for each subject, followed by a comparison

between the actual and permuted within-group similarity. The within-

group similarity is defined as the average value of all pairwise overlaps

within a group. If there was a true difference between the original

two groups (schizophrenia and healthy control) in terms of MST struc-

ture, the randomly permutated within-group similarity should be con-

sistently lower than the true within-group similarity in most

permutations. Otherwise, there should be no difference in network

structure between the two groups. Note that, we do not need to cal-

culate between-group similarity in this approach, since we are only

concerned with actual and permutated within-group similarity. The p

value is set as the number of times that permuted within-group simi-

larity is not less than the actual within-group overlap divided by

10,000 times of permutations in total.

2.5.3 | Global level analysis

To characterize the global structure of the MST, we calculated path

length, leaf fraction, tree hierarchy, maximum degree, assortativity,

and degree divergence for each subject. Definitions and explanations

of these metrics are summarized in Table 2. (Tewarie et al., 2015).

The metrics we calculated can be a multifaceted statistical repre-

sentation of different MST configurations. Path length is a classical

statistic used in conventional network studies, which reflects the inte-

gration of network, and higher degree divergence signifies the pres-

ence of more hubs (thus more low-degree nodes). In addition, higher

leaf fraction and maximum degree indicates a tree containing more

star-like local structures, thus being more integrated. On the other

hand, lower leaf fraction implies a trend toward line-like network, thus

increased segregation. A schematic illustration of different MST con-

figurations is shown in Figure 2.

2.5.4 | Regional level analysis

In traditional analysis of networks, degree and betweenness centrality

were often used to measure node importance. A heuristic demonstra-

tion of nodal roles was shown in Figure 2, where the node in red with

only degree 2 is critical for the communication between two relatively

high-degree hubs. Therefore, there are two kinds of nodes of high

betweenness: hubs and “bridges.” The present study aims to propose a

classification scheme to distinguish hubs and intermodule connectors.

Although the use of MST precludes the presence of densely con-

nected community structures, different high-degree hubs can be

thought of as independent functional units in such a sparse network.
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A star-like structure is one which consists of one central node (hub)

and several peripheral nodes (leaves) connected to the central one

with only one link. The interconnection of multiple stars forms a tree.

According to the definition of communities as internally dense and

externally sparse sub-graphs, each star within one general tree natu-

rally forms one cluster, because in each star most leaves exclusively

link to their own hub, except for a small number of leaves connecting

the rest of the graph. In the meantime, nodes with relatively lower

degree but connecting different hubs are likely critical to global net-

work communication. These phenomena are often ignored in previous

MST research where only degree or betweenness are analyzed. To

differentiate these “bridges” or connectors from hubs in an MST, we

propose a new graph theoretical based statistic to measure the ability

of a node to serve as “connectors” rather than hubs.

Definition 1. For any node v in a network of n nodes in total, The

local importance (li) of a node v is defined as follows (H. Yu,

Jiao, Yao, & Wang, 2016):

li vð Þ= Aj j
Adj vð Þj j +

1
n

where A = {u � Adj(v)j Degree(u) ≤ Degree(v)}. Adj(v) represents the

neighbor of node v,and j�j denotes the cardinality, that is, the number

of elements, of a set, and n represents the number of nodes in a net-

work. It is assumed that Adj(v) ≠ ; .

In the definition, the set A contains all nodes in the neighbor of v

whose degree is not greater than v. Thus, li(v) = 1/n if all nodes in adja-

cent to v have higher degree than it, and li vð Þ= 1+ 1
n if all nodes are of

lower degree than v. The term 1/n can be seen as the “baseline”
importance, stemming from the intuition that the more nodes there

are in a network, the less important each individual node is. Hence,

the value of li can quantify the importance of a node in comparison

with its neighbors, that is, the local importance.

Definition 2. The connector index (ci) of a node is defined as

ci vð Þ= BC vð Þ
li vð Þ ,

where BC(v) denotes the betweenness of v. By this definition, a node

would have a high ci if they are responsible for greater amount of

globally integrated traffic (high BC) and are locally unimportant. In

contrary, hub nodes would have low ci because of their high local

importance. Thus, ci can be an appropriate measure of the ability of

serving as “bridges” rather than hubs in an MST.

Connector index and degree can form a two-dimensional “connec-
tivity–transitivity” framework to characterize nodal roles in an MST,

analogous to the notion of z − P parameter space proposed for general

networks (Guimerà, 2005; van den Heuvel & Sporns, 2011). High-

degree nodes can be seen as hubs, while high- ci nodes are important

bridges which account for the majority of communication. Nodes with

both low degree and ci are less important peripheral regions. This classi-

fication would help us better understand roles of individual nodes in

the global brain network, and aberrant values of these indexes could

also signal dysfunction of corresponding regions, particularly in integrat-

ing information from neighborhood regions or facilitate communication

among different regions, in psychiatric diseases like schizophrenia.

TABLE 2 Symbols and definitions of MST metrics

Symbol Variable name Definition

L Path length L is the average shortest path length

between any pair of nodes in a

network.

Lf Leaf fraction Lf is the fraction of nodes with

degree 1. Higher Lf indicates more

star-like, integrated network; low

Lf on the other hand indicates

greater level of segregation.

Th Tree hierarchy

index

Quantifies the trade-off between

integration in the MST and

overloading. Th = 0.5 implies star-like

topology, Th = 1 signifies line-like

structure.

Dmax Maximum degree The maximum value of degree in the

network.

r Assortativity Quantifies the tendency of nodes to

link to other nodes with similar

degrees.

κ Degree

divergence

Measure of the broadness of the

degree distribution.

F IGURE 2 Different minimum spanning tree global organizations.
On the top is the hypothesized normal structure which should be
expected to be seen in healthy adults. The state is an intermediate
configuration between two extremes. When nodes become
increasingly segregated, the tree would transform into the line-like
structure in the lower-left corner; on the other hand, the star-like
structure represent highly centralized network arrangement
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In our study, we choose group-representative MST to conduct

identification of spatial distribution of hubs/connectors and following

analysis of degree distribution. This can be derived by first averaging

connection matrix within each group, and then applying the MST algo-

rithm on the group-averaged connectivity matrix. It is a common prac-

tice to evaluate nodal roles in group-averaged networks to reduce

complexity (Brandl et al., 2018). Since a group-averaged matrix may

be influenced by outliers, we evaluated the mean and standard devi-

ation of average within-group similarity of each subject. We found

that the healthy group has a mean of 0.267 and standard deviation

of 0.201, the schizophrenia group has a mean of 0.250 and standard

deviation of 0.191. With fairly low standard deviation, it was there-

fore reasonable to represent each group using group-averaged

matrix. We denote nodes with degree of 2 SD higher than the mean

value of all nodes as hubs, and nodes with ci of 2 SD higher than the

mean value as connectors seeking a balance between significance

and number of important nodes (L. Wang, Metzak, Honer, &

Woodward, 2010).

2.5.5 | Degree distribution analysis

We then explored possible degree distribution patterns in the group-

level MST. Degree distribution is a concept originated from network

science, and was extensively used to investigate the global organiza-

tion patterns of the brain network (E. T. Bullmore & Bassett, 2011).

Briefly, a power-law distribution indicates that the brain contains a

small subset of regions which have extensive connections to other

regions (i.e., hubs) and are likely to play important roles in the brain's

functional integration. On the contrary, in a random graph the degree

distribution may follow a Poisson distribution where there are rarely

nodes with significantly more connections. Thus, the analysis of

degree distribution can reveal a global pattern of inter-region coopera-

tion in the brain. The degree distribution of brain networks was initially

thought to be close to a power-law distribution or scale-free structure

of the form P(k) = k−α, where P(k) indicates the number of nodes that

have the degree of k. However, later evidence suggested that brain

network may instead exhibit an exponentially truncated power law

distribution of the form P kð Þ= kα−1ek=kc , in which the probability of

high-degree nodes will be higher than in a random graph (exponential

degree distribution P(k) = e−αk) but smaller than in a scale-free network

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Bassett &

Bullmore, 2006). To test the degree distribution obtained from MST

networks, we fitted the group-level distribution to the three distribu-

tions. The goodness of fit was assessed by R-squared values.

2.6 | Statistical analysis

2.6.1 | Correlation between variables

It has been shown that MST global network measures are strongly

correlated with characteristic path length and clustering coefficient in

the original network (Tewarie et al., 2015). In the present study, we

further explored the intercorrelation between each pair of MST met-

rics using Pearson's correlation coefficient. In general, all MST mea-

sures were positively or negatively correlated with each other as

expected, because they are indicators of network structure toward

integration or segregation (Smit et al., 2016).

To investigate whether there exists any specific association

between predictors (age, MST metrics) and outcomes (behavior), we

estimated partial correlations between each pair of these variables

(Lynall et al., 2010). Generally, partial correlations were found to be

nonsignificant, suggesting that no specific relationship between pre-

dictors and outcomes can be isolated and therefore there may be

more complex interactions among them, as revealed by our structural

equation model. Results for correlations between these variables are

shown in Supporting Information.

2.6.2 | Group differences

We tested group differences in global network metrics listed in

Table 2 and local metrics (degree, ci) using nonparametric permutation

test of 5,000 permutations with age, gender, and head motion con-

trolled as covariates. In permutation tests, group assignment was ran-

domized to yield an empirical null distribution and the hypothesis that

there is no difference between the two groups is tested. False discov-

ery rates (FDR) were corrected using Benjamini and Hochberg proce-

dures (Benjamini & Hochberg, 1995) for 6 global MST metrics and for

164 regions × 2 regional MST metrics, respectively. For regional met-

rics showing significant difference between groups, we additionally

performed an exploratory correlation with the five behavior dimen-

sions to see if the regional aberration could be related to behavior.

2.6.3 | Validation analysis

We performed a series of validation studies to examine the robust-

ness of our results across different data processing strategies.

First, It has been found that quantitative measures of network

properties may vary across different parcellation schemes (de Reus &

van den Heuvel, 2013). To validate the reproducibility of our results,

first, we replicated our similarity and global level analysis on three

commonly-used parcellation schemes: (1) Harvard–Oxford 112-ROI

atlas; (2) Power's 264-ROI atlas (Power et al., 2011); (3) Schaefer's

400-ROI atlas (Schaefer et al., 2018).

Second, we performed wavelet despiking using the BrainWavelet

Toolbox (Patel et al., 2014; Patel & Bullmore, 2016) to further reduce

artifacts caused by head motion and replicated results reported in the

main text. For the wavelet despiking, a maximum-overlap discrete

wavelet decomposition (MODWT) was applied to the BOLD time

series of each voxel. Outlying wavelet coefficients were regarded as

noise and discarded, and the remaining coefficients were retained and

used for the subsequent construction of the denoised signal using

inverse MODWT. The method has been shown to be an effective
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way to account for head motion related artifacts, superior to many of

the traditional censoring or ICA-based methods (Parkes, Fulcher,

Yücel, & Fornito, 2018).

Third, we evaluated the effect of removal of four time points

(instead of two) on our results, to ensure better stabilization of the

scanner. Last, we performed global signal regression as an additional

step in preprocessing to evaluate the effect of global signal on our

results.

2.7 | Structural equation modeling

We hypothesized that increased age would lead to higher level of

MST integration (or decreased segregation) during adulthood and thus

change behavior outcomes. In other words, we tested a mediation

effect (Baron & Kenny, 1986; Hayes, 2009) where the influence of

age on clinical or cognitive measures is mediated by brain network

structure. Of note, the mediation model itself is based on regression,

thus can only make inferential claims about the causal relationships

between variables. With this in mind, we build our model on a logical

basis, with variables placed in their most reasonable positions (e.g., we

hypothesize that increased age would influence brain structure, but it

would be obviously invalid in logic to claim that changes in brain

would lead to changes of the age of the subject). In this study, we

picked leaf fraction as the representative variable for MST structure

for model simplicity because of high correlations among different tree

metrics, indicating possible redundancy (Table S2). Alternatively, the

network structure can be construed as a latent variable estimated

from six graph metrics. We evaluated this model construction scheme

and presented the results in Supporting Information.

In addition to mediation analysis, we further tested an alternative

moderation mechanism that is possibly existing among the variables

to examine whether the influence of age on leaf fraction was moder-

ated by schizophrenia (as a status variable). Moderation analysis was

used to probe whether the relationship (strength or direction)

between two variables was moderated by the third variable. To test

the moderation effect, one adds an additional interaction term of age

× group into the multiple regression analysis and evaluated the coeffi-

cient. It can be concluded that there is a significant moderation effect

if the coefficient of the interaction term is significantly nonzero. In

total, we tested four models:

Model 1: Mediation model: (age)–(leaf fraction)–(working mem-

ory, executive function). The sample only includes 40 healthy

individuals.

Model 2: Mediation model: (age)–(leaf fraction)–(working mem-

ory, executive function). The sample includes 40 healthy subjects and

40 schizophrenia patients.

Model 3: Mediation model: (age)–(leaf fraction)–(psychotic symp-

tom, negative symptom, disorganization).

The sample includes 40 schizophrenia patients. The three latent

variables were based on previously established three-factor structure

(Andreasen et al., 1995).

Model 4: Moderation model: The influence of age on leaf fraction

were moderated by schizophrenia (as a categorical variable). The sam-

ple includes all 80 subjects.

A schematic illustration of the proposed models is shown in

Figure 3a. All variables were standardized prior to analysis, and we

included head motion, gender, and medication use of schizophrenic

patients as covariates by specifying them as exogenous predictors of

mediators and outcome variables to regress out their possible influence

on mediators and behavior. For simplicity, covariates and behavior mea-

sures (as manifest variables) are not presented in the figure but an illus-

tration of full models can be found in Figures S9 and S10. SEM analyses

were conducted using Mplus 8.1 (L. K. Muthén & Muthén, 2017). Since

the sample size is relatively small in the current study, Bayesian estima-

tion with noninformative prior distributions is used for parameter estima-

tion. Bayesian structural equation modeling (BSEM) has been

recommended when analyzing relatively small samples because of its

independency on large-sample theory. Similar to other parameter estima-

tion methods used in mediation analysis (i.e., bootstrapping), BSEM does

not make assumptions of the parameter distribution in the estimation

(B. Muthén & Asparouhov, 2012). In addition, Bayesian method permits

unbiased estimation of indirect effects with asymmetric confidence inter-

vals in mediation analysis (B. Muthén & Asparouhov, 2012). Model fit for

BSEM is evaluated by the posterior predictive p-value (PPP). The index is

analogous to the chi-square p value in maximum likelihood estimation;

values of PPP greater than .05 indicate good model fit (B. Muthén &

Asparouhov, 2012).

3 | RESULTS

3.1 | Demographic and behavioral result

Demographic and clinical data are presented in Table 1. Healthy individ-

uals did not differ from patients in age and gender. However, as expected,

schizophrenic patients obtained significantly lower scores in multiple

behavior tests compared to healthy subjects, indicating marked cognitive

deficits in schizophrenia. Specifically, schizophrenic patients showed signif-

icantly lower performances in all three tests relating to working memory,

but only two tests related to executive function, suggesting more pro-

nounced working memory deficits. The pattern of behavioral deficits are

in line with cognitive impairments in schizophrenia found in several previ-

ous studies (For a review, see (Sheffield & Barch, 2016)).

3.2 | Similarity and global network organization

Pairwise overlap between individual MSTs were calculated based on

the number of edges they have in common. Based on the measure of

similarity, we found novel evidence for an altered MST structure in

schizophrenia patients. Figure 4 showed within-group similarity matri-

ces for both groups. Each row or column represent a subject, and

values in each position in the matrix represent the calculated pairwise
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overlap rate. Averaging the mean value of overlap rate for both matri-

ces yielded a mean within-group overlap rate of 0.267 for healthy

controls and 0.250 for patients. Since the mean value in healthy group

is higher than the disease group, intuitively speaking there should be a

higher level of heterogeneity in network structure existing in schizo-

phrenia patients.

F IGURE 3 Structural equation models. (a) The two models which could potentially depict interactions between age, network structure and
behavior. The first mediation model to the left posits that aging would lead to higher leaf fraction, which represents higher level of integration
and decreased segregation, and then induce behavior changes. The moderation model examines whether the relationship between age and
network structure is influenced by schizophrenia. (b) Primary parameters of the significant indirect effect between age and negative symptom
severity through leaf fraction (CI, credible interval)

F IGURE 4 Within-group
similarity matrix for both healthy and
schizophrenia groups. Each element is
the value of overlapping rate
between two subjects
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Permutation test further revealed that the actual within-group

similarity was significantly higher than within-group similarity gener-

ated by randomized group assignment (p = .04). Therefore, the actual

intragroup overlapping rate was significantly higher than the value

that would be expected by chance, suggesting that there was a genu-

ine difference in MST structure between the two groups.

The group-level difference in MST topology was further quanti-

fied by comparisons between multiple global MST metrics, and the

results are shown in Figure 5. We observed significantly reduced path

length (FDR corrected p = .04) in patients, indicating greater global

network integration. Increased leaf fraction (FDR corrected p = .004)

and increased degree divergence (FDR corrected p = .02) in patients

further revealed a more centralized network configuration with the

presence of more low-degree peripherals, and thus more nodes with

prominently high degree. These results convergently delineated a

more integrated, star-like MST configuration in schizophrenia,

suggesting the breakdown of the optimal balance between integration

and segregation.

In our validation analysis, we found significant difference

between MST structure of patients and healthy controls revealed by

similarity test under two of three additional parcellation schemes. In

addition, an identical pattern of network aberration manifested itself

for all three parcellations through quantitative analysis, characterized

by higher leaf fraction, shorter path length, and greater degree

divergence. The result was also generally unchanged when using

wavelet despiking for additional head motion control, removing four

time points, and under global signal regression (details are shown in

Supporting Information). Taken together, these findings highlighted

the deviation from the optimal MST structure in patients toward a

more centralized network accompanied with enhanced integration

and decreased segregation.

3.3 | Regional network organization and group-
level MST degree distribution

We compared nodal level connector index and degree by permutation

tests, and then identify prominent hubs and connectors in the group-

averaged MST. Although no significant difference was observed in

nodal degree centrality, we found significantly reduced connector

index (corrected p = .03) of dorsal frontal cortex (MNI coordinate:

[−42 7 36]) in schizophrenia patients, indicating a loss of ability to

connect different brain regions. However, the reduced ci did not cor-

relate with the five behavior dimensions we studied.

A demonstration of the degree distribution of the two group-

averaged MSTs is shown in Figure 6. As expected, higher number of

low-degree nodes were observed in schizophrenic group, consistent

with the findings obtained by hypothesis tests. We found that

F IGURE 5 Between-group differences of tree metrics. HC, healthy control, SZ, schizophrenia; “*” indicates significant difference (corrected
p <.05 for 5,000 permutations), ** for p <.01
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exponentially truncated power law distribution was the best fit for

group-averaged MSTs of both the healthy group and the schizophre-

nia group (Figure 6), in line with a previous study (Achard et al., 2006).

In particular, the R-squared value for healthy group was 0.8574 for

exponentially truncated power law distribution, 0.5602 for power-law

distribution, and 0.6996 for exponential distribution (values closer to

1 indicate good fit). In schizophrenia group, R-squared values were

0.8295, 0.4768, and 0.6392 for the three distributions, respectively.

In addition, the parameters for exponentially truncated power law dis-

tribution were α = 2.3700 and kc = 1.3427 in healthy group, and α

= 1.3060 and kc = 2.3195 in schizophrenia group. The better fit of

two distributions to the exponentially truncated power law indicated

that the brain networks tended to scale-free network compared to a

random network.

In addition, we recorded nodes with degree or connector index

2 SD higher than average values in the group-level MST as hubs or

connectors respectively. The remaining nodes could be regarded as

less important peripheral nodes (Figure 7). There was no overlap

between hubs and connectors in both MSTs, indicating successful dif-

ferentiation between the two kinds of roles. Locations and names of

hubs and connectors for both groups are listed in Table 3.

Generally speaking, compared to healthy subjects, group-level MST

from schizophrenic patients exhibited a shift in hub locations with more

hubs emerging in frontal and occipital regions, in line with previous

studies (A. F. Alexander-Bloch et al., 2013; L. Wang et al., 2010). Specif-

ically, medial frontal cortex, ventromedial prefrontal cortex, ventral

frontal cortex, and two occipital regions emerged as new hubs in

schizophrenia group. The functions of these regions could be under-

stood using the notion of intrinsic functional networks. Adopting the

notion of Dosenbach's network partition scheme, we found that hubs

of both groups were widely distributed in cingulo-opercular, default,

fronto-parietal, and sensorimotor networks (Dosenbach et al., 2010).

Meanwhile, we found that major connectors in both groups were

primarily located in occipital and precuneus, and 60% of main connec-

tors were shared between groups, suggesting that connectors gener-

ally did not change location in the disorder. We also found that a large

portion of connectors emerged in the default mode network (Table 3).

It can thus be inferred that the default mode network may serve as an

important transfer station for neural information communication.

3.4 | Structural equation modeling

We used SEM to test indirect effect of network integration with cog-

nitive performance as outcomes in each group and in mixed

populations, also with clinical symptoms as outcomes for schizo-

phrenic group.

We found that among other models, the one with clinical symp-

toms as outcome variables reached satisfactory model fit (PPP = .155).

As expected, age was positively correlated with leaf fraction in patients

(95% CI [0.075, 0.740]), indicating greater level of network integration

with age. Notably, this relation was also valid when tested for both

groups mixed (p = .008, standardized beta value = .295). We also found

that severity of negative symptoms was positively correlated with leaf

fraction (95% CI [0.194, 0.817]). Specifically, we identified a significant

indirect effect of age on negative symptom through leaf fraction (95%

CI [0.026, 0.449]). Primary parameters of the model were summarized in

Figure 3b. Similar results were obtained when using a latent variable “net-
work structure” estimated from six graph metrics instead of using leaf frac-

tion solely (Supporting Information). The result confirmed our hypothesis

F IGURE 6 (a) Significantly reduced connector index in dorsal
frontal cortex (corrected p = .03). (b) The degree distribution of group-
level MSTs. (c) Fitting plot of the two distribution to exponential
distribution, power law distribution and exponential truncated power
law distribution. HC, healthy control; SZ, schizophrenia. The fitting
and graph were completed using GRETNA toolbox (J. Wang, Wang,
Xia, Liao, & Evans, 2015)
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that aging would lead to reduced functional segregation, which then

induces greater symptom severity. With additional head motion control

and removal of four time points, the effect was again found to remain sig-

nificant, but the effect was nonsignificant when using global signal regres-

sion (Supporting Information). Other mediation models with cognitive

outcomes either fail to reach satisfactory model fit or the mediation effect

was not significant (Supporting Information). Also, there was no significant

correlation found between the brain network metric and cognitive test

scores. In our moderation analysis, we found a nonsignificant moderation

effect (p = .95), suggesting that the influence of age on leaf fraction was

not affected by the disease (Supporting Information).

4 | DISCUSSION

In the present study, we evaluated functional brain network changes

in schizophrenia with MST representation and its relation to behavior,

combining graph theoretical analysis and SEM. We demonstrated that

the regular interaction pattern between functional integration and

segregation was disrupted in schizophrenia and the dysregulation was

related to both age and behavioral outcomes. The SEM analysis

further suggested a potential mediation mechanism for these vari-

ables. In addition, we defined a connectivity-transitivity framework to

analyze nodal properties in MSTs and found reduced transitivity in

the dorsal frontal cortex. Based on the two-dimensional approach, we

also revealed reconfiguration patterns of the spatial distribution of

major brain connectors and hubs in schizophrenia patients. Our MST-

based work shed new light on the aberrant functional brain network

and age–brain–behavior interaction in schizophrenia.

4.1 | MST as a promising framework for unbiased
cross-disorder network comparison

The present study used MST as an unbiased network representation

method, which dispenses the need of selection of binary or weighted

network, different threshold values and normalization techniques. In

addition, it has been shown that MST is robust against random noise

(Otte et al., 2015), and insensitive to variations in connection densities

and average connection strength (Otte et al., 2015; Stam et al., 2014;

Tewarie et al., 2015). This is particularly useful for the analysis of brain

network in different categories of populations, such as different age

groups (Boersma et al., 2013; He et al., 2019; Smit et al., 2016) or

populations of distinct clinical status as did in the present study,

because MST eliminates the confounds caused by heterogeneous

connection densities, enabling us to focus on the critical skeleton of

brain networks. Importantly, using both simulation and empirical data,

analysis of MST metrics has been demonstrated to be able to reveal

meaningful topological properties of the original brain network

(Tewarie et al., 2015; van Dellen et al., 2018).

Implications of the irregular MST organization observed in

patients with schizophrenia could be elaborated adopting the recently

proposed “MST network space” model, which can be seen as the

MST counterpart of the small-world network space (He et al., 2019).

Through studying developmental trajectories of MST during child-

hood, He and colleagues noted that, optimal MST structures emerged

during brain maturity seeking a balance between integration and seg-

regation. For MSTs, integrated organization resembles a star-like

structure, characterized by a high leaf fraction, a shorter path length,

and a greater degree divergence; on the other hand, a line-like MST

symbolizes extreme segregation (Figure 2). Our findings of excessively

integrated MSTs in schizophrenia could be seen as a deviation from

the optimal configuration. Such redundant investment in neural

resources to bring greater global integration was noted as a significant

signature on the spectrum of brain disorders (van den Heuvel &

Sporns, 2019). Projecting different pathological trajectories onto the

MST network space, disruptions found in other psychosis diseases

could also be understood as a shift from normal state: compared to

healthy controls, a move toward more star-like configuration (lower-

right corner in Figure 2) were observed in Attention-deficit/hyperac-

tivity disorder (ADHD) (Janssen et al., 2017) and major depressive disor-

der (X. Li et al., 2017); on the contrary, a move toward line-like MST

organization was found in Multiple Sclerosis (Tewarie et al., 2014), delir-

ium (van Montfort et al., 2018), and behavioral variant Frontotemporal

F IGURE 7 Locations of network hubs and connectors in the
brain. Nodes in green are hubs common to both groups; nodes in red
are hubs/connectors specific to schizophrenia group; nodes in blue
are hubs/connectors specific to healthy control group. Nodes in
yellow are all remaining nodes that are not hubs nor connectors. HC,
healthy control; SZ, schizophrenia. The graphs were generated using
BrainNet Viewer toolbox (Xia, Wang, & He, 2013)
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TABLE 3 Locations of hubs and connectors identified in the group-level MST and the intrinsic networks they belong to

MNI coordinate

NetworkGroup and region X Y Z

Hubs-HC

medial Cerebellum −16 −64 −21 Cerebellum

Basal ganglia −6 17 34 Cingulo-opercular

angular Gyrus −48 −63 35 Default

inferior Temporal −59 −25 −15 Default

Occipital −9 −72 41 Default

posterior Cingulate −8 −41 3 Default

posterior Cingulate −5 −52 17 Default

IPL −48 −47 49 Fronto-parietal

IPL −53 −50 39 Fronto-parietal

Parietal −38 −27 60 Sensorimotor

posterior Parietal −41 −31 48 Sensorimotor

Temporal −53 −37 13 Sensorimotor

Temporal −54 −22 9 Sensorimotor

Hubs-SZ

medial Cerebellum −16 −64 −21 Cerebellum

medial Frontal Cortex 0 15 45 Cingulo-opercular

middle Insula 32 −12 2 Cingulo-opercular

angular Gyrus −48 −63 35 Default

posterior Cingulate −8 −41 3 Default

ventromedial Prefrontal Cortex 9 51 16 Default

IPS −32 −58 46 Fronto-parietal

Occipital −16 −76 33 Occipital

posterior Occipital 33 −81 −2 Occipital

Parietal −24 −30 64 Sensorimotor

posterior Parietal −41 −31 48 Sensorimotor

Temporal −54 −22 9 Sensorimotor

ventral Frontal Cortex −55 7 23 Sensorimotor

Connectors-HC

Occipital −2 −75 32 Default

posterior Cingulate 1 −26 31 Default

Precuneus 5 −50 33 Default

Precuneus −6 −56 29 Default

IPL −41 −40 42 Fronto-parietal

posterior Parietal −35 −46 48 Fronto-parietal

Occipital 17 −68 20 Occipital

Occipital −16 −76 33 Occipital

Occipital 15 −77 32 Occipital

Parietal −55 −22 38 Sensorimotor

Connectors-SZ

IPS −36 −69 40 Default

posterior Cingulate 1 −26 31 Default

Precuneus 5 −50 33 Default

Precuneus 11 −68 42 Default

Precuneus −6 −56 29 Default

(Continues)
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Dementia (bvFTD) (Saba et al., 2019). Crucially, since the methodological

heterogeneity is minimized when MST is adopted, direct comparisons of

network topologies across disorders can be plausible. A cross-disorder

landscape of MST brain networks can be depicted with individual disor-

ders positioned based on the relative locations of their MSTs in the MST

network space. (He et al., 2019; M. Yu et al., 2016).

4.2 | A significantly more integrated network
structure in schizophrenia and its interactions with age
and clinical symptoms

Our analysis based on MST metrics revealed an excessively inte-

grated, star-like brain network in patients with schizophrenia. As the

critical backbone of the original network, MST structure could reflect

fundamental topological alterations in the brain network in schizo-

phrenia. It is worth noting that despite a significant inconsistency in

graph theoretical studies of schizophrenia (Fornito, Zalesky, Pantelis, &

Bullmore, 2012; van den Heuvel & Fornito, 2014), our findings of a

more centralized MST in schizophrenia were validated under three

other parcellation schemes and resonate with two previous schizo-

phrenia pathology studies based on resting-state EEG paradigm

(Jonak et al., 2019; Krukow et al., 2019). In the first study, higher leaf

fraction and reduced network diameter in MSTs in several frequency

bands was found in schizophrenia patients; in the second study,

patients with longer illness duration were found to exhibit more star-

like MST, characterized by higher leaf fraction and tree hierarchy

index (closer to 0.5). Given significant methodological heterogeneities

in classical network analysis, the convergent findings of MST studies

may be a more convincing corroboration of a more centralized func-

tional network in schizophrenic patients. This pattern was also noted

in some traditional graph theoretical studies (A. F. Alexander-Bloch

et al., 2010; A. F. Alexander-Bloch et al., 2013; Lynall et al., 2010),

where increased global efficiency was reported.

To understand the effect of intensified network integration, a

heuristic elaboration from a graph theoretical perspective could be

inspired by associating with the cascading network failure hypothesis

(Jones et al., 2016; van den Heuvel & Sporns, 2019). Analogous to

cascade failures in power gird networks, over-centralized configura-

tion observed in schizophrenia MSTs could be a result of the

redistribution of the workload of other dysfunction nodes. In other

words, the load of some initially failed nodes may be erroneously allo-

cated to adjacent hubs. These functional hubs may then be over-

loaded, connecting to too many “leaves,” thus the creation of rich-

club is prevented (van den Heuvel & Sporns, 2011) and their own

functioning may also be damaged. Similarly, the presence of more

leaves and possibly overloaded hubs has been noted and quantita-

tively elaborated in our study. As a result, overall network perfor-

mance would possibly be jeopardized, leading to degeneration of

clinical and cognitive outcomes in the disorder. The cascade failure

theory has been used to explain network dysconnectivity in

Alzheimer's disease spectrum (Jones et al., 2017, 2016). Other alter-

native explanations of the negative effect of enhanced integration

posit that the increase of densely connected hubs would render the

brain more vulnerable to brain disorders, since the dysfunction of

hubs would result in greater influence on the network performance

(Crossley et al., 2014; van den Heuvel & Sporns, 2013). Our finding of

a positive association between enhanced integration and schizophre-

nia negative symptoms provides novel evidence of the negative influ-

ence of excessively centralized network configuration.On the other

hand, increased leaf fraction, degree divergence and decreased path

length found in our study can also be construed as a sign of impaired

functional segregation. Obviously, with more nodes collectively con-

nected to a few prominent hubs, it would be difficult to form special-

ized neural systems. One could imagine that in the extreme situation

where all nodes in the network except one were connected to a hub,

there is no functional specialization at all because there is only one

“processing unit.” The phenomenon was also noted in aging-related

brain network topological studies where decreased functional segre-

gation throughout adult lifespan were consistently reported (Cao

et al., 2014; Chan, Park, Savalia, Petersen, & Wig, 2014; Ferreira

et al., 2016; Geerligs et al., 2015), and the failure of achieving high-

level functional specialization had been shown to undermine cognitive

performance and long-term memory (Chan et al., 2014; Ferreira

et al., 2016). In line with previous research, we also found a positive

correlation between subject age and leaf fraction through adulthood

(both for healthy group and patients), suggesting that aging is accom-

panied by the loss of segregation. Importantly, under the SEM frame-

work, we successfully interpreted the complex interactions between

age, integration and clinical symptom severity in schizophrenia,

TABLE 3 (Continued)

MNI coordinate

NetworkGroup and region X Y Z

posterior Parietal −35 −46 48 Fronto-parietal

Occipital 17 −68 20 Occipital

Occipital 15 −77 32 Occipital

precentral Gyrus −54 −22 22 Sensorimotor

SMA 0 −1 52 Sensorimotor

Note: Regions are ordered alphabetically based on networks they belong to.

Abbreviations: HC, healthy control; SZ, schizophrenia.
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suggesting an indirect interaction mechanism in which increased age

lead to greater level of network integration, which then induce aggra-

vated negative symptoms. The influence of age on network changes

was also shown to be unaffected by the disease in our moderation

model.

Previous studies often indicate that clinical symptoms assessed

by clinical tests were either negatively or not significantly correlated

with age (Friedman, Harvey, Kemether, Byne, & Davis, 1999; Schultz

et al., 1997). Other researchers also pointed out that this may be due

to cohort effect and survivor bias (Jeste, Wolkowitz, & Palmer, 2011).

Indeed, the (total) correlation effect between age and symptom sever-

ity was found to be nonsignificant in our study. However, with the aid

of mediation analysis, we found that the influence of age may be a

more complex, indirect effect through a third variable, namely net-

work structure, instead of a direct one. (It should be noted that a sig-

nificant “total” effect between independent and dependent variables

is not a “gatekeeper” for analyzing indirect effect of a third variable

[Hayes, 2009]). This might provide the reason for aggravated symp-

toms in schizophrenia with time if clinical treatment is not presented.

In other words, the mediation effect may indicate that the transition

of brain network toward integrated structure in the need of support

cross-domain information fusion and processing, as a natural process

during aging, would also result in higher level of schizophrenia symp-

tom severity. Interestingly, this interpretation coincides with a finding

from genetic studies that schizophrenia may be an undesired

byproduct of the human brain's capabilities through the evolution of

greater cognitive abilities (Khaitovich et al., 2008; Scarr, Udawela, &

Dean, 2018).

4.3 | Regional level reconfiguration patterns in
schizophrenia revealed by connectivity-transitivity
framework

Concerning regional level analysis, we proposed a two-dimensional

approach suitable for MST to classify nodes into hubs, connectors and

peripherals based on their connectivity and transitivity. A similar

framework was devised for rich-club analysis, in which links in the

brain network were categorized into feeder connections, rich club

connections, and local connections based on what kind of nodes (hubs

or peripherals) they were connecting (Collin, Kahn, De Reus, Cahn, &

Van Den Heuvel, 2014; van den Heuvel et al., 2013; Van Den Heuvel,

Kahn, Goñi, & Sporns, 2012). However, this classification scheme only

considered connectivity and ignored transportation properties. In

addition to the framework based on the notion of rich club, some

researches evaluated nodal roles in brain network according to their

within-module and between-module connectivity (Guimerà, 2005) and

nodes with high participation coefficient was thought to be crucial to

facilitate intermodule communication (Rubinov & Sporns, 2010). This

framework is also nonapplicable to MST because of the absence of

modular structures. Compared to existing methods, our proposed

approach exploited the simplicity of MST structure and investigated

transportation properties, which are often ignored in previous MST

research. Under this two-dimensional framework, a more complete

landscape of nodal characteristics in MST could be depicted.

In this study, we found that in healthy control group hubs were

mostly distributed in the parietal and posterior temporal regions,

which is consistent with previous traditional graph theoretical studies

(A. F. Alexander-Bloch et al., 2013; Rubinov & Bullmore, 2013) in

which nodes with high centrality were found to be in these regions.

Using MST, we defined graph metrics for connectors and found that

connectors were largely over occipital and posterior regions. Our pro-

posed “connector index” highlighted the differentiation between

“hubs” and “bridges,” thus connectors were identified in this study

based on their ability of facilitate the brain's global communication,

while previous studies mostly focus on centrality. These results indi-

cate that occipital and posterior regions may be crucial in information

transfer across the brain. Analysis of group-level averaged MST rev-

ealed a shift of hub location with more hubs emerging in frontal

regions (e.g., ventromedial prefrontal cortex, medial frontal cortex) in

schizophrenia, an aberration also noticed by some classical brain net-

work studies (A. F. Alexander-Bloch et al., 2013; L. Wang et al., 2010).

This phenomenon might be linked to the “overloading” hypothesis as

discussed above.

Compared to observed location shift of hubs, we found that the

spatial locations of connectors were largely retained in schizophrenia,

indicating that most major connectors in the brain network remained

robust against the disease. However, we found that the connector

index of dorsal frontal cortex was significantly reduced in patients

with schizophrenia. The dysconnectivity of dorsal and frontal regions

have been noticed in enormous studies of schizophrenia (Minzenberg,

Laird, Thelen, Carter, & Glahn, 2010). As a complement, our study pro-

vided a new perspective, suggesting that the function of these regions

to facilitate global communication might be damaged in the disease.

However, the abnormal pattern did not correlate with the five behav-

ior dimensions we studied. Further research may be needed to

explore the cognitive implications of the loss of transitivity in brain

network. We also found that a large portion of group-level connectors

belonged to the default mode network, suggesting that the network

may be responsible for information transfer during resting state.

4.4 | Limitations

There are several limitations in this study. First, the sample size of

80 may be considered insufficient for structural equation model analy-

sis. To address this problem, we employed Bayesian methods for

parameter estimation, which was recommended for relatively moder-

ate sample size. Nonetheless, the statistical inferences need to be vali-

dated in a larger population. Second, the findings of the present study

were purely driven by rs-fMRI data and statistical analysis, which may

be further examined by metabolic evidence and multimodal neuroim-

aging techniques. Third, albeit successful interpretation of our model,

other phenotypic variables, such as gender and handedness (Biswal

et al., 2010; M. Li et al., 2014), may also influence network structure

and behavior outcomes of both patients and controls. Specifically, to
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the best of our knowledge, the current dataset did not include statis-

tics of age at onset and illness duration of patients. Since these two

factors are also correlated with age, it would be valuable to explore

the roles of these variables in our SEM. Thus, our model may not be a

complete portrait of complex interactions among these variables.

Future studies could approach the problem by incorporating more

potential factors and conduct analysis in a more extensive population.

In addition, despite its simplicity and unbiased nature, the MST

method has certain limitations since it requires an all-positive network

as input and forbids any loops. The interpretation strategy of negative

connections has been contentious in brain network studies

(Schwarz & McGonigle, 2011), and it is difficult to study modular

structures in MST due to the absence of loops. In this study, we sim-

ply defined hubs as independent functional units, but an alternative

hierarchical clustering view has been proposed on MSTs (M. Yu

et al., 2015). Further studies are needed to address MST's ignorance

of negative connections and explore its potential modular structure.

5 | CONCLUSION

In conclusion, the current study demonstrated disrupted MST struc-

ture in schizophrenia patients, characterized by excessive integration.

The behavioral relevance of the aberration was further illustrated by

SEM-based mediation analysis, suggesting that aging may exert indi-

rect positive influence on schizophrenia negative symptom severity

through MST structure of brain network. Taken together, these

results may improve our understanding of intertwined interaction pat-

terns among multiple behavioral and connectomic variables in neuro-

imaging studies of schizophrenia. In addition, we found significantly

reduced transitivity in dorsal frontal cortex in schizophrenia. We also

revealed a shift of hub locations and largely unchanged connector

locations, providing new insights into reconfiguration patterns of

regional network structures in the disorder.
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