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Glycolysis/gluconeogenesis specialization in
microbes is driven by biochemical constraints of
flux sensing
Severin Josef Schink1,† , Dimitris Christodoulou1,2,† , Avik Mukherjee1,3, Edward Athaide3 ,

Viktoria Brunner2 , Tobias Fuhrer2 , Gary Andrew Bradshaw4, Uwe Sauer2,* & Markus Basan1,**

Abstract

Central carbon metabolism is highly conserved across microbial
species, but can catalyze very different pathways depending on
the organism and their ecological niche. Here, we study the
dynamic reorganization of central metabolism after switches
between the two major opposing pathway configurations of
central carbon metabolism, glycolysis, and gluconeogenesis in
Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas putida.
We combined growth dynamics and dynamic changes in intracellu-
lar metabolite levels with a coarse-grained model that integrates
fluxes, regulation, protein synthesis, and growth and uncovered
fundamental limitations of the regulatory network: After nutrient
shifts, metabolite concentrations collapse to their equilibrium,
rendering the cell unable to sense which direction the flux is
supposed to flow through the metabolic network. The cell can
partially alleviate this by picking a preferred direction of regula-
tion at the expense of increasing lag times in the opposite direc-
tion. Moreover, decreasing both lag times simultaneously comes at
the cost of reduced growth rate or higher futile cycling between
metabolic enzymes. These three trade-offs can explain why
microorganisms specialize for either glycolytic or gluconeogenic
substrates and can help elucidate the complex growth patterns
exhibited by different microbial species.
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Introduction

Whether in nature, microbiomes, or infections, microbes frequently

encounter changing environments (Hardcastle & Mann, 1968;

Fenchel, 2002; Stocker, 2012; Battin et al, 2016; Forsyth et al, 2018)

and their ability to adapt quickly is a key determinant of fitness. But

an understanding of the physiology of growth transitions, in particu-

lar what sets the time-scales of adaptation, has remained largely

elusive. For steady-state exponential growth, metabolic models have

made substantial progress over the last two decades, elucidating the

flux and regulatory networks that govern the coordination of micro-

bial metabolism (Bennett et al, 2009; Noor et al, 2010, 2014; Link

et al, 2013; Bordbar et al, 2014; Chubukov et al, 2014; Gerosa et al,

2015; Vasilakou et al, 2016). Such metabolic models were success-

fully expanded to dynamic environments (Chassagnole et al, 2002;

Chakrabarti et al, 2013; Zampar et al, 2013; Saa & Nielsen, 2015;

Andreozzi et al, 2016; Yang et al, 2019) and used to gather kinetic

information about metabolism, using perturbations (Link et al,

2013), stimulus response experiments (Chassagnole et al, 2002), or

sequential nutrient depletion (Yang et al, 2019) to validate and

improve metabolic models, but dynamic changes in metabolic shifts

of growth conditions continue to pose a considerable challenge, and

it is still unclear what determines how long bacteria need to adapt

upon a change in the environment.

One example of such a switch happens when microbes deplete

their primary nutrient. Escherichia coli preferentially utilizes hexose

sugars such as glucose that are metabolized via glycolysis (Gerosa et

al, 2015). To maximize growth on sugars, E. coli excretes substan-

tial “overflow” production of acetate, even in the presence of

oxygen (Basan et al, 2015a, 2017). This naturally leads to bi-phasic

growth, if no other microbe is around to utilize this bi-product,

where initial utilization of glucose is followed by a switch to acetate.

Similar growth transitions from preferred glycolytic substrates to

alcohols and organic acids ubiquitously occur for microbes in natu-
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ral environments (Otterstedt et al, 2004; Buescher et al, 2012;

Zampar et al, 2013). Since these fermentation products are all gluco-

neogenic, they require a reversal of the flux direction in the glycoly-

sis pathway, which results in multi-hour lag phases caused by the

depletion of metabolite pools throughout the gluconeogenesis path-

way (Basan et al, 2020). Similar long lag times in glycolytic to

gluconeogenic shifts were observed for Bacillus subtilis and the

yeast Saccharomyces cerevisiae (Basan et al, 2020). Shifts in the

opposite direction, however, from gluconeogenic substrates to

glycolytic ones, occur much more quickly in E. coli and other prefer-

entially hexose fermenting microbes, in some cases even without

detectable lag phases (Basan et al, 2020).

In our previous work (Basan et al, 2020), we showed how the

growth rate dependence of enzyme expression leads to a universal

relation between lag times and pre-shift growth rates and found

evidence that futile cycling at irreversible metabolic reactions plays

an important role for causing lag times. However, we were unable to

answer the most fundamental questions raised by these observa-

tions: Why are microorganisms such as E. coli or S. cerevisiae unable

to overcome lag phases by expressing more metabolic enzymes or

allosteric regulations that turn off futile cycling after metabolic

shifts? Given the small number of enzymes involved in these irre-

versible reactions, their cost in terms of proteome allocation is likely

minimal. Instead, microbes such as E. coli appear to be intentionally

limiting enzyme expression and decreasing their growth rates on

many glycolytic substrates (Basan et al, 2017). Moreover, why do

shifts from glycolytic to gluconeogenic conditions result in lag times

of many hours, while shifts from gluconeogenic to glycolytic condi-

tions only take minutes? Given the symmetry of central metabolism,

one would expect similar lag phases in the opposite direction. Is this

preference for glycolysis a fundamental property of central metabo-

lism or rather an evolutionary choice of individual species? At the

core of these questions is a gap in understanding of how central

carbon metabolism adjusts itself to nutritional changes.

Here, we study growth and metabolite dynamics of E. coli, Pseu-

domonas aeruginosa, and Pseudomonas putida using a kinetic

model of central carbon metabolism to overcome this challenge.

Our model coarse-grains central metabolism to a low number of

irreversible and reversible reactions, which allows us to focus on

the dynamics of key metabolites and their regulatory action. The

model couples metabolism to enzyme activity via allosteric regula-

tion and enzyme expression to the concentration of regulatory

metabolites via transcriptional regulation and flux-dependent

protein synthesis. Our formulation of metabolism and growth

bridges fast metabolic time-scales with slow protein synthesis. As

we demonstrate, our model can explain major reorganizations of

metabolism in response to nutrients shifts: the switching of the

directionality of metabolic flux between glycolysis and gluconeogen-

esis. Dependent on the required directionality of flux in central

metabolism, enzymes catalyzing the required flux direction are

expressed and catalytically active, while enzymes catalyzing the

opposite flux are expressed at low levels and their activities are

repressed by allosteric regulation. This self-organization is key for

enabling fast growth and preventing costly futile cycling between

metabolic reactions in opposing directions, which can inhibit flux

and deplete ATP in the process.

Reestablishing this self-organization after growth shifts is limited

by biochemical constraints to sense fluxes and to regulate

accordingly. When metabolite levels transiently collapse, allosteric

and transcriptional regulation cannot distinguish between glycolysis

and gluconeogenesis, rendering the cell unable to sense to the direc-

tion of flux. By choosing the activity of metabolic enzymes at these

low metabolite levels to favor one direction, the cell can enable fast

switching at the expense of the other direction. This choice of direc-

tion at low metabolite concentrations becomes the “default state” of

central metabolism and determines the substrate preference.

According to the model, the preferred direction does not need to

be glycolysis, and in principle gluconeogenic specialists with a

gluconeogenic “default” state could have evolved, too. Indeed, we

showed that P. aeruginosa shows reversed lag time, growth pheno-

types and metabolite dynamics compared with those of E. coli,

which verified that long lag times to glycolytic substrates are caused

by the same inability to sense flux after nutrient shifts.

Results

An integrated, self-consistent kinetic model
of glycolysis / gluconeogenesis

In a shift between glycolysis and gluconeogenesis, flux in central

metabolism needs to be reversed. To understand what limits the

speed of adaptation between those two modes of flux, we turn to a

theoretical model of central metabolism, but because the complexity

of central metabolism with intertwined regulation at different levels

prevents tracing quantitative phenotypes to their molecular origins,

we sought to focus on the biochemical pathway topology with its

key regulations that differentiate glycolysis and gluconeogenesis

and constructed a minimal model of central metabolism. The model

is illustrated in Box 1 and described in detail in the Appendix. It is

based on topology of the biochemical network, the allosteric and

the transcriptional regulation of the key the metabolic proteins of E.

coli, all of which have been well characterized (Berger & Evans,

1991; Ramseier et al, 1995; Johnson & Reinhart, 1997; Pham & Rein-

hart, 2001; Kelley-Loughnane et al, 2002; Hines et al, 2006; Fenton

& Reinhart, 2009).

The defining feature of the model is a coarse-graining of the irre-

versible reactions (one-directional arrows in “orange” and “blue”,

Box 1A) in the upper and lower parts of central metabolism into

single irreversible reactions (one-directional “black” arrows in

Box 1B). While not irreversible in an absolute sense, so-called irre-

versible reactions are thermodynamically favored so much in one

direction that they can be effectively considered as irreversible

(Noor et al, 2014). As a result, these irreversible reactions in central

metabolism need to be catalyzed by distinct enzymes that perform

distinct reactions For example, fructose 6-phosphate (F6P) is

converted to fructose 1-6-bisphosphate (FBP) by enzyme PfkA using

ATP. The opposite direction, FBP to F6P, is performed by a different

enzyme, Fbp, which splits off a phosphate by hydrolysis. Each of

the two reactions follows a free energy gradient and is irreversible.

If both enzymes are present and active, then the metabolites will be

continuously interconverted between F6P and FBP, and in each

interconversion, one ATP is hydrolyzed to ADP and phosphate. This

is a “futile cycle”. It drains the cell’s ATP resource and prevents flux

going through the biochemical network. Because of this importance

of irreversible reactions and futile cycling, we implement
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Box 1. Integrated kinetic model of central carbon metabolism

A, B (A) Detailed metabolic reaction network and (B) minimal network of central carbon metabolism. Coarse-graining was done by combining irre-
versible glycolytic (orange) and gluconeogenic reactions (blue), as well as metabolites. Influx can either occur from glycolytic carbon sources (e.g.,
glucose) or gluconeogenic carbon sources, (e.g., tricarboxylic acid (TCA) cycle carbon-like acetate or malate). (1) Gatekeepers to the central section
of glycolysis and gluconeogenesis are the two irreversible reactions (glyup, gngup and glylow, gnglow) that feed and drain FBP and PEP. The irre-
versible reactions are allosterically regulated by FBP (fructose 1-6-bisphosphate) and PEP (phosphoenolpyruvate), where “outward” facing reactions
are activated (green arrows) and “inward” facing reactions are repressed (red arrow). (2) Biomass production requires precursors from glycolytic
carbons, PEP and gluconeogenic carbons (i.e., from TCA cycle). (3) Glycolytic and gluconeogenic enzymes are regulated by Cra, which is in turn
modulated by FBP.

C Mathematical formulation of the model. Numbers correspond to features in panel (B). (1) Fluxes ri of enzymes i depend on enzyme abundances ϕi ,
catalytic rates kcat;i and allosteric regulations, modeled as a Hill function below its maximal saturation ðc j=c∗j Þαi , where c j is the concentration of
the regulatory metabolite and c∗j is a reference concentration. Reversible fluxes are modeled with simple mass action kinetics. (2) Biomass produc-
tion is implemented in the model as single reaction that drains all three metabolites simultaneously at catalytic rate kcat;BM: (3) Enzyme expression
depends linearly on FBP concentration cFBP. Growth rate: μ, steady-state abundance: ϕ∗

i , steady-state concentration c∗FBP and xi & x j modulate the
sensitivity of regulation to FBP. Glycolytic and gluconeogenic enzymes are produced as part of protein synthesis. Thus in the model, flux through
metabolism automatically leads to synthesis of metabolic enzymes and biomass production, resulting in dilution of existing enzymes.

ri = φikcat,i
ci

ci + KM,i
(ci/c∗

i )
αi

Enzyme kinetics (modified Michaelis-Menten)

Eq. (1)

Kinetics of reversible ‘super eno’ reaction

Eqs. (2, 3)
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irreversible enzymes (“bold font, blue/orange” in Box 1A and B)

and their allosteric regulation (“green” and “red” arrows in Box 1B)

in the model. To successfully switch flux directions, the cell needs

to express irreversible enzymes in the new direction, up-regulate

their activity, and repress enzyme activity in the opposing direction.

Uptake of carbons from the environment is modeled as a flux to the

substrates of the irreversible reactions, either glycolytic or gluco-

neogenic carbons depending on the availability.

The metabolites “sandwiched” between the irreversible reactions

are coarse-grained into the first and last metabolites of the series of

reversible reactions, FBP and PEP (phosphoenolpyruvate). These

metabolites regulate the activity and expression of the irreversible

enzymes (Box 1B and Appendix Sec. 2).

In total, the model encompasses four irreversible reactions, each

regulated allosterically by either FBP or PEP, and transcriptionally

by FBP via Cra, and one reversible reaction that connects FBP and

PEP. We used measured metabolite concentrations for growth on

glucose (Kochanowski et al, 2013) and Michaelis constants (Berman

& Cohn, 1970; Zheng & Kemp, 1995; Donahue et al, 2000) to

constrain enzymatic parameters and biomass yield (Link et al,

2008) and density (Basan et al, 2015b) on glucose to constrain

fluxes (Appendix Sec. 4). We used the level of futile cycling in the

upper and lower reactions in exponential glucose growth, which

summarize the effect of enzyme abundance and allosteric regula-

tion, as fitting parameters such that the model reproduces the

observed lag times in this paper; see Appendix Sec. 4.2 for details.

While the model in Box 1 was formulated to coarse-grain

glycolysis via the Embden–Meyerhof–Parnas (EMP) pathway, the

dominant glycolytic pathway of E. coli growing on glucose (Gerosa

et al, 2015), other glycolytic pathways, such as the Entner–Doudo-
roff (ED) or pentose phosphate pathway (PPP), have a similar topol-

ogy. In ED glycolysis, phosphogluconate dehydratase (Edd) and

KDPG aldolase (Eda) are irreversible reactions that feed into the

chain of reversible reactions, analogous to 6-phosphofructokinase

(pfk) in the EMP pathway. The coarse-grained model thus should

capture these alternative pathways as well.

Central carbon metabolism self-organizes in response to
substrate availability

To test whether this simple model could recapitulate steady-state

glycolytic and gluconeogenic growth conditions, we calibrated it

with published metabolite and proteomics data of E. coli, which is

well-characterized in steady-state exponential growth on glucose

and acetate as sole carbon substrates (Basan et al, 2020). Indeed, the

model reached distinct steady states for glycolytic and gluconeogenic

conditions, which we summarized graphically with font size indicat-

ing enzyme and metabolite abundance and line widths indicating the

magnitude of fluxes (Fig 1A and B). Active regulation is shown in

colored lines, while inactive regulation is gray, dashed lines. We

quantitatively compare enzyme and metabolite abundances to exper-

imental measurements in Fig 1C–E and find that the coarse-grained

model can describe the reorganization of metabolism well, despite

the simplifications of the metabolic and regulatory networks.

The simulation helps to understand how central metabolism self-

organizes in glycolytic and gluconeogenic conditions and how
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Figure 1. Self-organization of metabolism in glycolysis and gluconeogenesis.

A, B Graphic summary of the reorganization in glycolysis and gluconeogenesis. Linewidth of reaction arrows indicates magnitude of flux. Font size of metabolites and
enzymes indicates metabolite concentrations and enzyme abundances, respectively. Active regulation is indicated by red/green color, and inactive regulation is
gray and dashed.

C–E Calibration of model to experimental data (from Basan et al, 2020) metabolite concentrations and enzyme abundances relative to the highest concentration or
abundance. Note the striking, differential regulation of FBP and PEP, high in one condition and low in the other.
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allosteric and transcriptional regulation optimize fluxes and mini-

mize futile cycling during exponential growth. As shown in Fig 1C,

in “orange”, during glycolytic conditions, the simulation reached a

steady state with high FBP levels and low PEP levels. As illustrated

in Fig 1A, the high FBP pool activates lower glycolysis, while the

low PEP pool derepresses upper glycolysis and deactivates upper

gluconeogenesis. This suppression of gluconeogenic fluxes in glycol-

ysis reduces futile cycling, i.e., circular fluxes at the irreversible

reactions, thereby streamlining metabolism. On a transcriptional

level, the high FBP pool represses Cra, which in turn derepresses

the expression of glycolytic enzymes and inhibits the expression of

gluconeogenic enzymes. This results in high levels of glycolytic

enzymes and low levels of gluconeogenic enzymes in the simulation

(Fig 1D and E, right panels).

In gluconeogenic conditions (“blue” in Fig 1), we find precisely

the complementary configuration of central carbon metabolism.

Simulation and experiments show low FBP and high PEP pools

(Fig 1C). As illustrated in Fig 1B, high PEP represses upper glycoly-

sis and activates upper gluconeogenesis, while low FBP deactivates

lower glycolysis. Low FBP also derepresses Cra, which leads to high

expression of gluconeogenic enzymes and low expression of glyco-

lytic enzymes (Fig 1D, right panels).

Next we tested if the model could recapitulate how varying

growth rates on glycolytic and gluconeogenic nutrients affects

metabolite levels and protein expression in E. coli (Gerosa et al,

2015; Hui et al, 2015). In particular, it has been shown experimen-

tally that FBP acts like a flux sensor and FBP concentration linearly

increases with glycolytic flux (Fig EV1A) (Kochanowski et al, 2013),

which is recapitulated by our simulation (Fig EV1D), under the

condition that enzymes catalyzing the reversible reaction are far

from saturation. The linear increase in FBP concentration with

growth rate results in a linear growth rate dependence of

gluconeogenic and glycolytic enzyme abundances in the simulation,

in good agreement with experimental measurements of enzyme

abundances from proteomics (Fig EV1 compare B and C with E and

F) (Hui et al, 2015). Together, these results show that integrating

the transcriptional and allosteric regulation of FBP and PEP in the

coarse-grained model suffices to describe the major re-configuration

of central metabolism in glycolysis and gluconeogenesis.

Central carbon metabolism of E. coli is primed for switches
to glycolysis

Equipped with this model, we next address the mechanistic basis

for the extended lag phases of E. coli upon nutrient shifts from

glycolytic to gluconeogenic conditions. When shifted from glucose

to acetate E. coli shows a lag time with almost no growth for around

5 h (Fig 2A, data: (Basan et al, 2020)). We can reproduce this lag

with our model (Fig 2B, Appendix Figs S1–S5) when we fit pre-shift

futile cycling, which is a measure for enzyme abundances and allos-

teric regulations; see Appendix Sec. 2 for details. All model solutions

for E. coli shown in this paper are generated with the parameters

generated from this fit. The model captures the slow adaptation of

glycolytic and gluconeogenic enzymes, the major change of which

occurs only toward the end of the lag phase (Appendix Fig S6).

Investigating the origin of the growth arrest in the simulation, we

found that during lag phase, the concentrations of upper glycolytic

precursors (which includes fructose 6-phosphate (F6P) and glucose-

6-phosphate (G6P)) remained very low compared with their steady-

state values, which matches published experimental evidence of

F6P measurements (Basan et al, 2020) (Fig simulation: 2C, data

2D). This indicates that essential precursors are limited, and

thereby, according to equation (4) growth rate during lag phase

stalls.
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Figure 2. Shifts between glycolysis and gluconeogenesis.

A, B (A) Experimental and (B) model of optical density after shift of E. coli from glucose to acetate. Growth shows a substantial lag before it recovers.
C, D (C) Experimental and (D) model of F6P (normalized to the final state) collapses after shit to acetate and continues to stay low throughout lag phase. Because F6P is

an essential precursor for biomass production, this limitation effectively stops biomass growth. Data points show a single time-series from (Basan et al, 2020).
E, F Fluxes of all irreversible reactions in units of intracellular concentration per time. Especially fluxes in lower glycolysis/gluconeogenesis are of equal magnitude,

leading to a futile cycle, where no net flux (red line) through central carbon metabolism can be established.
G–J Optical density and metabolic fluxes for the reversed shift from acetate to glucose show immediate growth and no intermittent futile cycling. The dynamics of all

enzyme abundances, regulation, and fluxes for both shifts are shown in Appendix Figs S1–S5 in detail. The model also correctly predicts that enzyme abundances
only adapt late in the lag phase (Appendix Fig S6).

ª 2022 The Authors Molecular Systems Biology 18: e10704 | 2022 5 of 14

Severin Josef Schink et al Molecular Systems Biology



In the simulation, the F6P limitation is caused by low net fluxes

in upper and lower gluconeogeneses (Fig 2E and F, red lines). Previ-

ously, it was suggested that futile cycling between gluconeogenic

and glycolytic enzymes could contribute to this flux limitation

(Basan et al, 2020), supported by the observation that overexpres-

sion of glycolytic enzymes in upper or lower glycolysis strongly

impaired switching and resulted in much longer lag times (Basan et

al, 2020). The simulation allows us to probe the effect of futile

cycling in silico, which cannot be directly measured experimentally.

Indeed, we found for our default E. coli parameters that residual

lower glycolytic flux almost completely canceled the flux from

gluconeogenesis, i.e., rlowgly ≈r
low
gng (solid and dashed black lines in

Fig 3F), such that net gluconeogenic flux remained close to zero

(red line, Fig 2E and F). Thus, this futile cycling appears to be the

main reason for limiting net flux throughout the lag phase.

The biochemical network and regulation are almost completely

symmetric with respect to the direction of flux, so one might naively

expect a shift from gluconeogenesis to glycolysis to also result in a

long lag. However, experimentally the shift in the opposite direction

from gluconeogenesis to glycolysis occurs very quickly in E. coli

(Fig 2G) (Basan et al, 2020). Our simulations with the standard E. coli

parameters can recapitulate that central metabolism adjusted very

quickly and growth resumed without a substantial lag phase (Fig 2H).

In striking contrast to the shift to gluconeogenesis, futile cycling

played no role in the shift to glycolysis, because both upper and lower

glycolytic fluxes got repressed immediately after the shift (Fig 2I and

J, solid black line), such that net flux could build up (Fig 2I and J, red

line). The absence of transient futile cycling, despite the symmetry of

regulation and metabolic reactions, means that, according to the

model, it must be the allosteric and transcriptional regulations that

“prime” central metabolism of E. coli for the glycolytic direction.

Molecular cause of preferential directionality

To understand the molecular cause of the asymmetric response and

lag phases, we investigated the role of allosteric and transcriptional

regulation in our simulation. During steady-state growth, the dif-

ferential regulation during glycolysis and gluconeogenesis is

achieved by PEP and FBP, the metabolites that are “sandwiched”

between the two irreversible reactions and connected by a series of

reversible enzymes, coarse-grained in our model into the “super-

eno” enzyme. First, we focused on regulation during exponential

growth and wanted to investigate how the cell achieves differential

regulation of glycolytic and gluconeogenic enzymes using the

metabolites FBP and PEP. In equilibrium, forward and backward

reactions would balance, i.e., rENOþ ¼ rENO�, and no net flux could

run through central metabolism, meaning that the cell could not

grow. Using equations (2 and 3), the balance of forward and back-

ward fluxes results in a fixed quadratic dependence of FBP and PEP

in equilibrium,

ceqFBP ¼ kENO�=kENOþ ceqPEP
� �2

: (1)

The form of equation (1) is specific to F6P converting to FBP

being the irreversible step of upper glycolysis and can change if

pathways such as Entner–Doudoroff (ED) or pentose phosphate

pathway (PPP) are dominant.

Close to the equilibrium, FBP and PEP levels go up and down

together, rather than the opposing directions, as observed for glyco-

lytic and gluconeogenic growth (Fig 1A and B). This results in low

net flux and very slow growth. Hence, for steady-state growth, the

equilibrium must be broken and FBP ≫ PEP or FBP ≪ PEP, such

that either glycolytic flux is bigger than gluconeogenic or vice versa

(rENOþ ≫ rENO� and rENOþ ≪ rENO�, respectively). This is achieved

by the irreversible reactions, which drain and supply metabolites to

the “super-eno”. Because of the positive feedback between enzyme

activity and non-equilibrium of the “super-eno”, this regulation

topology achieves differential regulation during glycolysis and

gluconeogenesis. As we observed in the analysis of the glycolytic

and gluconeogenic steady states (Fig 1), this differential regulation

adjusts enzyme levels via transcriptional regulation and suppresses

futile cycling at the irreversible reactions.
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Figure 3. Molecular cause for asymmetric recovery dynamics in E. coli.

A Recovery of FBP and PEP of after a shift from glucose to acetate shows a distinctive joint increase, followed by an overshoot of FBP. Red line is a quadratic guide to
the eye. Final acetate steady state is drawn as gray symbol and used to normalize both FBP and PEP levels. Data are a single time-series from (Basan et al, 2020).

B Model solution of FBP and PEP. After the fast collapse of metabolite levels (triple arrow to white circle), the dynamics closely follows the quadratic FBP-PEP
equilibrium equation (7). Eventually recovery will diverge away from the equilibrium line, toward the non-equilibrium steady states of gluconeogenesis (gray circle).

C For a shift to glycolysis, metabolite levels do not collapse, but instead land already far from equilibrium (triple arrow to white circle), such that flux is immediately
established, and recovery is quick.
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While regulation of central metabolism efficiently organizes FBP-

PEP in a far-from-equilibrium state during exponential growth,

nutrient shifts expose the limitations of this regulatory system. To

understand why, we plot FBP against PEP, with both metabolites

normalized to their gluconeogenic steady state (Fig 3A). We indi-

cated several time-points along the dynamics, and the final steady

state is shown with a gray symbol. Initially, both FBP and PEP drop

close to zero, followed by a very slow joint increase in FBP and PEP

over the course of hours (Fig 3A). This joint increase, rather than a

differential increase, is the hallmark of a close-to-equilibrium state.

The slow recovery can be understood from the simulation, which

shows that FBP and PEP proceed close to the equilibrium line of

equation (7), where growth is slow (Fig 3B). As a guide to the eye,

we drew an equilibrium parabola in Fig 3A along the joint increase,

too.

Higher gluconeogenic flux from increasing levels of gluco-

neogenic enzymes is almost completely lost to a corresponding

increase in futile cycling because increasing FBP activates lower

glycolysis, instead of deactivating it (Fig 2F). The overshoot of FBP

in Fig 3A (data) and Fig 3B (model) is what finally allows the cell to

establish net flux because it is breaking the equilibrium: PEP

concentration is high enough to activate upper gluconeogenesis suf-

ficiently to drain FBP via upper gluconeogenesis (see Fig 2E). Lower

FBP then shuts down futile cycling in lower glycolysis/gluconeogen-

esis (Fig 2F), pushing FBP and PEP concentrations to a state far

from the equilibrium line (see Fig 3B) and allowing the cell to grow

at a faster rate.

The fundamental difference between shifts to gluconeogenesis

and glycolysis in E. coli is that glycolytic shifts immediately land far

from equilibrium (Fig 3C, triple arrow to white circle), such that

cells immediately grow at faster rates, allowing them to express the

new enzymes needed to recover quickly. But why does one direc-

tion immediately land far from equilibrium, while the other lands

close to equilibrium?

Three trade-offs constrain lag times to glycolysis
and gluconeogenesis

The out-of-equilibrium state is caused by net flux going through

metabolism. Therefore, we investigated what causes fluxes not to

flow in a uniform direction after shifts to glycolysis and gluconeoge-

nesis. In principle, metabolite flux brought to the “super-eno” can

exit via two drains: upper gluconeogenesis, activated by PEP, and

lower glycolysis, activated by FBP (Fig 4A). How much flux exits

via either drain depends on the current protein abundances and the

allosteric regulation. If the allosteric regulation and protein abun-

dances favor the lower drain, then after a switch to glycolysis, FBP

builds up, PEP is drained, and a net flux is immediately accom-

plished. In a shift to gluconeogenesis, however, flux that enters

central metabolism from the TCA cycle will immediately drain back

to the TCA cycle, leading to an in-and-out flux but no net flux. In

this situation, FBP and PEP stay in equilibrium and the recovery

stalls. If on the other hand, the upper drain was favored over the

lower drain, then we would expect the behavior to be reversed and

gluconeogenic flux would be immediately accomplished, while the

glycolytic recovery would stall.

In the simulation, we are able to test the hypothesis that the

upper and lower drains determine the preferential directionality of

the central metabolism by varying enzyme abundances and the

strength of allosteric interactions in upper and lower drains in silico.

We let metabolism adapt to gluconeogenic and glycolytic conditions

and calculate lag times (Fig 4B and C). Indeed, we found that a

decrease in lag time in one direction led to an increase in lag time in

the opposite direction.

Varying the outflow from metabolism is not the only determinant

of lag times. The set of reversible enzymes, coarse-grained in our

model into the “super-eno”, plays another key role, because it inter-

converts the regulatory metabolites FBP and PEP (Fig 4D). If this

conversion is fast, the concentrations of FBP and PEP will be close

to their equilibrium relation in equation (7), and differential regula-

tion will be impossible. As a result, lag times in both directions

increase if we increase the abundance of reversible reactions (Fig 4E

and F). This is a counter-intuitive result, as one would naı̈vely

expect more enzymes to speed up reactions, but instead, more

enzymes collapse the differential regulation and slow down adapta-

tion rates. This trade-off is unavoidable for fast-growing cells

because the cell needs a sufficient amount of reversible glycolytic

enzymes to catalyze metabolic flux.

Finally, lag times depend on the amount of futile cycling, i.e., the

circular conversion of metabolites in the upper and lower irre-

versible reactions (Fig 4G). Increasing the abundance of gluco-

neogenic enzymes in glycolytic growth or glycolytic enzymes in

gluconeogenic growth increases futile cycling, but decreases lag

times (Fig 4I and H). Because futile cycling dissipates ATP, which is

not explicitly built into our model, this third trade-off means that

organisms can decrease their switching times by sacrificing ener-

getic efficiency.

Are these three trade-offs a fundamental consequence of the

regulatory structure or are there parameter combinations that avoid

the trade-offs by simultaneously enabling rapid growth and rapid

switching without costly futile cycling? To answer this question, we

performed an extensive scan of model parameters by randomly

choosing sets of biochemical parameters and simulating the result-

ing model. Of those parameter sets, we chose those that allowed

steady-state growth in both glycolytic and gluconeogenic conditions

and were able to switch between both states. We plotted the sum of

futile cycling in the upper and lower irreversible reactions in the

pre-shift conditions against the subsequent lag times for shifts to

gluconeogenesis (Fig 5A) and to glycolysis (Fig 5B). In addition, we

colored individual parameter sets according to the total allosteric

regulation, defined as the sum of fold changes in enzyme activities

between glycolysis and gluconeogenesis (black: R < 102, red/green:

104 > R > 102, gray: R > 104). These fold changes are the result of

both allosteric and transcriptional variations. We found that meta-

bolism in the majority of randomly generated models is inefficient

and dominated by futile cycling; only a minority of models were

able to reduce futile cycling in glycolysis and gluconeogenesis.

Remarkably, despite probing variations of all possible model param-

eters, including Michaelis Menten parameters of enzymes and the

strengths of allosteric and transcriptional regulation, lag times could

not be reduced at-will by the cell. Instead, individual parameter sets

with similar allosteric regulation (colors) are bound by a “Pareto

frontier” (solid lines) between futile cycling in pre-shift conditions

and lag times. Points close to the “Pareto frontier” are Pareto-

optimal, meaning that any further decrease of either parameter must

come at the expense of the other. Overall, stronger allosteric
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regulation shifted the Pareto frontier, but was not able to overcome

it. Parameter combinations that led to low futile cycling in either

glycolysis or gluconeogenesis showed long lag times in at least one

condition (Fig 5C, “black” and “yellow”) compared with the back-

ground of all simulated parameter sets (“gray”). Thus, from this

analysis, it seems that organisms with the regulatory architecture of

Box 1 cannot overcome long lag times without paying a futile

cycling cost during steady-state growth.

Gluconeogenesis specialists are constrained by the
same trade-offs

Taken together, the results of Figs 4 and 5 suggest that microbial

cells cannot achieve fast growth, low futile cycling, and fast adapta-

tion simultaneously in both glycolysis and gluconeogenesis. Instead,

trade-offs between these six objectives constrain the evolutionary

optimization of microbial metabolism, such that any optimal
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Figure 4. Trade-offs between glycolysis and gluconeogenesis.

A Two drains in central metabolism deplete central metabolites.
B, C Changing abundance ϕ or allosteric regulation strength α in either lower or upper drain leads to a shift of lag times, decreasing lags in one direction at the cost of

the other. Chosing strength of the drains such that either top or bottom is stronger, will lead to a fast recovery in on direction, and a slow in the other.
D Reversible enzymes in the central metabolism (coarse-grained here into “super-eno”). Abundance of reversible enzymes scale linearly with growth rate [16].
E, F Decreasing abundance of reversible enzymes decreases lag times. This effect is due to regulatory metabolites being in a far-from-equilibrium state when

abundances are low, which allows differential regulation via FBP and PEP. For high abundance, regulation is weak and lag times long.
G There are two futile cycles in central metabolism.
H, I Increasing abundance of enzymes of the opposing direction in pre-shift, e.g., gluconeogenic enzymes in glycolytic growth, increases futile cycling and decreases lag

times. Because in futile cycles free energy is dissipated, usually in the form of ATP hydrolysis, futile cycling has an energetic cost.
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solution is on a surface of a multidimensional Pareto frontier, where

any improvement in one phenotype will come at the expense of

others. To test this hypothesis, we next asked whether a gluco-

neogenic specialist would indeed be constrained by the same trade-

offs as E. coli and other glycolytic specialists. For this purpose, we

chose P. aeruginosa, a well-studied gluconeogenesis specialist that

has a similar maximal growth rate in minimal medium as E. coli (E.

coli 0.9/h on glucose, P. aeruginosa 1.0/h on malate) and grows on

a wide variety of substrates.

Strikingly, P. aeruginosa grows fast on gluconeogenic substrates

that are considered “poor” substrates for E. coli, but slow on glyco-

lytic substrates that are considered “good” (Fig 6A). From our

model, we would expect that such a specialization for gluco-

neogenic substrates would go along with a reversal in lag phases,

too. Indeed, switching between glycolytic and gluconeogenic

substrates, P. aeruginosa exhibits a mirrored pattern of lag phases

compared to E. coli (compare Fig 6B and C), with a long multi-hour

lag phase when switched to glycolysis.

To investigate whether both E. coli and P. aeruginosa are

constrained by the same trade-offs, we investigated the effect of pre-

shift growth rate, which according to Fig 4 should have a negative

effect on growth rates. For E. coli, it is known that shifts from

glycolysis to gluconeogenesis depend on the pre-shift growth rate

(Fig 6D, data: (Basan et al, 2020)), which we can capture in our

model if we take FBP-dependent transcriptional regulation into

account (Fig 6E). We tested the corresponding lag times for P.

aeruginosa by varying gluconeogenic substrates and found a similar

dependency in shifts to glycolytic substrates (Fig 6F and G). Hence

as expected from the model, these findings show that P. aeruginosa

is exhibts the same trade-offs as E. coli.

To decipher whether P. aeruginosa lag times are constrained on

a molecular level by the same inability to break the equilibrium after

nutrient shifts, we investigated metabolite concentration dynamics

in central metabolism. Because P. aeruginosa uses the ED pathway

for hexose catabolism (Wang et al, 1959; Vicente & C�anovas, 1973),

we needed to adapt our model slightly. The irreversible reactions in

the ED pathway convert gluconate-6-phosphate to glyceraldehyde 3-

phosphate (GAP) and pyruvate. In the reversible chain of reactions,

the first metabolite in glycolysis is thus GAP rather than FBP.

Because GAP is difficult to quantify in mass spec-based metabolo-

mics, we used the closely related compound dihydroxyacetone

phosphate (DHAP) as a proxy. DHAP is in chemical equilibrium

with GAP via a single fast and reversible isomerase (Nikel et al,

2015).

Analogous to Fig 3, we plot the dynamics of DHAP versus

PEP, normalized to their glycolytic steady-state values, for both

shifts (Fig 7A and B). The dynamics starts and ends at their

respective steady states (gray symbols and dashed lines) and

follows the direction of the indicated arrow. In the chemical equi-

librium, DHAP depends linearly on PEP, ceqDHAP ¼ kENO�=
kENOþ ceqPEP, analogous to equation (7), but without the square

because of the 1-to-1 stoichiometry between DHAP and PEP. This

equilibrium is indicated with a red line. During the long lag time

of P. aeruginosa in a shift from malate to glucose, we see that

initially both DHAP and PEP collapse, followed by a slow

increase along the equilibrium line (Fig 7A). Thus, despite

substantial amounts of metabolites being built-up, “super-eno”

remains close to equilibrium. Only after 5.6 h, when the DHAP-

PEP dynamics deviates from the line, the equilibrium is broken

and net flux can be achieved.

In the reverse shift from glucose to malate, P. aeruginosa, in

contrast, can immediately establish a non-equilibrium and grow.

Thus not only is the asymmetry in lag times reversed compared to

E. coli, it is also caused by the same inability to break the equilib-

rium and establish net flux in central metabolism.

But, microbes do not have to be optimized for either direction.

One such case is P. putida with moderate lag times of about 1 to 2 h

in both directions and only a slight preference for gluconeogenic

substrates (Fig EV2). According to the model, such a generalist

strategy can also be a Pareto-optimal solution of the biochemical

trade-offs of Figs 4 and 5, but it must come at the expense of no fast

recovery (Fig 4A–C) and reduced growth, because of the trade-offs

with reversible enzymes (Fig 4D–F) and futile cycling (Fig 4G–I).
This is indeed the case for P. putida. Lag times are in the fast direc-

tion twice as long compared with P. aeruginosa, and the growth rate

is about 20% slower (Fig S8).
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Discussion

In this work, we presented a coarse-grained kinetic model of

central carbon metabolism, combining key allosteric and tran-

scriptional regulation, as well as biomass production, enzyme

synthesis, and growth. This model elucidates the remarkable

capacity of central carbon metabolism to self-organize in response

to substrate availability and flux requirements. During exponential

growth, regulatory metabolites adjust to far-from-equilibrium

steady states, providing the cell with an elegant mechanism to

sense the required directionality of the flux, but the model reveals

a key limitation of this flux sensing. Because after a nutrient shift

the concentration of the metabolites collapses to its equilibrium,

the cell becomes “blind” to the direction that the flux is supposed

to flow through the system. By implementing a preferred direc-

tion, the cell can partially overcome lag times in one direction at

the cost of increasing lag times in the opposite direction. In addi-

tion, two more trade-offs constrain the ability to simultaneously

decrease both lag times, because it impacts growth rate and the

level of futile cycling during growth.

Microbial species can maximize their proliferation only up to the

Pareto frontier spanned by these trade-offs, which can lead to evolu-

tion of substrate specialization. We validated this key model

prediction in different bacterial species. In P. aeruginosa, we

showed a reversal of substrate preference as compared to E. coli,

which coincided with a complete reversal of the phenomenology of

lag phases and metabolite dynamics. In P. putida, we found a gener-

alist strategy with moderate lag times in both directions.

One of the results from our model is that lag times could be

substantially reduced by allowing futile cycling, e.g., by expressing

irreversible enzymes for both directions at all times. The proteome

cost of such a wasteful strategy would be relatively low. Because

energy production pathways only constitute a relatively small frac-

tion (around 20% (Basan et al, 2015c)) of the total cellular

proteome and nutrient uptake even smaller (around 1% for glucose

uptake (Schmidt et al, 2016)), the cell could compensate ATP dissi-

pated in futile cycling by increasing nutrient uptake and ATP

production at a relatively low proteome cost. However, experimen-

tally it appears that E. coli chooses to keep futile cycling in check by

transcriptionally regulating irreversible enzymes. We thus hypothe-

size that the cost of futile cycling must be considered in conditions

where the energy budget is much more limited, such as growth

shifts and during starvation. In fact, it has been recently shown that

the energy budget of the cell is around 100-fold smaller during

carbon starvation and that energy dissipation can increase death

rates several fold (Schink et al, 2019). Therefore, even levels of
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Figure 6. Comparison of E. coli and P. aeruginosa during growth and shifts.

A Growth rates on glycolytic carbons (orange) are faster for E. coli than on gluconeogenic carbons (blue). For Pseudomonas, this dependence is reversed. No growth
indicated with “n.g”. Data are average of n = 3 biological replicates. Error bar is standard deviation.

B, C Shifts for E. coli and P. aeruginosa between glycolytic and gluconeogenic carbon substrates. The preferential order of P. aeruginosa is reversed in comparison with
E. coli.

D E. coli shows an increase in lag times to gluconeogenesis with increasing pre-shift growth rate. Lag times diverge around growth rate 1.1/h. Each point is an
individual experiment.

E The model predicts diverging growth rates without further fitting, based on the growth rate-dependent expression levels of glycolytic and gluconeogenic enzymes
(Fig 2E and F).

F P. aeruginosa shows a strikingly similar growth rate to lag time dependence as E. coli, when switched to glycolysis, with lag times diverging around 1.0/h. Each
point is an individual experiment.

G The model can recapitulate observed P. aeruginosa lag times if pre-shift glycolytic enzymes are decreased as a function of pre-shift growth rate.
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futile cycling that are modest during steady-state growth should

severely affect survival of cells in these conditions.

Our findings indicate that the identified trade-offs are inherent

properties of central carbon metabolism, at least given the exist-

ing allosteric and transcriptional regulation. But could different

regulation overcome this limitation? In theory, the cell could use

a direct input signal from the carbon substrate to allosterically

inhibit or even degrade undesired metabolic enzymes. This

would uncouple enzyme abundances and activities in pre- and

post-shift growth and circumvent the trade-offs, but with dozens

of glycolytic and gluconeogenic substrates, this would result in a

much higher degree of regulatory complexity, potentially exceed-

ing the regulatory signal capacity that microbes with their small

genomes could sense and integrate. In addition, any wrong deci-

sion to degrade or inhibit metabolic enzymes, for example when

combinations of nutrients are present or when supply is only

briefly inhibited, would impair growth.

Another potential reason why no such regulation has evolved

could be related to the observation that the regulation of upper

and lower glycolysis/gluconeogenesis and directionality of flux

are performed by the metabolite concentrations of FBP and PEP,

which are cut off from the rest of metabolism by irreversible

reactions. We propose that the rationale for this regulatory archi-

tecture is product inhibition, which ensures that this essential

part of central carbon metabolism is adequately supplied with

metabolites, but also ensures that uncontrolled and potentially

toxic accumulation of metabolites does not occur. In fact,

because the reactions of upper and lower glycolysis are effec-

tively irreversible, even a slight misbalance in flux between

these enzymes and biomass demand would result in uncon-

trolled accumulation of metabolites and, in the absence of a

cellular overflow mechanism, these metabolites would quickly

reach toxic concentrations, e.g., via their osmotic activities. As

demonstrated by the simulation, the existing regulation of central

metabolism successfully resolves this problem.

The regulatory architecture of central metabolism accom-

plishes efficient regulation of fluxes and metabolite pools in

response to diverse external conditions, while avoiding toxic

accumulation of internal metabolites and integrating multiple

conflicting signals with only two regulatory nodes. Central meta-

bolism is a remarkable example of self-organization of regulatory

networks in biology. It provides an elegant solution to the

complex, obligatory problem, posed by the biochemistry of

central carbon metabolism. All organisms that need to switch

between glycolytic and gluconeogenic flux modes face this prob-

lem, and we argue that this explains the striking degree of

conservation of the phenomenology of shifts between glycolytic

and gluconeogenic conditions that we found in different

microbial species, ranging from E. coli, B. subtilis, and even

wild-type strains of the lower eukaryote S. cerevisiae to the

reversed phenotypes in P. aeruginosa. Conversely, we believe

that the quantitative phenotypes exhibited by microbes in such

idealized growth shift experiments in the lab can reveal much

about their natural environments, ecology and evolutionary

origin.

Materials and Methods

Bacterial cultures

Strains used in this paper are wild-type Escherichia coli K-12

NCM3722 (Soupene et al, 2003), Pseudomonas aeruginosa PAO1

(Stover et al, 2000), and Pseudomonas putida NIST0129. The

culture medium used in this study is N�C� minimal medium

(Csonka et al, 1994), containing K2SO4 (1 g), K2HPO4�3H2O

(17.7 g), KH2PO4 (4.7 g), MgSO4�7H2O (0.1 g), and NaCl (2.5 g) per

liter. The medium was supplemented with 20 mM NH4Cl, as the

nitrogen source, and either of the following carbon sources: 20 mM

glucose-6-phosphate, 20 mM gluconate, 0.2% glucose, 20 mM
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Figure 7. Metabolite dynamics of P. aeruginosa during shifts from malate to glucose and vice versa.

A DHAP and PEP during shift from malate (“gng”) to glucose (“gly”), normalized to the final glycolytic steady state. Recovery follows a direct proportionality, indicating
that central metabolism is close to equilibrium (red line) during the recovery.
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Data information: Data are the average of n = 3 biological replicates, and error bars show standard deviation.
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succinate, 20 mM acetate, 20 mM citrate, 20 mM malate, or 20 mM

fumarate.

Growth was then carried out at 37°C in a water bath shaker at

200 rpm, in silicate glass tubes (Fisher Scientific) closed with plastic

caps (Kim Kap). Cultures spent at least 10 doublings in exponential

growth in pre-shift medium. For growth shifts, cultured were trans-

ferred to a filter paper and washed twice with pre-warmed post-shift

medium. Cells were resuspended from the filter paper in post-shift

medium and subsequently diluted to an OD of about 0.05.

Preparation of metabolite samples

Each metabolite sample was filtered, and the filter was immediately

plunged in 4 ml ice-cold methanol (40%)+acetonitrile (40%)+water

(20%) and kept in 50-ml tube. Bacteria were washed off from the fil-

ter by pipetting, and the solution was transferred to 15-ml tube.

Original 50-ml tube was further washed with 4 ml of ice-cold

methanol+acetonitrile+water mix and added to respective 15-ml

tube (total 8 ml). Each sample was dried by Speed Vac, and dried

extracts were sent for Mass spec analysis.

Quantification of intracellular metabolite levels

The dried metabolite extracts were resuspended in 150 µl Milli-Q

water, centrifuged at 4°C, 10,000 rpm for 10 min, and 100 µl
precipitate-free supernatant was transferred to a master 96-well

plate. 25 µl of the master plate was transferred to a 96-well plate

for acquisition, of which 10 µl was injected into a Waters Acquity

ultraperformance liquid chromatography (UPLC) system (Waters)

with a Waters Acquity T3 column coupled to a Thermo TSQ

Quantum Ultra triple quadrupole instrument (Thermo Fisher

Scientific) as described previously (Buescher et al, 2010).

Compound separation was achieved using a gradient of two

mobile phases: A, 10 mM tributylamine (ion-pairing agent),

15 mM acetate, and 5% (v/v) methanol in water; and B, 2-

propanol. Data were acquired in negative ionization mode using

previously published MRM settings (Buescher et al, 2010). Peak

integration was performed using an in-house software based on

MatLab. A dilution series of standards was used to calculate the

concentrations of metabolites in the samples. The final intracellu-

lar concentration was calculated from the sample concentration

and the extracted intracellular volume.

Theoretical modeling

The integrated minimal model of metabolism and growth was

implemented in MATLAB using the SimBiology toolbox and is

described in detail in the Appendix.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• The MATLAB implementation of the model and the data of all fig-

ures are available on GitHub: https://github.com/Severin-schink/

Glycolysis-gluconeogenesis-switches

• Metabolomic data are available on MetaboLights: www.ebi.ac.uk/

metabolights/MTBLS3887

Expanded View for this article is available online.
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