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Abstract: The efficiency of azo dye Acid Red 18 (AR18) and Cu(II) ions simultaneous removal from
an aqueous solution on NaP1CS and NaP1H was investigated, taking into account the effect of the
phase contact time, pH, initial concentration, temperature, and interfering ions presence. Zeolite
denoted as NaP1CS was modified by chitosan (CS) and zeolite denoted as NaP1H was modified
by hexadecyltrimethylammonium bromide (HDTMA). In order to characterize sorption properties
of NaP1CS, the obtained sorbent was characterized using Fourier transform infrared spectroscopy
(FTIR) and nitrogen adsorption/desorption (ASAP). The kinetic parameters were determined by
means of the pseudo first order (PFO), pseudo second order (PSO), and intraparticle diffusion
(IPD) kinetic models. To present the adsorption data, three different isotherm models (Langmuir,
Freundlich and Dubinin-Radushkevich) were used. The desorption process was also examined. It
was found that for sorbent NaP1CS the pseudo second order (PSO) kinetic model and the Langmuir
isotherm fitted best the experimental data. Moreover, it was noted that the acidic pH is appropriate
to achieve the best sorption properties of NaP1CS for Cu(II) and NaP1H for AR18 and Cu(II). The
thermodynamic parameters indicate an endothermic process. The most effective solution for the
desorption process was found to be 1 M HCl. The results indicate that simultaneous removal of dye
AR18 and Cu(II) on modified zeolite NaP1CS or NaP1H is possible and proceeds with a very good
efficiency. The obtained zeolites could effectively adsorb AR18 an Cu(II) simultaneously, but their
adsorption abilities were rather different.

Keywords: fly ash; zeolite; chitosan; dyes; intermolecular interactions

1. Introduction

Nowadays, synthetic dyes are much more often used than natural ones [1]. Large
amounts of colored wastewaters are produced by such industries as the textile, paper,
and plastic industries [2,3]. Dyes can cause allergies and are often characterized by toxic
and carcinogenic properties which impose threat for human health [4,5]. The presence
of dyes in surface waters can give negative effects (such as confined access to the light,
which results in the inhibition of photosynthesis, thus disrupting proper functioning of
aquatic ecosystems) [4,6]. Furthermore, unfortunately synthetic dyes are not degradable
and stable, so removal of dyes from wastewaters is an urgent task [7]. Not only the
presence of dyes in wastewaters poses a threat to aquatic ecosystems and human health,
but also heavy metal ions have negative impact [7,8]. Since industrial wastewaters contain
both dyes and heavy metal ions, there is a need to examine the systems containing both
pollutants simultaneously.
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The largest group of synthetic dyes with one or more azo group (–N=N–) contains
about half of annual worldwide production of colorants [6,9]. They are used even in the
paper, cosmetic, food, and drug industries.

Acid Red 18, denoted as (AR18) and commonly known as Ponceau 4R, Cochineal Red
A, or New Coccine is one of the such synthetic azo dyes [10,11]. It is mainly used in the
food manufacturing industry as a coloring agent E124 [12]. It is also applicable in the drug,
cosmetics and pharmaceutical industries [13]. In many cases it occurs simultaneously with
metal ions. There are many known methods of wastewater treatment from both heavy
metals and dyes e.g. adsorption, ion exchange, coagulation and flocculation, ozonation,
reverse osmosis, membrane filtration, activated sludge, chemical oxidation, electrodialy-
sis, and even monopolar electro-coagulation process [14–16]. Also, advanced oxidation
processes (e.g., the Fenton process with formation of ferrous ions nanoscale zero-valent
iron (NZVI)) can be used for this aim. According to the study of Nazaria et al. [9], the
dye removal efficiency (%S) was about 34% and 98% for H2O2 (200 mM) and NZVI/H2O2
(NZVI and H2O2 concentrations were 2 g/L and 200 mM, respectively), at a contact time of
80 min and pH 3. When the pH value increased to 9, then %S decreased to 12% and 29%
for H2O2 and NZVI/ H2O2, respectively.

However, most of these methods are not sufficiently effective due to the chemical
inertness of most dyes. As shown by some studies in the case of exceeding a daily dose
AR18 can adversely influence on human health resulting in neurobehavioral effects, intake
reproductive toxicity, mutagenic action, and potential carcinogenicity [17]. Dyes also cause
eutrophication and interference in ecology and chemical changes in water streams [6]. The
World Health Organization (WHO) and Food and Agriculture Organization (FAO) regulate
daily consumption of AR18 in an amount less than 4.0 mg/kg.

In the case of Cu(II) ions concentrations in drinking water, they vary widely as a
result of variations in water characteristics, such as pH, hardness, and its availability in
the distribution system. According to the literature data, it was found that Cu(II) levels in
drinking water can range from ≤0.005 mg/L to >30 mg/ L [17]. Therefore, for simultaneous
dyes and metal ions removal, adsorption is considered as one of the best techniques due
to low cost, effectiveness and easy handling [8,15,18]. For this purpose, carbon based
materials (activated carbons, biochars, and polymeric based materials) are used [5,19].
Searching for proper material with good adsorption properties, scientists turned to zeolites.

Zeolites are crystalline aluminosilicates with a skeleton made up of tetrahedral SiO4
and AlO4 [7,20,21]. They are characterized by excellent ion exchange, adsorption and cat-
alytic properties owing to a number of channels and pores in their structures [22]. Zeolites
have structural negative charge and high affinity for transition metal cations. The chemical
composition of the zeolite unit cell is expressed by the formula: MnO·Al2O3·xSiO2·yH2O,
where M is the cation of an alkali metal, n is the valence charge, ad x and y are the
integers [23]. The excess negative charge is compensated by ions of sodium, calcium,
magnesium and potassium. Synthetic zeolites have significantly better adsorption proper-
ties than natural ones [23].Therefore, they are the object of greater interest. In most cases
these materials can be modified by incorporation of various functional groups such as
hydroxyl, carboxylic, amine, thiol, phosphate, crown ether, etc. These sorbents are chiefly
used for heavy metal ions removal [24–26]. Functional groups grafted to the zeolite matrix
improve their selectivity not only towards heavy metal ions but also dyes. To introduce
these functionalities, chitosan and HDTMA were used [27].

Chitosan (CS) is a cationic polysaccharide obtained by alkaline N-deacetylation of
chitin. However, contrary to chitin, the presence of a large number of amine groups on the
chitosan chain increases its adsorption capacity [28]. Protonated amino groups can interact
electrostatically with anionic dyes in acidic media. Furthermore, acetamide and hydroxyl
groups present in the chitosan can serve as active sites [27]. Thus modification of zeolites
by chitosan can improve the ability to remove heavy metals and dyes [29]. Furthermore,
chitosan modified glass beads [30], activated clays [31], silica [32], and polymers are well
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described [1]. Carbon nanotubes (CNT) were used as a matrix for preparation of CS/CNT
composites for dyes removal by Wang et al. [33].

This paper presents zeolite (NaP1) obtained from fly ash by the hydrothermal method
and then modified by chitosan (NaP1CS) and hexadecyltrimethylammonium bromide
(HDTMA) (NaP1H) as perfect adsorbent for simultaneous removal of AR18 and Cu(II) [34].
It is well-known that the adsorption of cations and especially of anions on the surfaces
of zeolites is very limited. However, the anion exchange capacity (AEC) of zeolites can
be improved by chemical modification of their surface properties using selected organic
compounds such as HDTMA. Therefore, the influence of experimental conditions such as
pH, phase contact time, initial concentration, temperature, and interfering ions presence on
effectiveness of sorption on chitosan and HDTMA modified zeolite NaP1CS and NaP1H
were studied. Moreover, the interactions between AR18 and Cu(II) as well as CS or HDTMA
and zeolite were characterized.

2. Materials and Methods
Materials

For synthesis of zeolite there was used fly ash (result of combustion of bituminous coal)
from the power generating plant “Kozienice” (Manufacturer, Kozienice, Poland). Zeolite
NaP1 was produced based on hydrothermal synthesis of fly ash with sodium hydroxide at
atmospheric pressure [35]. Synthesis was performed on a pilot-scale installation for 24 h
at 353 K as described in [36]. Chitosan (CS) used in the studies was obtained from Sigma
Aldrich (chitosan flakes with the deacetylation degree > 75%). Acid Red 18 (AR18) dye
was also purchased from Sigma Aldrich. The general characteristics of the dye used in
the research are presented in Table 1. Hexadecyltrimethylammonium bromide (HDTMA)
(Merck) was used at amounts equivalent to 1.0 and 2.0 of the NaP1 cation exchange capacity
(CEC) according to the procedure described in [34].

Table 1. General characteristics of C.I. AR18.

Parameter Value

Molecular formula C20H11N2Na3O10S3
Molecular weight, g/mol 604.5
COD of 1 g AR18, mg/L 597 ± 17

λmax, nm 507

Chemical structure
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The first stage of adsorbent NaP1 modification was to dissolve CS flakes in 1% solution
of glycolic acid. It lasted for 24 h using a magnetic stirrer at 1000 rpm at room temperature.
In the next stage zeolite NaP1 was added to CS solution, with the ratio of 8:1 and then
the mixture was continuously blended using a magnetic stirrer at 1000 rpm for 6 h. To
precipitate the resulting product the 1 M NaOH solution was used. Subsequently it was
filtered and washed with distilled water to neutral pH, dried and then ground to obtain
NaP1CS. In the case of HDTMA modification, zeolite NaP1 was dispersed in about 300 mL
of deionized water and the desired amount of HDTMA was slowly added with the ratio of
1:1 and then the mixture was continuously blended using a magnetic stirrer at 1000 rpm
for 2 h.



Materials 2021, 14, 7817 4 of 18

To characterize the sorbents the Fourier transform infrared spectroscopy (FTIR)
method is used. FTIR spectra were obtained using a Cary 630 FTIR Spectrometer (Agilent
Technologies). The Fourier transform infrared spectra of the samples were measured at
650–4000 cm−1. Another analysis was applied to determine such parameters as: specific
surface area, micropore surface, micropore volume, total pore volume and average pore
diameter. The measurements of N2 adsorption/desorption isotherms at 77 K were con-
ducted by ASAP 2420 (Micromeritics Inc., Norcross, GA, USA). To determine the surface
morphologies of the sorbents SEM images were taken using the Quanta 3D FEG (FEI)
electron microscope.

Stock solution of Cu(II) with the concentration 1000 mg/L was prepared by dissolving
proper amounts of CuCl2·2H2O (obtained from Avantor Performance Materials Poland
S.A.) in distilled water. All of the chemicals used were of analytical grade and used without
further purification. The stock solutions of Cu(II) and AR18 were prepared by directly
dissolving them in distilled water.

To determine the optimal pH for the sorption of the dye the first tests were per-
formed for the system containing only the dye. The studies were carried out under acidic
(pH = 3, 4), almost neutral (pH = 6) and alkaline conditions (pH = 9). For the system
containing the AR18 and Cu(II) at concentration (50 mg/L AR18 and 50 mg/L Cu(II)) the
effect of pH was studied after adjustement of the initial pH of the solution using 1 M NaOH
and 1 M HCl. To determine the effect of pH, 20 mL of the appropriate solution were added
to 0.1 g of NaP1, NaP1CS or NaP1H and shaken for 120 min. at room temperature with the
amplitude equal 7 and 180 rpm.

In each test, the samples after shaking were filtered and the concentration of Cu(II)
was determined by means of the AAS technique using the spectrometer SpectrAA FS-
240 (Manufacturer, Varian, Bungarra, Australia). Concentration of the dye solution was
measured using UV-Vis spectrophotometer, from Agilent Technologies (Santa Clara, CA,
USA), Cary 60 at an optimal wavelength of 506 nm. Figure 1 presents the spectra of dye
AR18, at different concentrations.
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Figure 1. Spectra of AR18 at different concentrations.

Kinetic experiments for AR18 and Cu(II) on NaP1, NaP1CS and NaP1H sorption were
carried out by mixing 0.1 g of sorbent with 20 mL two-component solution at concentrations:
(50 mg/L AR18 and 50 mg/L Cu(II) and 100 mg/L AR18 and 100 mg/L Cu(II)). Solutions
with sorbents were mixed for the period of time 1–240 min with the shaking amplitude 7
and 180 rpm at 293 K. To calculate the kinetic parameters the pseudo first order, pseudo
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second order and intraparticle diffusion kinetic models were used. The pseudo first order
equation is generally expressed as follows [36]:

dqt

dt
= k1(qe − qt) (1)

where qe and qt are the adsorption capacities at equilibrium and at time t, respectively
(mg/g), k1 is the rate constant of pseudo first order model (1/min).

After integration and applying the boundary conditions, t = 0 to t = t and qt = 0 to
qt = qt, this equation is as follows:

qt = qe

(
1 − e−k1t

)
(2)

The pseudo second order adsorption kinetic rate equation is expressed as follows:

dqt

dt
= k2(qe − qt)

2 (3)

where k2 is the rate constant of the pseudo second order model (g/mg min) and qe is the
adsorption capacity calculated by the pseudo second order model (mg/g).

Integrating Equation (3) and applying the boundary conditions, that is, t = 0 to t = t
and qt = 0 to qt = qt, gives [27]:

qt =
k2q2

e t
1 + k2qet

(4)

Furthermore, the diffusion model was also considered so as to determine the rate-
limiting step during the overall adsorption process. One well-known type of diffusion
equations used to model the adsorption process is given by Weber-Morris [37]

qt = kit1/2 + C (5)

where qt is the adsorption capacity (mg/g) at time t, t is the contact time (min), both ki
(mg/g min0.5) and C (mg/g) are the Weber−Morris diffusion constants.

In this paper, three different isotherm models were investigated for representing the
adsorption data including the Langmuir, Freundlich and Dubinin-Radunshkevich models.
The initial AR18 and Cu(II) concentrations were varied from 25–400 mg/L. 20 mL of the
appropriate solution was added to 0.1 g of the NaP1CS and NaP1H and mixed at the
shaking time 120 min, the shaking amplitude was 7 and 180 rpm at 293 K. The most useful
isotherm is the Langmuir isotherm model which indicates monolayer and a homogeneous
surface with no interactions between the adsorbate molecules [38]. The Langmuir equation
is as follows:

qe =
qmKLce

1 + KLce
(6)

where qe is the adsorption capacity (mg/g) at equilibrium, ce is the adsorbate equilibrium
concentration in solution (mg/L), qm is the monolayer adsorption capacity of the sorbent
(mg/g) and KL is the Langmuir constant (L/mg) related with the sorption free energy [39].
From the linear plot of ce/qe vs. ce both qm and KL can be determined.

Another model is the Freundlich model, which is an empirical isotherm for sorption
on heterogeneous surfaces and multilayer sorption. It is presented in the equation below:

qe = KFc1/n
e (7)

where KF (mg/g) is a constant relating the adsorption capacity and 1/n is an empirical
parameter relating the adsorption intensity, which varies with the heterogeneity of the
material [39]. In turn, the Dubinin–Radushkevich (D–R) isotherm model assumes mul-
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tilayer sorption of ions in the most energetically favourable sites of sorbent [40]. The
Dubinin-Radunshkevich isotherm is expressed by Equation (8) [41]:

qe = qse(−Bs2) (8)

which qs and B constants are obtained from the intercept and slope of the experimental plot
of lnqe vs. ε2. ε is the Polanyi potential and can be calculated from:

ε = RTln
(

1 +
1
ce

)
(9)

where R is the gas constant (8.314 J/mol K), T is the temperature (K), ce is the equilibrium
concentration of the adsorbate (mg/L), qs is the sorption monolayer capacity, the parameter
B can be used to calculate the mean free energy of sorption from Equation (10):

E = 2B−1/2 (10)

Temperature effect on adsorption capacity of AR18 and Cu(II) on NaP1CS and NaP1H
was studied at 293, 313, and 333 K using 400 mg/L of the initial two-component solution.
To explain the effect of temperature on the adsorption process there were used such
thermodynamic parameters as the Gibb’s energy change (∆G◦), enthalpy (∆H◦), and
entropy (∆S◦). Free energy (∆G◦) was calculated using the following equation [41]:

∆G◦ = −RTln(Kc) (11)

where R is the gas constant (8.314 J/mol K), T is the temperature (K), and KC is the
equilibrium constant equal to qe/ce. ∆H◦ and ∆S◦ were calculated from the slope and
intercept of van’t Hoff plots of lnKc vs. 1/T.

To determine the interfering ions effect the multi-component solution at the concen-
trations 50 mg/L AR18 and 50 mg/L Cu(II) with the addition of Cl−, NO3

−, SO4
2− anions

at the concentrations 1000 mg/L were prepared. 20 mL of the appropriate solution was
added to 0.1 g of NaP1CS or NaP1H and mixed together at the shaking time 120 min., the
amplitude 7, 180 rpm and the temperature 293 K.

Desorption process was examined using 96% C2H5OH, 99.8% CH3OH, 1 M HCl,
1 M CH3COOH, 1 M NaOH, and 1 M NaCl solution. 20 mL of solution for desorption
was poured into the Erlenmeyer flask containing 0.1 g of NaP1Cs and NaP1H after the
adsorption equilibrium of AR18 and Cu(II). The process was carried out for 120 min. at
room temperature with the shaking amplitude 7 and 180 rpm. The desorption percentage
D(%) of AR18 and Cu(II) was defined as [42]:

D(%) =
ce(des)

ce(ads)
(12)

where ce(des) is the concentration of AR18 and Cu(II) desorbed from NaP1CS or NaP1H (mg/L)
and ce(ads) is the concentration of AR18 and Cu(II) adsorbed on NaP1CS or NaP1H (mg/L).

3. Results
3.1. Chemical Characterization of the Materials

The Fourier transform infrared spectra of the samples were measured at 650–4000 cm−1.
Figure 2a presents the spectra of chitosan (CS) and NaP1CS. Figure 2b presents the spectra
of hexadecyltrimethylammonium bromite (HDTMA) and NaP1H.
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Figure 2. FTIR spectra of (a) CS and NaP1CS as well as (b) HDTMA and NaP1H. 
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Figure 2. FTIR spectra of (a) CS and NaP1CS as well as (b) HDTMA and NaP1H.

Major adsorption bands for chitosan are situated at 3356 cm−1 (–OH and –NH2
stretching vibrations), 2871 cm−1 (–CH stretching vibrations), 1648 and 1577 cm−1 (–NH2
bending vibrations), 1418 and 1313 cm−1 (C–O stretching vibrations), 1373 cm−1 (C–N
stretching vibrations), 1063 and 1025 cm−1 (C–O skeletal vibrations) [42]. Appearance of
the bands of NaP1CS spectra at 735 and 990 cm−1 indicates the presence of Al–O–Si and
Si–O bonds stretching, respectively, derived from zeolite. Moreover, after modification of
zeolite with CS, it can be observed in the spectra that the intensities of the hydroxyl peaks
and amide peaks decrease and are found at 3390 cm−1 and 1642 cm−1 respectively. In the
case of HDTMA modification the following bands were found: 3502 cm−1 and 2923 cm−1

(asymmetric and symetric vibrations of surfactant ‘head’ suggesting that it possesses the
quaternary ammonium groups –N(CH3)3 as well as at 1639 cm−1 connected with CH3–N
band. It shoud be noted that it also contains 16 carbons and thus being relatively longer
than other quaternary ammonium salts, is usually used for modifying zeolites. As for a
role of HDTMA, it is not bound to the silicate surfaces.

Another analysis was applied to determine such parameters as: specific surface
area, micropore surface, micropore volume, total pore volume and average pore diameter.
Table 2 presents values of surface area, pore size and pore volume. According to the
IUPAC classification the N2 adsorption/desorption isotherms of NaP1CS belong to IV type
isotherm and H2/H3 hysteresis loop [43]. The mesopore width reported in the literature
is 20 to 500 Å so the pore distribution curves are typical of mesopores. Analogous results
were obtained for NaP1H. Examplary results for NaP1CS were presented in Figure 3.

Table 2. Surface characteristics of NaP1CS.

Parameter NaP1 NaP1CS NaP1H

SBET (m2/g) 94 53 29

Vmic
a (cm3/g) 0.005 0.004 0.003

Smic
a (m2/g) 16.0 10.7 8.34

Vtot
b (cm3/g) 0.28 0.13 0.11

Dav
c (Å) 109.1 111.7 65.4

SBET is the specific surface area; Vmic is the micropore volume; Smic is the surface of micropores; Vtot is the total
pore volume; Dav is the average pore diameter; a Calculated from t-plot; b Determined at p/po = 0.99; c Barrett,
Joyner and Halenda (BJH) model.
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Figure 3. N2 adsorption–desorption isotherms at 77 K and BJH desorption pore size distribution of (a) NaP1CS and
(b) NAP1H.

The analysis of textural parameters revealed that both modifications reduce SBET and
porosity of the materials. Consequently, all examined parameters confirm this trend apart
from Dav. The surface of the NaP1 zeolite after modification was covered with an organic
phase (HDTMA or CS) causing pore blockage. The total pore volume of NaP1 was equal
to 0.28 cm3/g, while after the modification process, the total pore volume achieved the
value 0.13 and 0.11 cm3/g for NaP1CS and NaP1H, respectively. However, the average
pore diameter increased for NaP1CS to 111.7 Å and decreased for NaP1H to 65.4 Å, in
comparison to NaP1 (109.1 Å). These data confirm that long chains of HDTMA are more
effective in reducing the textural performance of NaP1 than CS.

The SEM images Figure 4 show that the particles of zeolite NaP1 assumed a spherical
shape of different sizes and other irregular forms. After modification the surface was
covered by CS or HDTMA.
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Figure 4. SEM photomicrographs of the (a) NaP1, (b) NaP1CS and (c) NaP1H (magnification 10,000×).

In the case of XRD pattern for NaP1 and modified NaP1, NaP1H was prepared
according to the procedure described in [34]. Muir et al. mentioned that the analysis of
the XRD pattern did not show any changes and no additional peaks were observed after
the modification of NaP1 by HDTMA. This indicates that the ion exchange process was
responsible for the adsorption of surfactant onto the zeolite’s surface and thus the structural
perturbations did not take place.
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3.2. pH Effect

The effect of pH on the adsorption was investigated at the AR18 and Cu(II) concen-
tration 50 mg/L for 240 min. The effect of the pH on AR18 and Cu(II) adsorption on
NaP1CS and NaP1H was studied over the pH range from 3 to 9. Examining the sorption
of the dye, it was observed that the percentage of adsorption (%S) in an acidic medium at
pH 3 was equal to 41% for NaP1 and 97% for NaP1CS and 89% for NaP1H while in the
alkaline medium at pH 9 the adsorption percentage (%S) decreased (data not presented).
The obtained values relate to the qe were presented in Figure 5.
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For zeolite NaP1 after sorption of AR18 qe values dropped insignificantly from
2.94 mg/g to 2.45 mg/g, whereas for chitosan modified zeolite NaP1CS were higher
but also dropped from 9.98 mg/g to 6.23 mg/g. In the case of HDTMA modified zeolite
NaP1H they were lower compared to NaP1CS and dropped from 7.86 mg/g to 7.78 mg/g.
The adsorption capacity for Cu(II) on NaP1CS and NaP1H do not change with pH value
increasing. In the range of pH value from 3 to 6, these values were equal almost 10 mg/g
and decreased at pH 9 to 6.23 mg/g for NaP1CS (Figure 5b). At a pH above 9, blue flocs
appeared with increasing the pH value of AR18 and Cu(II) solution. This is probably due
to the hydrolysis process and Cu(II) hydroxide precipitation. The results indicate that
acidic pH is effective in achieving maximum dye removal. This is due to the fact that the
pH value influences on CS and HDTMA surface charge. With the reduction of pH, the
number of protonated amino functional groups of CS on the NaP1 surface increases that
can interact electrostatically with an anionic dye AR18. In alkaline solution, the amine
groups of CS are deprotonated, so electrostatic interaction between the NaP1CS and AR18
was reduced and resulted in lower removal efficiency. The mechanism of AR18 adsorption
on chitosan modified NaP1 can be illustrated by the following steps:

• Protonation (−NH3
+) amino groups of chitosan (−NH2) under acidic conditions

(Equation (13))
NaP1CS + H+ � NaP1CS H+– (13)

• Simultaneously dissociation of dye molecule (D–SO3
−), as shown in Equation (14):

D–SO3Na � D–SO3
− + Na+ (14)

• The electrostatic interactions between NaP1CS H+ and D–SO3
− (Equation (15))

NaP1CS H+ + D–SO3
− � NaP1CS H+ + O3S–D (15)

It was estimated that the adsorption of Cu(II) can proceed on zeolite modified CS as a
result of electrostatic interactions in the acidic media (ion exchange) or metal chelation.
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In the case of HDTMA, it not only makes NaP1 surface more hydrophobic but also
neutralizes the negative charges. It is well-known that HDTMA bilayer on NaP1 surface
affect the AR18 adsorption. The values of HDTMA+ parametres: diameter 0.4 nm, length
2.3 nm and polar head diameter 0.694 nm compared to NaP1 channels suggest slight
changes in external cation exchange capacity. Thus, the possible mechanism of AR18 dye
adsorption onto NaP1H occurs only on the outer surface. Examining the two-component
solution, it was found that pH change from 3 to 6 has a slight effect on the efficiency of AR18
and Cu(II) sorption as shown in Figure 5. As it can be seen from Figure 5, the maximum
sorption of AR18 by NaP1H takes place in acidic condition (pH = 3). This effect of pH can be
explained with regards to the interaction between AR18 and HDTMA in terms of surface
charge. The AR18 is an acidic dye and its sulfonate moiety contains negative sulfonic
groups (–SO3

−). In acidic condition, a layer of HDTMA on the surface of zeolite increases
the positive charges on the external surface of zeolite. Therefore, the strong electrostatic
attraction between the positively charged sorption site and oppositely charged groups of
the AR18 molecules leads to high adsorption capacity of AR18. The noticeable decrease in
the AR18 sorption capacity can be noticed by increasing pH. The appropriate pH value was
equal to 6.0. It was found that CS modification NaP1 is characterized by better properties
than HDTMA modified and therefore further investigations using HDTMA were not caried
out. Summarising, modification of the NaP1 zeolite with chitosan (NaP1CS) increases
Cu(II) and AR18 sorption, while modification of the NaP1 zeolite with HDTMA (NaP1H)
increases AR18 sorption and decreases Cu(II) sorption.

3.3. Effect of Initial Concentration

Since the preliminary results indicated that for NaP1CS the maximum adsorption
capacities at simulataneous AR18 and Cu(II) removal were achieved at pH 6, in the next
step the influence of initial concentration was tested at this value. Influence of initial
concentration of AR18 and Cu(II) on adsorption was examined in the two-component
solution at two different concentrations 50 and 100 mg/L. As shown in Figure 6 the
adsorption capacity increased with the increasing concentration of AR18 and Cu(II).
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3.4. Kinetic Effect

The obtained data were modelled using the pseudo first order, pseudo second order
and intraparticle diffusion kinetic models. Table 3 presents the parameters for three kinetic
models of adsorption of AR18 and Cu(II) on NaP1 and NaP1CS. This data showed that
experimentally calculated values of qe for the tested concentrations were identical with
the theoretical calculated ones in the case of the pseudo second order kinetic model [44].
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Furthermore, the values of determination coefficients R2 were also the highest for the
pseudo second order model. This indicates that the pseudo second order kinetic model fits
better the adsorption process than the pseudo first order kinetic model. The same trend is
observed in many papers. A big difference between the equilibrium constant k2 and k1
indicates that the NaP1CS surface was heterogeneous [45].

Table 3. Kinetic parameters for the adsorption of AR18 and Cu(II) on NaP1 and NaP1CS.

Adsorbent Adsorbate C0
(mg/L)

qe,
exp,

(mg/g)

Kinetic
Model Kinetic Parameters

pseudo
first

order

qmax
(mg/g)

k1
(h−1) R2

NaP1
AR18 50

100
2.18
5.30

3.96
2.73

0.025
0.023

0.75
0.96

Cu(II) 50
100

9.91
19.60

18.85
2.23

0.005
0.035

0.80
0.94

NaP1CS
AR18 50

100
9.94

19.83
1.78
1.84

0.012
0.022

0.87
0.73

Cu(II) 50
100

9.98
19.30

99.43
4.05

0.023
0.043

0.58
0.98

pseudo
second order

qmax
(mg/g)

k2
(g/mg h) R2

NaP1
AR18 50

100
2.18
5.30

2.18
5.39

0.630
0.029

1.00
0.99

Cu(II) 50
100

9.91
19.60

9.91
19.61

1.371
0.406

1.00
1.00

NaP1CS
AR18 50

100
9.94

19.83
9.93

19.84
0.173
0.029

0.99
1.00

Cu(II) 50
100

9.98
19.30

9.98
19.39

16.632
0.045

1.00
0.99

intra-particle
diffusion

ki
(mg/g·min0.5)

C
(mg/g) R2

NaP1
AR18 50

100
2.18
5.30

0.243
0.276

1.35
2.45

0.97
0.90

Cu(II) 50
100

9.91
19.60

0.003
0.265

9.85
18.71

0.81
0.99

NaP1CS
AR18 50

100
9.94

19.83
0.111
0.425

9.13
18.27

0.90
0.99

Cu(II) 50
100

9.98
19.30

0.028
1.011

9.91
14.11

0.99
0.97

According to the Weber-Morris equation, the adsorption process can be controlled in
three different stages. The first stage is the rapid external surface adsorption, while the
second step is related to the intraparticle diffusion. The third one is the final equilibrium
stage, where intraparticle diffusion starts to slow down [22,46]. This can be due to adsorbate
concentration in aqueous solutions and a smaller number of available adsorption sites.
The values of ki and C presented in Table 3 were calculated from the second section of
the plot. The values of ki and C for the adsorption of AR18 and Cu(II) on NaP1 and
NaP1CS increased with the increasing initial AR18 and Cu(II) concentration. However, the
intraparticle diffusion model did not fit the adsorption process due to the non-linearity of
the plots [32].

3.5. Adsorption Isotherms

In the description of experimetal data concerning the adsorption of AR18 and Cu(II)
on NaP1CS there were investigated three different isotherm models: Langmuir, Freundlich,
and Dubinin-Radushkevich. In Table 4 isotherm parameters were collected based on the
isotherms presented in Figure 7.
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Table 4. Isotherm parameters for AR18 and Cu(II) adsorption on NaP1CS.

Adsorbate Isotherm T
(K) Parameters

AR18

Langmuir

qm
(mg/g)

KL
(L/mg) R2 RL

293
74.61 0.390 0.98 0.093

Cu(II) 36.04 0.051 0.98 0.440
AR18

313
81.33 0.355 0.98 0.101

Cu(II) 39.47 0.090 0.97 0.307
AR18

333
123.63 0.189 0.87 0.175

Cu(II) 46.22 0.169 0.98 0.192

AR18

Freundlich

Kf
(mg/g) n R2

293
16.43 2.48 0.53

Cu(II) 7.67 3.57 0.98
AR18

313
18.41 1.96 0.88

Cu(II) 9.48 3.67 0.96
AR18

333
18.38 1.38 0.97

Cu(II) 15.16 4.59 0.80

AR18

Dubinin-
Radushkevich

qs
(mg/g)

B
(mol2/kJ2) R2 E (kJ/mol)

293
0.003 0.0033 0.52 12.344

Cu(II) 1200.354 0.0025 0.98 14.031
AR18

313
0.007 0.0041 0.91 11.024

Cu(II) 1056.565 0.0024 0.97 14.469
AR18

333
0.017 0.0054 0.97 9.659

Cu(II) 1008.093 0.0018 0.80 16.789
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Figure 7. Effect of temperature on the adsorption isotherms of (a) AR18 and (b) Cu(II) adsorption on NaP1CS (m = 0.1 g,
t = 120 min, co = 10–400 mg/L, A = 7, 180 rpm, pH = 6).

The equilibrium adsorption capacities for AR18 and Cu(II) increased from 1.12 mg/g
and 4.07 mg/g to 46.22 mg/g and 123.63 mg/g when AR18 and Cu(II) concentration
increased from 50 to 400 mg/L, respectively. Based on the data, R2 values for the Langmuir
model are higher than for the other model which indicates that the Langmuir model
fits best the experimental data. These results show that the surface of the adsorbent is
monolayer and homogeneous. Based on the Langmuir isotherms, the values of qm for both
AR18 and Cu(II) ions increase with the increasing temperature which indicates that higher
temperatures facilitate the adsorption process. The maximum values capacity of NaP1CS
at pH 6.0, two-component solution at 400 mg/L of AR18(VI) and Cu(II) is 123.62 mg/g
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as for AR18 and 46.22 mg/g as for Cu(II). It is far more than that of adsorbents reported
in [10,37,47]. The KL constant of the Langmuir parameters demonstrated the binding
affinity between NaP1CS and AR18 and Cu(II). The KL values of AR18 range from 0.189 to
0.390 and for Cu(II) from 0.059 to 0. 1690. The KL values suggested that NaP1CS possess
stronger adsorption of AR18 than for Cu(II). Although the determination coefficients R2

for the Langmuir isotherm concerning the adsorption of AR18 on NaP1CS decrease with
the increasing temperature. This points out that at higher temperature the Langmuir
isotherm tends toward the Freundlich adsorption model. The nature of adsorption can
be determined by RL value. The value of RL indicates whether the type of isotherm is
unfavorable adsorption (RL > 1), favorable adsorption (0 < RL < 1), irreversible adsorption
(RL = 0), or linear adsorption (RL = 1) [48]. Also the n values from the Freundlich model
are between 1 and 10 which confirms the favourable character of adsorption [43].

Determined by the Dubinin – –Radushkevich isotherm, the value of mean free energy
of adsorption E predicts the mechanism of sorption. Since the values of E are between 9.659
and 16.789 kJ/mol, the ion exchange mechanism takes place (Table 4) [43].

3.6. Effect of Temperature

The easily accessible sorption sites and high surface area of the adsorbent contributed
to the rapid adsorption. The AR18 and Cu(II) adsorption capacity for NaP1CS increased
with an increase in temperature from 293 to 333 K, indicating better adsorption at higher
temperature and an endothermic adsorption process. Similar results were also found
concerning adsorption of AR18 on the chitosan/carbon nanotube [33]. In contrast, the
AR18 adsorption capacity for NaP1 decreases with an increase in temperature from 293 to
333 K, indicating better adsorption at lower temperature and an exothermic adsorption
process. Table 5 presents the thermodynamic parameters for the adsorption of AR18 and
Cu(II) on NaP1CS.

Table 5. Thermodynamic parameters for Acid Red 18 and Cu(II) adsorption on NaP1 and NaP1CS.

Adsorbent Adsorbate
∆H◦

(kJ/mol)
∆S

◦

(J/mol K)
∆G◦ (kJ/mol)

293 K 313 K 333 K

NaP1CS
AR18 29.84 106.3 −18.37 −20.88 −24.99
Cu(II) 12.49 26.4 −2.15 −13.57 −5.53

The positive ∆H◦ values of AR18 adsorption on NaP1CS and Cu(II) adsorption on
NaP1CS indicate that the process is endothermic [48]. The magnitude of the ∆H◦ value
for physical adsorption is in the range of 2.1–20.9 kJ/mol while for chemical adsorption
80–200 kJ/mol. The ∆H◦ values of Cu(II) adsorption on NaP1CS indicate physical adsorp-
tion processes. The ∆H◦ value of AR18 adsorption on NaP1CS was in the range of neither
physical adsorptions nor chemical adsorptions, which can indicate it involves the electro-
static interactions [41]. The negative and went down values of ∆G◦ at all temperatures
indicate the spontaneous nature of the adsorption process of AR18 and Cu(II) ions on
NaP1CS. The positive values of ∆S◦ mean decrease of the randomness at the solid-solution
interface during the adsorption [49].

3.7. Interfering Ions Effect

The effects of interfering ions were studied in the presence of chloride, nitrate(V) and
sulfate(VI) ions (Figure 8). Their presence hardly affected sorption of AR18 and Cu(II) ions
on NaP1CS in opossite to AR18 on NaP1. The greatest influence of the interfering ions was
observed in the case of AR18 sorption onto NaP1.
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2− ions on the sorption percentage S(%) of AR18 and Cu(II) ions on (a) NaP1 and
(b) NaP1CS, (m = 0.1 g, t = 120 min, A = 7, 180 rpm).

Sorption on NaP1 was mostly affected by the presence of nitrate(V) ions decreasing
from 20.2% to 8.6% for the sorption of Acid Red 18 and from 98.8% to 95.9% for the sorption
of Cu(II). It can be concluded that even in the presence of chloride, nitrate(V) and sulfate(VI)
sorption on NaP1CS can proceed without interference with still very high efficiency as
shown in Figure 8. Chitosan modified NaP1 zeolite (NaP1CS) has a high potential in
the removal of metal ions and dyes, since it has both amine (–NH2) and hydroxyl (–OH)
group that can serve as active sites. With the reduction of pH, the number of protonated
amino functional groups of CS on the NaP1CS surface increases and they can interact
electrostatically with an anionic dye AR18. In alkaline solution, the amine groups of CS
are deprotonated, so electrostatic interaction between the NaP1CS and AR18 was reduced
and resulted in lower removal efficiency. In the case of Cu(II), it was estimated (Fig. 5) that
the adsorption of Cu(II) can proceed on zeolite NaP1 and modified NaP1CS as a result of
electrostatic interactions (ion exchange) or metal chelation.

3.8. Desorption Process

Recovery of heavy metal ions and molecules of dye was made possible as a result of
the desorption process. Figure 9 presents the percentage of AR18 and Cu(II) ions desorption
DP(%) from NaP1 and NaP1CS. Of all solution used for this purpose the most effective
one proved to be 1 M HCl. DP(%) of NaP1 using 1 M HCl were 23.4% and 100% for AR18
and Cu(II) ions, respectively. In contrast, much higher values were obtained with respect
to the desorption of NaP1CS and they were 71.3% and 95.2% for AR18 and Cu(II) ions,
respectively. The main mechanism of AR18 adsorption on NaP1CS was ion exchange
which is generally characterized by high efficiency regeneration [37].
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4. Conclusions

In this paper, modified NaP1 zeolite by CS and HDTMA denoted as NaP1CS and
NAP1H were investigated to verify the sorption properties compared with those of zeolite
NaP1. Acid Red 18 was chosen as a model dye (AR18) and Cu(II) ions as the example
of heavy metal ions for removal. Modification of NaP1 by chitosan (CS) and hexade-
cyltrimethylammonium bromide (HDTMA) improved the sorption properties towards
AR18 and the sorption capacity increased almost three times compare to NaP1. However,
better results were obtained for CS. Modification of the NaP1 zeolite with chitosan (NaP1CS)
increases Cu(II) and AR18 sorption, while modification of the NaP1 zeolite with HDTMA
(NaP1H) increases AR18 sorption and decreases Cu(II) sorption. The results showed that
the increasing concentration of AR18 and Cu(II) promotes the increase of sorption capacity.
The kinetic data were consistent with the pseudo second order kinetic model which is
confirmed by the value of correlation coefficient R2. The Langmuir isotherms were the best
fitted with the equilibrium data so this fact indicates monolayer and homogeneous surface
of the adsorbent. The mean free energy of adsorption E indicates that the ion exchange
mechanism takes place. The thermodynamic parameters indicate that temperature increase
has a favourable effect on the simultaneous sorption of AR18 and Cu(II) ions. As follows
from the results acidic pH is effective in achieving maximum dye removal. The presence of
interfering ions did not cause decrease in the effectiveness of the adsorption process which
facilitates removal of dyes and heavy metal ions. The 1 M HCl solution proved to be the
most effective for the desorption process as the efficiency amounting 71.3% and 95.2% for
AR18 and Cu(II) ions, respectively.
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