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The oral microbiome, with a unique emphasis on Porphyromonas gingivalis has been

associated with a constellation of inflammatory diseases such as cardiovascular disease,

rheumatoid arthritis, Alzheimer’s disease, type II diabetes, and non-alcoholic associated

fatty liver disease. Periodontal disease has also been shown to induce “leaky gut”

leading to metabolic endotoxemia. Several recent studies investigating the habitants

of the blood microbiome have found the majority of species appear to be derived

from oral and skin bacterial communities in otherwise healthy individuals. Many of the

same pathologies associated with perturbations of oral health, such as cardiovascular

disease, show alterations to the composition of the blood microbiome as well as

circulating neutrophil phenotypes. Gingival inflammation is associated with activated

blood neutrophil phenotypes that can exacerbate a distal inflammatory insult which may

explain the connection between oral and systemic inflammatory conditions. While in the

oral cavity, neutrophils encounter oral microbes that are adept in manipulating neutrophil

activity which can re-enter the vasculature thereafter. Endotoxin from oral microbes

can differ significantly depending on bacterial community and state of oral health to

alter cellular LPS tolerance mechanisms which may contribute to the primed neutrophil

phenotype seen in periodontitis and provide a mechanism by which the oral-microbes

can affect systemic health outcomes. This review synthesizes the studies between

inflammatory diseases and oral health with emphasis on microbiome and corresponding

lipopolysaccharides in immune tolerance and activation.

Keywords: metabolic endotoxemia, Porphyromonas gingivalis, periodontal disease, gut dysbiosis, systemic

inflammation

INTRODUCTION

Despite that oral microbiota or “animalcules” were the first bacteria of the human microbiome to
be described with drawings by Antoine Leeuwenhoek (inventor of the microscope) much of what
we know about the human microbiome has been dictated by study of the microbial community as
it pertains to gastrointestinal health. Our understanding of the human microbiome has evolved
from thinking of bacteria as invaders or freeloaders to now considering them a necessary and
active participant in human metabolic function. Recent investigation suggests a primary role
for oral bacteria in driving gut-microbial dysbiosis leading to Inflammatory Bowel Disease, and
metabolic endotoxemia [1]. Coinciding with these findings, research into characterization of the
blood microbiome has shown the presence of the oral microbiome in the humoral system in
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otherwise healthy individuals. In dental-focused research, it
has long been acknowledged that there is a link between oral
health and systemic parameters of health but a direct, stepwise
mechanism of action has not been elucidated that satisfies
all inflammatory pathologies implicated. This review aims to
synthesize the disparate study between blood microbiome,
metabolic endotoxemia, and oral pathology to develop a new
hypothesis and potential mechanism for the connection between
oral and systemic inflammatory pathology.

PORPHYROMONAS GINGIVALIS AND
SYSTEMIC CONNECTIONS

The gingival tissues in the oral cavity that surround each tooth
are highly microbially colonized and have evolved with our host
tissues over thousands of years. Correlations have been found
between oral health and cardiovascular disease [2, 3], Stroke [4],
pregnancy outcomes [5], Rheumatoid Arthritis [6], Alzheimer’s
disease [7], type II diabetes [8], Metabolic Syndrome [9], and
Non-Alcohol Associated Fatty Liver Disease [10]. Many studies
have looked to specific microbial inhabitants of the oral cavity to
explain the link between localized oral pathology and systemic
impacts. One of the primary suspects, Porphyromonas gingivalis
(P. gingivalis) has been an ideal candidate of pathological etiology
with ability to induce and feed off of inflammatory mediators
[11], survive intracellular conditions and travel via host cells to
remote tissues [12], alter lipopolysaccharide (LPS) structures to
evade host recognition [13]. More importantly, P. gingivalis has
been linked to the etiology of nearly every systemic pathology that
has been described as an inflammatory, systemic comorbidity of
periodontitis [14, 15].

P. gingivalis has been shown to disseminate systemically either
from direct release into blood through periodontal lesions or by
cell to cell invasion [16–18]. Recent characterization of a human
blood microbiome has shown a small but viable population of
bacteria originating primarily from both oral and skin microbial
communities, including P. gingivalis in otherwise healthy
individuals [17, 18]. The bacteria of the blood microbiome are
primarily found in the Buffy coat, implicating white blood cells as
the main vehicle of dissemination. Concurrent investigation into
metabolic endotoxemia has illuminated a role for oral bacteria,
specific to periodontal pathology, as a driver for the induction
of microbial dysbiosis of the gut and subsequent dissemination
of enteric lipopolysaccharide (LPS) into the blood reviewed here
[19]. The resulting scenario with blood containing oral microbes
that include P. gingivalis, and enteric-derived LPS could result in
very different inflammatory responses depending on the state of
oral health since gingival inflammation has been shown to prime
circulating neutrophils [20].

ORAL MICROBIOME: ACQUISITION TO
DYSBIOSIS

To set the stage for gingival inflammation, it is necessary to
review the basics of oral biofilm succession in order to more
fully discuss the nuances of the host-microbe relationship. The

oral cavity is diverse in hard and soft tissue types as well as
microbial biofilm diversity reflecting over 400 unique bacterial
taxa [21]. The epithelium of the soft tissues, namely the junctional
epithelium, that form around hard tissues (teeth) do not contain
tight junctions and are proximal to the highly vascularized
gingiva which allows a constant supply of innate immune cells to
the gingival crevice to patrol, and control microbial load [21, 22].
The sulcus, or gingival pocket contains a very well described
microbial composition that develops in a stepwise manner
starting with the deposition of salivary proteins on the tooth
surface, bacterial adhesins, and bacteria nutrient demands shape
the development of the oral biofilm [23]. The organization of
the oral biofilm is dependent on bacterial relationships that have
been described and categorized into disparate complexes that,
once formed, allow the biofilm to grow and form increasingly
complex structures [24]. The bacterial members that comprise
the early colonizers of the gingival crevice are those with
the capacity to adhere to the pellicle of the tooth and are
considered only moderately pathogenic and primarily Gram-
positive. The resulting foundation of early biofilm allows access to
a bridging community of bacteria known as the orange complex
to form which have been found to be increasingly capable
of causing periodontal pathology (e.g., F. nucleatum). Finally,
the “Red complex” of bacteria can gain entry, these members
are primarily Gram-negative, contain endotoxin, and are well
described for their highly pathogenic features (e.g., P. gingivalis).
The presence of “Red complex” bacteria, or keystone pathogens
can cause an outgrowth of commensal microbiota that results in
increased microbial burden, inflammatory pathology, and tissue
destruction [25]. This classical model of microbial succession
is under constant revision as we evolve our understanding of
the coordinated nutritional-interplay and adherencemechanisms
between microbial species.

While the periodontal-associated pathogens can remain low
in abundance compared to the overall microbiome community,
they can still expand in number and alter their phenotype
to become increasingly pathogenic. As the microbial burden
increases, so too does the inflammatory environment. The
cytokine milieu and organization of the microbial community
can influence the activity and expression of pathogenic features
of the oral pathobionts. One example is the lipid A moiety
from P. gingivalis LPS which can be altered when exposed
to increase in hemin, temperature, or co-culture with F.
nucleatum resulting in unique LPS phenotypes with varying
capacity to inhibit Toll-Like-Receptor-4 (TLR4) activity [3,
26, 27]. P. gingivalis is considered a keystone pathogen and
an etiological agent in the development of periodontitis [25].
During the progression of localized periodontal inflammation,
the local gingival environment changes to potentiate a phenotype
alteration in the lipid-A portion of the LPS structure. Indeed,
these changes have been shown to occur in a natural periodontitis
human infection; patients with periodontal disease clinically
evaluated for LPS activity from plaque harvested from sites of
either active disease or healthy pockets. The LPS activity was
shown to be TLR4-antagonist for sites with active disease whereas
otherwise healthy pockets were found to be TLR4-agonist [3,
28]. The alteration to LPS signaling in gingival pockets of

Frontiers in Oral Health | www.frontiersin.org 2 May 2022 | Volume 3 | Article 911420

https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/oral-health#articles


Zenobia and Darveau Oral Microbial Endotoxin, Systemic Health

periodontitis has the potential to differentially prime responding
neutrophils and disrupt the LPS-tolerance mechanism [29].
While P. gingivalis has been shown to disseminate beyond the
oral cavity within leukocytes or directly into vasculature, the
potential for this bacteria to induce local neutrophil-specific LPS
priming in the gingival crevice might be another way that the
pathobiont can influence distal inflammation.

Oral endotoxin has been a feature of extraordinary
inflammation in gingival tissues, capable of causing exacerbated
inflammation in leukocyte adhesion deficiency (LAD-1)
patients that lends to a distinct microbial community [30].
The neutrophils in these LAD-1 patients are unable to migrate
through gingival tissues to control the microbial burden, but the
localized inflammatory response is sufficient to prevent microbial
infiltration into the gingiva despite the increasing microbial load
and translocation of LPS into gingival tissue. The microbial
community that develops in severe LAD-1 is unique from
the bacterial community associated with Localized Aggressive
Periodontitis (LAP) indicating a specialized relationship exists
between the inflammatory etiology and resulting microbiome
[30]. A similar observation has been shown in the oral
microbiome from receptor knockout mice. Mice deficient in
either TLR-2,−4 responsible for host-recognition of bacterial
cell wall lipoproteins and LPS, were found to develop different
microbial communities and decreased neutrophil recruitment
[31]. Furthermore, the periodontitis that develops from P.
gingivalis is TLR4 dependent unlike disease induced by ligature
[31, 32]. Together, these data suggest that host-signaling and
microbial communities are in lock-step as they respond to one
another. Further, the etiology of inflammatory insult can induce
and be shaped by specific bacterial endotoxin to impart different
health outcomes.

ORAL NEUTROPHIL: ACTIVATION OR
TOLERANCE?

Preserving the integrity of the gingiva is paramount for the
control of microbial load in the oral cavity. Neutrophils are
the primary surveillance immune cell in the gingival tissues,
innervating the permeable junctional epithelium with 30,000
neutrophils passing though per minute in healthy tissues
[33]. Neutrophil migration into gingival tissues still occurs
in the absence of the microbiota as seen in germ-free mice,
perhaps lending a resilience to the epithelium where the
neutrophil has been found to rescue epithelial cells from
P. gingivalis induced-cell death [34, 35]. In healthy gingival
tissues, the junctional epithelium remains in a low-differentiation
state with a turnover rate of about 4–6 days [36]. As the
oral biofilm builds and increases complexity in the gingival
crevice, the mid- and late-colonizers are adept at manipulating
neutrophil antimicrobial functions [37, 38]. The dysregulation
of the neutrophil can exacerbate tissue damage and lead to
chronic periodontal lesions, likely due to ineffective bacterial
killing [39, 40]. During periodontitis, physical disruption
to the epithelium, and microbiome alterations can impact
tissue-neutrophil responses to cause a local-hyperinflammatory

phenotype [41]. Evaluation of circulating neutrophils confirmed
that people with periodontitis have the same hyperinflammatory
phenotype in the blood which does not resolve with periodontal
treatment [42]. This lack of resolution is perhaps due to the
development of trained immunity where LPS exposure has been
found to influence memory-like responses in bone marrow
neutrophils [43]. Periodontal pathology causes alterations to
the connective tissue and results in the apical migration of the
junctional epithelium creating an exaggerated periodontal pocket
and disorganized neutrophil recruitment [44]. The increase in
neutrophils recruited to the oral cavity during gingivitis and
periodontitis correlates predictably with pathology [45].

In oral tissue homeostasis, the relationship between gingival
epithelial cells and neutrophil recruitment is tightly regulated
with a CXCR2 signaling requirement for a healthy host-response
to the commensal community that develops in the interdental
region of the gingival tissues [34, 46]. The CXCR2 requirement
is likely due to coordinated signaling between the neutrophil
and endothelial cells which has been shown to be necessary
for functional host response to LPS in the lung [47]. The
tissue-neutrophil appears to respond differently to different LPS
structures than neutrophils in circulation. To illustrate this
phenomenon, the neutrophil response to LPS was evaluated in
the presence or absence of platelets or serum [48]. Seven different
bacterial LPS preparations were found to induce NETosis broadly
when cells were cultured in the presence of platelets, whereas
neutrophils grown in platelet- and serum-free conditions
produced NETs to only two of seven the LPS structures [48].
Together, a picture emerges of a protective relationship between
the epithelium and neutrophil that dampens the host response
to LPS type when barrier functions are intact. The progression
from health to periodontal disease results in the degradation
of the junctional epithelium structure around the tooth and
dysregulation of neutrophil response which likely results in
the platelet-rich conditions that could allow the neutrophil to
respond more aggressively to unique LPS structures. Indeed, it
has been shown that a subpopulation of neutrophils exist in
chronic periodontitis that exhibit a pro-inflammatory phenotype
with increased NETosis as measured by myeloperoxidase and
histone citrullination [41]. In summary, when barrier functions
are compromised, the oral neutrophil response to LPS is
likely altered lending to a hyperinflammatory phenotype which
propagates to the circulation.

LPS STIMULATION: PRIME, TOLERIZE, OR
TRAIN

Continued exposure to LPS typically results in tolerance and
is well described for repeated LPS exposure in innate immune
cells, causing a downregulation of inflammatory cytokines [49].
Much of the research in LPS tolerance is uniquely Escherichia
coli (E. coli) specific but the cellular response looks very different
for P. gingivalis LPS where repeated exposure in neutrophils
has been shown to increase IL-8, and phosphorylated JNK
production [50]. Only one P. gingivalis LPS preparation was
tested in this study whereas another study found other P.
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gingivalis preparations impact IL-8 differentially [51]. These
findings raise questions around how neutrophil tolerance might
be impacted by LPS alterations, different growth conditions, or
periodontal pathology. Neutrophils isolated from patients with
chronic periodontitis show an exaggerated cytokine response,
including IL-8 in samples isolated from both saliva and blood
[42, 52]. Bone-marrow derived neutrophils have been found
to develop memory-like responses to repeat LPS exposure.
Neutrophils primed with either low or high dose LPS and
then re-challenged after a rest-period were either sensitized or
tolerized, respectively, which also affected their migration and
phagocytosis functions [43]. In macrophages, priming cells with
either E. coli or P. gingivalis LPS differentially impacts tolerance
during subsequent cross-LPS challenge [53]. Peritoneal derived
macrophages primed with P. gingivalis LPS and then challenged
with E. coli LPS produce significantly more TNFα and IL-10 than
those challenged first with E. coli and then with P. gingivalis.
It was found that P. gingivalis LPS priming led to upregulation
of TLR2 genes whereas E. coli LPS priming upregulated TLR4
genes. Thesemechanisms of tolerance inmousemodels appear to
change during the aging process where aged mice show impared
tolerance to both E. coli and P. gingivalis LPS [53]. Interestingly,
aged mice also naturally develop GI dysbiosis [54], periodontitis
[54, 55], and altered responses to inducedmetabolic endotoxemia
[56] which complicates the understanding of how tolerance can
be disrupted with age. It is also worth noting that P. gingivalis
LPS is not the only contributor to oral endotoxin (LPSo) as other
oral pathobionts and their respective LPS have been found to
contribute to differential host responses alone or in combination
[57] and will require additional consideration when comparing
microbial profiles present in health or disease. Alterations to
LPS structure can clearly impact tolerance functions which are
likely to affect downstream events that occur during progression
of periodontitis.

LPS IN CIRCULATION

The disruption of barrier function and host response in the oral
cavity can allow dissemination of oral bacteria and LPS into the
vasculature that coincides with alterations to systemic neutrophil
phenotypes. A study of induced gingivitis in humans found the
induction of gingivitis corresponded with a hyperinflammatory
blood neutrophil phenotype [20, 58]. In mice with induced
periodontitis, the development of a hyperinflammatory blood-
neutrophil was also described and found capable of inducing
exacerbated pathology when mice were subsequently challenged
with peritonitis [20, 58]. The authors very nicely show that oral
pathology can impact innate inflammatory responses distal to
gingival insult. Additional data revealed circulatory macrophages
were unaffected by induction of periodontitis. It is notable that
a ligature was utilized in this mouse model of periodontitis
whereas other models of induction can produce different
inflammatory responses [59]. It is not yet understood if the
change to circulatory neutrophil phenotype is a result of direct
priming from a local gingival lesion where neutrophils are the
primary responder or by indirect exposure from the release

of oral bacteria, or their PAMPS (e.g., LPS) to circulation. It
has been found that simple tooth-brushing can cause septic
conditions [60], allowing the release of oral bacteria into
circulation but sans a periodontal insult, this exposure does not
appear to be a factor in driving an inflammatory neutrophil
phenotype since the resolution of gingivitis, by reinstatement
of oral hygiene resulted in decrease to inflammatory phenotype
[20, 58]. Thus, there exists a number of ways to prime the
circulating neutrophil but there seems to be a unique relationship
between an inflammatory periodontal insult and the resulting
circulatory neutrophil phenotype that could set the stage for
chronic inflammation.

Consideration of the environmental conditions of the
circulatory neutrophil that patrols the gingival tissue is key to
unraveling the mystery of downstream inflammatory responses.
If, for example, a high fat diet results in the outgrowth of oral
bacteria which then creates gut-microbiome dysbiosis and leaky
gut (as seen in models of metabolic endotoxemia discussed
below), enteric endotoxin is now present in the circulation. In
this scenario, the circulatory neutrophil is potentially primed
with an E. coli-like LPS which could result in upregulation
of TLR4 or even NETosis. If the same neutrophil is found
migrating through the gingival tissue, the pathological potential
for exaggerated inflammatory response could be very different
if periodontal inflammation is present Figure 1. It is curious
that oral hygiene can correct the circulating hyper-inflammatory
neutrophil as seen during resolution of human-induced gingivitis
[20, 58] whereas periodontal disease seems to crystallize the
circulating neutrophil phenotype into a permanent feature [42],
perhaps a function of a cross-tolerance issue from a changing
LPS-environment in the gingival pocket. Figure 2 highlights
the changes to neutrophil phenotypes in health and chronic
periodontal disease, contrasting the neutrophil found in the oral
cavity with those in circulation. It is understood that neutrophil
exposure to LPS can result in tolerance or trained immunity,
typically dictated by the dose which has been reviewed recently
with respect to periodontal health, disease, and endotoxemia
[61]. Less understood is to what extent the oral-derived LPS can
participate in directing neutrophil immunity since the variable
microbial load, resulting LPS dose, and LPS-phenotypes are
relatively unexplored in the context of systemic health. LPS-
induced trained immunity has shown an enhanced cellular
response to secondary insult, similar to what the Glogauer group
found in their 2-hit-animal study where mice with periodontal
disease subsequently challenged with peritonitis were saddled
with an exaggerated neutrophil response to the peritoneal cavity
[20]. The LPS priming and tolerance mechanisms inherent to
the circulating neutrophil may play a significant role in shaping
trained immunity and also help explain why gingivitis is clinically
reversible while periodontitis is not.

ORAL HEALTH TO METABOLIC
ENDOTOXEMIA

Metabolic endotoxemia is defined by chronic subclinical levels
of systemic LPS. The presence of LPS release into the circulatory
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FIGURE 1 | Oral endotoxin has the potential to prime or tolerize the infiltrating neutrophil. In circulation, the neutrophil may contain bacteria and/or be exposed to

enteric LPS (LPSE) and subsequently migrate into tissues of the gingiva. Depending on the state of oral health, oral LPS (LPSO) can shift phenotypes with the changes

that arise during microbial dysbiosis. Depending on the neutrophil state of activation, the subsequent agonism or antagonism of TLR4 could either prime or tolerize the

migrating neutrophil. In addition, the circulating neutrophil has been found to harbor altered bacteria in periodontitis, illustrated here as described by Emery et al. [18].

FIGURE 2 | Oral vs. Blood Neutrophil Phenotypes. (A) Comparison of cluster differentiation expression levels of oral (O) and blood (B) neutrophils in oral- health (H) vs.

chronic periodontal disease (CP). (B) Apoptotic profile of oral vs. blood neutrophils in otherwise healthy individuals. Illustrated here as described by [62, 63],

respectively.

system is thought to stem from an inflammatory pathology
resulting from “leaky gut” that has been linked to type II diabetes,
non-alcoholic associated fatty liver disease, and increased
cardiovascular disease; recently reviewed here [64]. Enteric
LPS is considered the pathological agent that causes metabolic
endotoxemia, and thus, models seeking to recapitulate what is
seen in clinical pathology utilize E. coli LPS for study [65–67].
Early observations found metabolic endotoxemia can develop

from a high fat, low fiber diet. As clinical and animal models
were established, the mechanism of pathogenesis implicated GI
microbial dysbiosis along with disruption to intestinal epithelial
cells, and mucous-layer to allow enteric LPS (LPSE) to enter the
circulatory system unmitigated [64, 68]. Induction of metabolic
endotoxemia in clinical and animal models has been primarily
through a high fat, low fiber diet, or direct injection of E. coli LPS
[65–67, 69] but subsequent study of metabolic endotoxemia and
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periodontitis has shown that ingestion of perio-pathogens can
induce similar pathology [70, 71].

P. gingivalis has been implicated in pathogenesis of metabolic
endotoxemia either by release of whole, inactivated bacteria
directly into blood or indirectly by ingestion and subsequent
induction of intestinal microbial dysbiosis [72–74]. In an attempt
to understand the capacity of different bacteria to causemetabolic
endotoxemia, a recent investigation of different bacterial LPS
structures found induction was limited to E. coli LPS. The
other LPS structures tested were either under-acylated or mono-
phosphorylated and incapable of inducing the corresponding
pathology; P. gingivalis LPS was included in the study and failed
to induce blood glucose levels, a requirement for induction of
metabolic endotoxemia [75]. Other studies have shown that P.
gingivalis LPS can in fact induce disease when combined with
a high fat diet [74]. These mice also developed Non-Alcoholic
Fatty Liver Disease, thus further corroborating the link between
the oral pathobiont, periodontitis and fatty liver. These data
implicate an etiological role for periodontitis when coupled with
a high fat diet for the development of metabolic endotoxemia
pathology. Intriguingly, it has also been shown that feeding a
mouse a high fat diet results in natural periodontitis [71]. It
is not clear if the resulting GI microbial dysbiosis that occurs
with high fat diet is due to the increased ingestion of perio-
pathogens or the diet itself but the developing periodontal
bone loss appears to be LPS dependant [76]. A more recent
study showed that removal of one of two signaling components
essential for LPS recognition, TLR4 and CD14, by utilization of
knockout mice were both protected from diet-induced metabolic
endotoxemia despite having the same weight gain as wild type,
implicating a role for the LPS recognition, not diet, as an
upstream requirement for induction of GI bacterial dysbiosis and
corresponding “leaky-gut” [77]. The P. gingivalis gavage model of
periodontal disease is distinct from the ligature-induced model
[59] with the capacity to induce GI dysbiosis, and metabolic
endotoxemia [72]. Careful comparison of these two models
might shed light on how periodontal priming might affect
systemic inflammatory responses. It does seem plausible that the
combination of high fat diet induced periodontitis (seen in the
mouse model) and subsequent introduction of an under-acylated
or mono-phosphorylated LPS structure, like those of P. gingivalis
to the circulation could induce metabolic endotoxemia pathology
and increase the risk of developing other systemic inflammatory
diseases. More work is needed to identify the origins and types of
circulating LPS seen in clinical metabolic endotoxemia disease.

Systemic LPS is an obvious problem with regard to circulating
neutrophils. Evaluation of blood neutrophils in experimental
human endotoxemia, experimental gingivitis, periodontitis,
cardiovascular disease, and type II diabetes all show significant
alterations to neutrophil phenotype, activation, and function [52,
58, 78–80]. Fine et al. [20] nicely demonstrated that induction
of periodontitis can selectively induce blood neutrophils to
cause exacerbated disease in mice subsequently challenged
with peritonitis. The neutrophil appears to be the common
actor on the chronic inflammatory stage. It has been shown
that when the circulatory neutrophil is endotoxin-tolerized,
by administration of E. coli LPS, the tolerized neutrophil is

more efficient at responding to secondary infection than a non-
tolerized neutrophil [81]. TLR4, the main host-cellular-receptor
for endotoxin recognition, is implicated in the pathogenesis in
Rheumatoid Arthritis [82], cardiovascular disease [83], and type
II diabetes [84]. TLR4 inhibition is currently being explored for
treatment of Rheumatoid Arthritis [85] with varying success [86].
C. Genco’s lab has explored the relationship between different
LPS structures of P. gingivalis in amousemodel of atherosclerosis
to find that the antagonist-structure allowed for bacterial survival
and disease progression while the agonist-structure did not
suggesting that the TLR4-response is protective [87, 88]. In
type II diabetes, the TLR4 function appears dysfunctional
with neutrophils exhibiting tolerance behavior when exposed
to LPS [89]. Although the neutrophil appears central to each
inflammatory pathology, so too does the specific TLR4-host-
response ranging from protective to pathological. Deepening
our understanding around the specific neutrophil-priming
events by bacterial composition, including LPS-phenotypes by
tissue location will greatly improve strategies for treatment
and prevention.

NEUTROPHILS AND THE BLOOD
MICROBIOME

The blood microbiome is yet another indicator linking
inflammatory pathologies where a dysbiotic microbial profile
has been found in Rheumatoid Arthritis [90, 91], Diabetes
[92–94], cardiovascular disease [95], non-alcohol associated
fatty liver disease [93], and periodontal disease [18] when
compared to healthy controls. The circulatory neutrophils
have been implicated as a “Trojan Horse” [96] with capacity
to allow dissemination of bacteria that remain viable and
pathogenic [97]. More recently, neutrophil-specific microbiomes
have been identified within the categorical study of the blood
microbiome [98, 99]. Despite early evidence to the contrary,
the circulatory system has long been considered a closed, sterile
compartment. Recent technological advances for microbial
evaluation, primarily Next Generation Sequencing have allowed
scientists to re-evaluate the blood with greater sensitivity and
rigor. Although methodology is still tricky and nuanced, there
is clear evidence that the blood is not a sterile environment and
is subject to, at minimum, a transient population of bacteria
or, more likely, an ever-present bacterial community capable
of impacting systemic health. It is intriguing that many of
the inflammatory pathologies have in common, periodontitis,
changes to neutrophil phenotypes and skewed blood microbial
profiles. The present foray into characterization of the blood
microbiome may shed some light on how the steady presence of
circulating bacteria, and neutrophil phenotypes may contribute
to a secondary insult or chronic inflammation.

Prior to broad investigation into the blood microbiome, it has
long been known that viable oral pathobionts can exist within the
circulatory system [100]. Studies of arterial plaques from patients
with cardiovascular disease have repeatedly identified bacterial
lipids as well as whole bacteria derived from the oral microbiome,
including P. gingivalis [12, 101]. It is notable that gut bacteria
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have also been found in arterial plaques [102]. A recent study of
the blood microbiome from periodontally healthy and diseased
found surprisingly little difference in total bacterial DNA
abundance between healthy and disease profiles but did note the
presence of P. gingivalis in both study groups [18]. It would be
expected that those with periodontal inflammation would also
have increased bacteremia, or bacterial load but the methodology
used in this study selectively evaluated whole bacteria from
white blood cells. Therefore, transient bacteria that were not
housed in a host cell were not considered. This is unfortunate
because the cell-constrained bacterial cells are only part of a
much larger picture when trying to understand the downstream
circulatory effects impacted by periodontal disease. Investigation
into differentiating microbial members that are cell-constrained
vs. those that are transient may help uncover distinct patterns of
dissemination and cell-associated microbiomes.

CONCLUSION

Deepening the understanding of the relationships between
periodontitis, metabolic endotoxemia, and blood microbiome
will require additional study. The host-microbiome has been
shown to impact neutrophil aging [103] and is required for
steady-state hematopoiesis [103–105], implicating an intimately
coordinated relationship exists between tissue and bone
compartments. Both MyD88-dependent-TLR and Nod-Like-
Receptors are involved in steady-state-hematopoiesis further
underscoring the bacterial requirement, and quite likely LPS,

for driving the regulation [105]. Another investigation into
the microbial regulation of osteo-immunomodulatory effects
suggest the oral microbiome, by selective use of an antibiotic
mouthwash, specifically induces the pro-osteoclastic activity
in the alveolar bone compartment [105, 106]. Together, these
studies indicate that specific microbial-niches can modulate
disparate immune-functions. The microbiomes that contain
Gram negative bacteria and LPS content are capable of
inducing and maintaining the populations of circulating
neutrophil activity; careful evaluation is needed to improve
our understanding of neutrophil activation, tolerance, and
trained immunity in the context of systemic health. The
circulating neutrophil, which we now understand can harbor
bacteria acquired by patrolling local tissue sites that are
colonized by pathogenic bacteria, can be primed or tolerized by
exposure to different or subsequent LPS-phenotypes (defined
by tissue-specific bacterial communities) and then traffic to the
lymph or distal tissues with muted or exaggerated responses.
It will be imperative to understand which tissue-specific-
bacteria/communities impart the most meaningful systemic
benefit or pathology to inform and improve treatment strategies
for the constellation of inflammatory pathologies associated with
periodontal disease.
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