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ABSTRACT
Specific host genes and intestinal microbes, dysbiosis, aberrant immune 

responses and lifestyle may contribute to intestinal inflammation and cancer, but 
each of these parameters does not suffice to explain why sporadic colon cancer 
develops at an old age and only in some of the people with the same profile. To 
improve our understanding, longitudinal multi-omic and personalized studies will 
help to pinpoint combinations of host genetic, epigenetic, microbiota and lifestyle-
shaped factors, such as blood factors and metabolites that change as we age. The 
intestinal holo’ome – defined as the combination of host and microbiota genomes, 
transcriptomes, proteomes, and metabolomes – may be imbalanced and shift to 
disease when the wrong host gene expression profile meets the wrong microbiota 
composition. These imbalances can be triggered by the dietary- or lifestyle-shaped 
intestinal environment. Accordingly, personalized human intestinal holo’omes will 
differ significantly among individuals and between two critical points in time: long 
before and upon the onset of disease. Detrimental combinations of factors could 
therefore be pinpointed computationally and validated using animal models, such as 
mice and flies. Finally, treatment strategies that break these harmful combinations 
could be tested in clinical trials. Herein we provide an overview of the literature and 
a roadmap to this end.

INTRODUCTION

Among cancers that affect both men and women, 
colorectal cancer (CRC) is the second leading cause of 
death in the United States and Europe. Interestingly, more 
than 90% of CRC cases occur in people 50 years or older. 
This fact is in line with the notion that sporadic cancers 
are diseases of old age and indicates that changes that 
accompany aging exert major influences on the biology 
and evolution of cancer. Nevertheless, the factors that 
change with age are not well understood. Mutations in 
K-Ras, APC, p53 and other genes are well-known CRC-
contributing factors and accumulate in tumors over time. 
However, these mutations accumulate at different rates in 
individuals and do not necessarily exert the same effects. 

One could therefore reason that additional, non-genetic 
risk factors may act in concert with genetic changes to 
drive sporadic CRC as we age.

Lifestyle is another factor contributing to CRC. 
The intestinal biochemical environment is shaped most 
prominently by dietary habits and by additional lifestyle 
factors [1, 2], including cigarette smoking [3], heavy 
use of alcohol [4], infections [5], stress [6], obesity [7] 
and physical inactivity [1]. These factors may induce 
detrimental genetic or epigenetic alterations and changes 
in the microbiota. Interestingly, adopting healthy lifestyle 
habits at an old age, including following CRC diagnosis, 
improves survival prospects, indicating that prior 
detrimental alterations can be counteracted [8].

Similarly, various intestinal microbes have been 
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suspected to contribute to CRC by impacting enterocyte 
proliferation and death, modifying host metabolism, or 
by disrupting immunological homeostasis. However, 
assigning a role for any of them as a causative agent of 
CRC is complicated. For example, establishing a causative 
relationship between Helicobacter pylori and gastric 
ulcers causing gastritis and cancer needed to satisfy 
most of Koch’s postulates, i.e. be found and isolated 
from ulcers, proven to cause disease when introduced to 
a healthy organism (Barry Marshall, the Nobel laureate 
himself), and tackled through antibiotic treatment for 
ulcer eradication. It is even more difficult to establish 
Koch’s postulates with a complex microbial community, 
especially if some microbes cannot be readily cultured. 

Chronic inflammatory pathologies such as 
inflammatory bowel disease (IBD) provide examples of 
how genetic and nongenetic factors intersect to orchestrate 
disease pathogenesis. Accumulating evidence highlights 
the impact of an exaggerated immune response to 
intestinal microbiota and dysbiosis, or aberrant microbial 
community composition, in the development of IBD 
and potentially cancer [9]. The systemic inflammatory 
reactions to dysbiosis coupled with metabolic products 
of pathogenic bacteria establish a microenvironment rich 
in free radicals, DNA-damaging toxins, cytokines and 
growth factors that, collectively, foster tumor development 
[10]. While IBD preexists in only a small number of 
people with CRC, the role of inflammation in cancer might 
be broader than previously thought. A subclinical form 
of inflammatory signaling that contributes to heightened 
epithelial regeneration, as pointed by studies in flies and 
mice, may instead contribute to many of the CRC cases 
[11-13]. 

The complex nature of CRC integrating genetic, 
epigenetic, environmental and microbial cues underscores 
the need for a holistic perspective and suggests that 
assessing these factors combinatorially on a personalized 
basis may be the key to pinpoint them. Moreover, CRC 
studies necessitate the use of simple model hosts that can 
reduce the complexity of the disease while reflecting key 
aspects of the human histopathology and concomitant 
molecular signals [14]. Mice and fruit flies possess these 
two key properties and are thus widely used. Based on 
data from human, mouse and Drosophila studies, the 
present review points to the importance of interactions 
among host gene expression, the intestinal microbiome 
and environment and systemic factors and metabolites, 
which comprise the intestinal holo’ome, an integral 
system controlling homeostasis, inflammation and cancer. 
As a roadmap for future studies on intestinal holo’omes 
we propose: a) a synthesis of information on individual 
human genome, transcriptome and proteome, the 
microbiota metagenome and metatranscriptome, the fecal 
metabolome and proteome and the blood secretome at 
critical time points, long before and upon the development 
of pre-cancerous lesions; b) the identification of the co-

existence of factors as potential detrimental synergisms 
within holo’omes linked to disease onset; c) the validation 
of such synergisms using model organisms, such as flies 
and mice; and d) the assessment of therapeutics against 
such detrimental synergisms in clinical trials (Figures 1 
and 2).

THE INTESTINAL HOLO’OME

The host genome and epigenome in intestinal 
inflammation and cancer

An early step in CRC is the development of polyps. 
Polyps, the aberrant growth of cells within the colorectal 
epithelial mucosa, can be benign (non-dysplastic) 
or dysplastic. If dysplastic, these are referred to as 
premalignant adenomas. Adenomas proceed to malignancy 
when they invade the underlying tissues (lamina propria) 
and successfully form secondary tumors to distant sites 
(metastasis). In addition, genomic instability contributes 
to tumorigenesis due to defects in DNA repair systems and 
the concomitant increase in the rate of mutations [15, 16]. 
The transition from a normal to hyperplastic epithelium is 
frequently linked to the inactivation of the adenomatous 
polyposis coli (APC) tumor suppressor. K-Ras or B-Raf 
oncogene activation leads to the formation of large 
adenomas [17]. Late adenomas may associate with loss 
of SMAD4, a key component of the transforming growth 
factor beta (TGFβ) signaling pathway, which normally 
suppresses tumor growth [18, 19]. The progression 
from large adenomas to cancer may also require a 
mutation in the p53 locus [20]. Loss of function of the 
tumor suppressor PTEN and subsequent upregulation 
of the PI3K/AKT signaling pathways, also facilitate the 
development of colon cancer [21]. Tumor metastasis can 
be further facilitated by PRL3 overexpression, a gene 
involved in malignant tumor cell motility and metastasis 
[22]. All the aforementioned genes have homologues 
in Drosophila and similarly to mammals, Drosophila 
Apc loss of function and K-Ras/Ras1 oncogene promote 
disease and may synergize during intestinal tumorigenesis 
[23]. Interestingly, many Drosophila studies point to a 
highly conserved JNK-Hippo-JAK/STAT pathway axis 
that promotes tumorigenesis in many cases, for example, 
upon synergism between the Ras1 oncogene and cell 
polarity gene mutants [24, 25]. Such a pathway axis is yet 
to be established in mammals.

In addition, there is a strong genetic basis for 
mutations and polymorphisms linked to increased 
inflammation in the intestine of flies, mice, and humans. 
For example, frame-shift mutations within the NOD2 
locus may cause IBD via impaired NF-κB activation in 
response to bacterial peptidoglycan [26]. Similarly, the 
Asp299Gly polymorphism in the TLR4 is associated with 



Oncotarget4226www.oncotarget.com

IBD, due to impaired NF-κB activation by Gram-negative 
bacteria [27]. Mutations of the autophagy gene Atg16L1 
in combination with viral infection induces intestinal 
pathologies in mice resembling those observed in IBD 
patients [28]. Polymorphisms within the pro-inflammatory 
cytokines IL-1, IL-6 and IL-22 and STAT3 pathway 
activation may boost mucosal cytokine expression 
and enterocyte regeneration, thereby facilitating 
gastrointestinal cancer [29-31]. Strikingly, STAT, Imd/
NF-κB, autophagy and NADPH oxidase pathways play 
a pivotal role in both mammalian and Drosophila innate 
immunity and intestinal host defense [11, 32-35]. 

Gender itself is a genetic variation that affects 
inflammation and cancer in the intestine. At all ages, 
women are less likely than men to develop sporadic colon 
cancer [36], an observation that has been recapitulated in 
the ApcMin/+ CRC mouse model and attributed to tumor-
promoting effects of testosterone [37]. By contrast, 
estrogens dampen inflammation and protect from colitis 
and colitis-associated cancer in mice [38, 39], in line with 
the reduced severity of IBD in postmenopausal women 
receiving estrogen hormone replacement therapy [40]. 

In addition to genetic alterations, the transition 
from normal mucosa to adenomatous polyps is marked 
by epigenetic changes, namely DNA methylation, 
histone modifications and aberrant expression of 
non-coding RNAs17. These epigenetic events include 
hypermethylation and silencing of a number of genes with 
a proven contribution to CRC including genes of the Wnt 
signaling pathway such as APC, WNT5A and AXIN2 and 
the DNA repair genes MLH1, MLH2 and MGMT among 
others [41]. Importantly, high-throughput methylation 
profiling has indicated the existence of three epigenetic 
subtypes characterized by high, intermediate, and low 
methylation that exhibit particular clinicopathological 
and molecular features [41]. Thus, CpG island methylator 
phenotype 1 (CIMP1) tumors that are typified by high 
DNA methylation levels are associated with microsatellite 
instability (MSI) and B-Raf mutations. CIMP2 tumors 
show frequent K-Ras but not B-Raf mutations or MSI and 
CIMP-low/negative CRC display high frequency of p53 
mutations. A recent study by Akhtar-Zaidi et al. has also 
implicated histone modifications in CRC by identifying 
changes in Lys4-methylated histone 3 (H3K4me1) 
as drivers of a transcriptional program that promotes 
carcinogenesis in the colon [42]. Intestinal inflammation 
may significantly contribute to epigenetic reprogramming 
affecting all stages of CRC. For example, IL-6 regulates 
the expression and activity of DNA methyltransferase 
1 (DNMT1) leading to enhanced methylation of tumor 
suppressor genes [43, 44]. IL-6 also engages a STAT3 
pathway that suppresses the expression of miR-34a 
releasing its inhibitory control over the IL-6 receptor. This 
epigenetic switch results in amplification of IL-6 signaling 
and the establishment of a feedback loop that promotes 
EMT, invasion and metastasis [45]. 

Links between the genome and epigenome in 
orchestrating intestinal pathologies are also beginning 
to emerge. Of note, an IBD susceptibility SNP variant 
of IL-23 receptor (IL-23R) exhibits reduced ability to 
bind microRNAs Let-73 and Let-7f, leading to aberrant 
IL-23R expression and deregulated signaling relevant to 
IBD pathogenesis [46]. However, the type of epigenetic 
modifications, the timing and causality to CRC and IBD 
remain poorly defined and utilization of simple models 
amenable to genetic manipulation such as Drosophila are 
warranted to define how genomic and epigenetic events 
intertwine to control intestinal pathologies. 

The intestinal microbiome

The mucosal epithelium is in continuous 
contact with a myriad of autochthonous (resident) and 
allochthonous (transient in the fecal stream) microbes. 
In humans, the density of microbes is approximately 
1012 bacteria per gram of dried colonic content [47]. 
Microbial colonization begins immediately after birth 
and the composition changes, over the first two years, 
to reach a steady community whose composition is 
defined by many factors, including immune responses, 
enterocyte turnover, intestinal motility, pH, redox status 
and nutrient availability [48]. For instance, during the 
neonatal mammalian life, the intestinal environment is 
characterized by a reduced oxidation potential that favors 
the growth of facultative anaerobes, such as streptococci 
and coliforms [49]. Following weaning, the microbial 
community becomes more dense and diverse as the 
high-fat milk diet is replaced by a high-carbohydrate 
diet. In mice, the mature microbiome is mainly defined 
by Firmicutes, Bacteroides and Proteobacteria [48]. The 
mucosal layer of the mouse large intestine is highly 
enriched for the phylum Firmicutes and, more specifically, 
for the families Lachnospiraceae and Ruminococcaceae, 
whereas families such as Bacteroidaceae, Enterococcaceae 
and Lactobacillaceae are enriched in the mouse lumen 
[48]. Similarly, the human colon is dominated by four 
phyla, namely, Firmicutes, Bacteroides, Proteobacteria 
and Actinobacteria [50]. Gender associations of the gut 
microbiome composition in healthy humans remain 
inconclusive, likely reflecting strong environmental 
influences [51]. Of note, however, specific taxa of 
Actinobacteria, Proteobacteria, and Firmicutes express 
enzymes that have the capacity to metabolize steroid 
hormones and influence their activity [52, 53]. Whether 
microbiome-derived sex steroids impact on host immunity 
in a manner similar to that of host-derived hormones and, 
indirectly, through changes in intestinal microbiome 
composition remains unknown. Interestingly, a bi-
directional association between testosterone levels and 
microbial communities in the mouse gut has been noted 
and linked to protection from Type 1 diabetes [54]. 

The Drosophila is most frequently colonized by 
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Lactobacillales and Acetobacteraceae and occasionally by 
Enterobacteriaceae, which belong to the Firmicutes and 
Proteobacteria phyla, but it lacks Bacteroides and other 
obligate anaerobes presumably due to the presence of 
oxygen in the fly gut [55]. However, there is significant 
bacterial variation in terms of diversity and density along 
the gastrointestinal tract in mammals and in flies [56]. 
Bacteria populations are more dense in the small and 
large intestine than in the stomach [48] partly because 
ingested bacteria die in the acidic environment of the 
stomach. Thus, areas with approximately neutral pH in the 
mammalian small and large intestine or the anterior and 
posterior Drosophila midgut might offer a more conducive 
environment for colonization [48, 56]. Despite the 
similarities at the level of Firmicutes and Proteobacteria 
phyla between humans and mice or invertebrates, there 
are profound differences even among or within individuals 
of the same species, longitudinally over time and upon 

various treatments or diets as one moves towards the 
bacterial species level [50, 57]. This variation makes 
analysis of human microbiota very complicated; therefore, 
simple model organisms can be useful in elucidating 
the contributions of microbiota in inflammation and 
cancer. For example, NF-κB signaling in the Drosophila 
intestine directly decreases the abundance and modifies 
the structure of microbiota, while NAPDH oxidase/Duox 
signaling decreases microbiota abundance and causes 
oxidative stress to the midgut epithelium [58].
Benefits and problems of having intestinal microbiota

In the absence of intestinal immunological 
imbalances or pathogenic microbiota, intestinal microbes 
are largely considered beneficial or neutral. These 
bacteria are in constant competition for intestinal niches, 
which is very important for fending off bona fide or 
opportunistic enteric pathogens and operate synergistically 

Figure 1: A roadmap to identify detrimental synergisms within human holo’omes as causal for colon cancer and develop 
personalized therapeutic or preventive strategies. A systems biology approach to assess shifts in intestinal holo’omes in humans 
and its link to colorectal pathologies will necessitate analysis of host intestine and microbial community genome, transcriptome, proteome 
metabolome and blood secretome. Using computational platforms, the genetic, metabolic, nutritional, microbial and immunological 
information accumulated, together with publicly available phenotypic and molecular function data, will be explored to obtain a ‘holistic’ 
view of key pathogenic processes and their hierarchies, to simulate the expected response to hypothetical interventions and develop new 
basic and translational research hypotheses. Reductionist approaches in Drosophila and mice - which can be genetically manipulated to 
express or lose the expression of specific genes in the intestine, while fed or injected with specific microbes and metabolites - could be 
used to assess detrimental synergisms of the intestinal holo’ome in driving inflammation and tumorigenesis, and guide the development of 
intervention strategies. Such therapeutic or dietary interventions could be translated to the clinic aiming to treat patients against microbial 
and intestinal environment imbalances as a means to alleviate intestinal inflammation and CRC.



Oncotarget4228www.oncotarget.com

in order to maintain the overall community function [59]. 
Furthermore, the metabolic by-products of one species 
may support the growth of other species or inhibit the 
colonization by other potentially harmful microbes [50, 
60]. Bacteria can also affect the host metabolism while 
benefiting from the nutrient-rich niche of the intestine. 
For example, humans lack cellulases and therefore 
need intestinal bacteria to digest plant cellulose. The 
mammalian host also takes advantage of the terminal 
products of microbial fermentation, such as butyrate, 
acetate and propionate as energy sources [61, 62]. In 
addition, these bacterial short-chain fatty acids (SCFAs) 
can act as immunomodulators that contribute to immune 
homeostasis while suppressing the secretion of pro-
inflammatory cytokines [62]. Similarly, in Drosophila, 
Lactobacillus plantarum and Acetobacter pomorum have 

been shown to contribute to the nutrition of the host upon 
nutrient-poor diet. For example, colonization of axenically 
reared embryos with L. plantarum promotes growth when 
nutrients are limiting by activating the TOR signaling 
pathway which improves viability and accelerates the 
developmental rate [63]. Similarly, A. pomorum enhances 
growth of larvae under nutrient scarcity via the alcohol 
dehydrogenase PQQ-ADH, which is required for acetic 
acid production by the bacteria and the subsequent host 
insulin pathway activation [64]. On the other hand, 
Drosophila infection with Vibrio cholerae leads to 
inactivation of insulin/insulin-like growth factor signaling 
(IIS) and lipid accumulation in enterocytes via intestinal 
acetate depletion [65].

Intestinal microbiota may also contribute to the 
maintenance of mucosal barrier integrity. For example, 

Figure 2: Recording the holo’ome longitudinally in humans. The holo’ome can be recorded via genomics, transcriptomics 
and proteomics of the host and the microbiota, metabolomics and proteomics of stool samples and secreted factors (e.g. cytokines and 
metabolites) of blood samples. To identify detrimental synergisms within the holo’ome, its parts need to be recorded around two points in 
time for each human individual: a. at a disease-free state, years before the onset of subclinical disease or long after disease remission, and b. 
upon the onset of subclinical disease. Disease remission may be facilitated by diet- or microbiota-based treatments that change the intestinal 
or blood environment or the microbiota.
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symbiotic bacteria are capable of suppressing the 
activation of NF-κB pathway in intestinal epithelial cells 
by inhibiting the ubiquitination of IκB, the inhibitory 
molecule of NF-κB. Additionally, they may block 
NF-κB signaling by facilitating the nuclear export of 
NF-κB subunit, p65, via regulation of the peroxisome 
proliferator-activated receptor (PPAR)γ [66]. Considering 
the contribution of resident bacteria in host defense 
mechanisms, polysaccharide antigens produced by B. 
fragilis promote CD4+ T cell expansion and cytokine 
production [67]. Furthermore, Lactobacillus spp. modulate 
the activation of dendritic and natural killer cells [68, 
69]. Strikingly, in both flies and mice Lactobacillus spp. 
are important in maintaining a baseline of intestinal 
regeneration of the intestine as a mechanism of host 
defense via the induction of reactive oxygen species [33, 
70]. 

The beneficial role of microbiota is clearly 
demonstrated in germ-free animal models. Animals 
raised in germ-free conditions have acute developmental 
and immunologic deficiencies e.g. altered intestinal 
morphology defined by a reduced muscle wall thickness 
and underdeveloped villus capillaries [71]. The decrease 
in angiogenesis is attributed to the limited expression of 
Angiogenin-4, a potent stimulator of new blood vessels 
[72] which can be specifically induced by Bacteroides 
thetaiotaomicron [73]. Host-specific commensal bacteria 
are required for the expansion of T cells and consequently, 
for the full maturation of intestinal immune system. For 
example, segmented filamentous bacteria are involved 
in intestinal T cell expansion [74], IgA activation 
and induction of epithelial MHC-II expression [75]. 
Interestingly, the differences between mouse and human 
microbiota appear to be functionally important because, 
for instance, colonization of mice with human microbiota 
results in an immature innate and adaptive immunity and 
greater susceptibility to infection, as seen in germ-free 
mice [74]. Germ-free animals are also characterized by 
impaired cytokine and antimicrobial peptide production, 
smaller Peyer’s patches, fewer intraepithelial lymphocytes 
and IgA secretion and thus, they are more vulnerable to 
infections [76]. Germ-free mice show aberrant nutrient 
absorption presumably due to a decreased metabolic 
rate and limited digestive enzyme activity, and as a 
result they tend to consume more calories to maintain a 
normal body weight [77]. Interestingly, re-colonization 
of germ-free animals with an intestinal microflora 
is sufficient to restore many of those functions [78]. 
Similarly, mono-colonization of germ-free animals with 
the human commensal bacterium Bacteroides fragilis 
suffices to restore the CD4+ T-cell development through 
the expression of the microbial molecule polysaccharide 
A (PSA) [79] . Moreover, inoculation with the single gut 
inhabitant Bacteroides thetaiotaomicron [71] or B. fragilis 
[79] can stimulate villus capillary formation and promote 
intestinal development. Therefore, the presence of the 

“right microbes” in the “right host and environment” may 
determine gut homeostasis.

Various conditions may lead to intestinal dysbiosis, 
a change in the microbiota composition that is unfavorable 
for the host and/or immunological imbalances, such 
as an exaggerated chronic response to the microbiota. 
Dysbiosis has been reported in a number of enteric 
disorders and great efforts have been made to define 
the microbial communities in the intestine of diseased 
individuals. Bacterial 16S ribosomal RNA and whole 
genome sequencing studies have linked numerous yet 
uncultured microorganisms to intestinal disease [80, 
81]. Certain bacterial species are prevalent among 
colon cancer patients. These autochthonous bacteria 
include Streptococcus gallolyticus [82], enterotoxigenic 
Bacteroides fragilis [83], Escherichia coli [84] and 
Fusobacterium nucleatum [85]. Similarly, the relative 
abundance of Proteobacteria, such as E. coli and other 
Enterobacteriaceae, compared to other phyla is linked to 
IBD [86]. However, it is difficult to determine whether 
these alterations refer to the pre- or post-disease state. 
Alterations within the intestinal ecosystem secondary to 
pathogen invasion, chronic inflammation or antibiotic 
treatment may influence the availability of nutrients in the 
intestinal environment, deregulate the immune response 
and promote the colonization of opportunistic pathogens 
[87]. 

IBD studies in model systems demonstrate that 
the breakdown of immune tolerance towards indigenous 
bacteria could lead to inflammatory colitis. For example, 
immunocompromised mice deficient for T-bet, a 
transcription factor that orchestrates inflammatory 
genetic programs in both adaptive and innate immunity, 
develop IBD that largely resembles human ulcerative 
colitis [88]. Surprisingly, this colitic phenotype could be 
transmitted not only to the progeny but also to unrelated 
wild-type animals, indicating that the presence of an 
aberrant microbiota is sufficient to cause colitis. Similarly, 
deregulation of innate immunity against intestinal 
microbiota in flies via mutations of negative regulators 
of intestinal innate immune response or via senescence-
related deregulation of innate immunity leads to intestinal 
dysbiosis and intestinal dysplasia-like phenotypes [60, 89]. 

Changes in microbiota composition have also 
been documented during colorectal carcinogenesis. In 
an established mouse model of colitis-propelled CRC 
induced by the combined application of the mutagen 
azoxymethane (AOM) and the luminal toxin dextran 
sodium sulfate (DSS), the progression from chronic 
inflammation to dysplasia and adenocarcinoma was 
associated with significant shifts in microbial community 
structure, for example of Prevotella, Porphyromonadaceae 
and Bacteroides genera [90]. Notably, the late stages 
of colitis-associated CRC in this model were typified 
by enriched populations of Erysipelotrichaceae of the 
phyllum Firmicutes and colonization of germ-free mice 
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with tumor-associated gut microbiome exacerbated 
tumorigenesis in these animals [90]. In another model of 
CRC induced by application of AOM to colitis-susceptible 
Il10−/− mice lacking the immunoregulatory cytokine IL10, 
commensal polyketide synthase (pks)-positive E. coli 
were found to accelerate progression from dysplasia 
to invasive carcinoma [91]. Whilst the role, if any, of 
microbiota perturbations in metastasis remains poorly 
studied, the abundance of Fusobacterium nucleatum in 
human colon tumors has been reported to associate with 
lymph node metastasis [85]. Together, these observations 
imply that changes in microbiota composition may impact 
on different stages of colorectal carcinogenesis. However, 
the identification of autochthonous bacterial members 
as pathobionts (inflammation-/tumor-promoting) or 
beneficial (inflammation-/tumor-suppressing) would 
require longitudinal studies in human individuals i.e. 
long before and upon the onset of disease and monitoring 
during disease progression [92, 93].

Environmental factors affecting intestinal 
dysbiosis

The intestinal biochemical environment plays a 
fundamental role in sustaining a “healthy” host-microbiota 
interplay. Approximately 5% of people in the United 
States will develop CRC and half of them will die from 
the disease [94]. About 75% of the diagnosed CRC cases 
are sporadic, that is, not evidently hereditary. Thus, 
beyond genetics, the environment plays a critical role 
in cancer [2]. Western pattern diet and lifestyle, heavily 
processed food, frequent use of antibiotics and apparently 
the improved hygiene in industrialized countries are 
among the key environmental factors that adversely affect 
microbiota composition and its interaction with the host. 
Diet

Diet is a source of both gut-colonizing bacteria 
and nutrients that can rapidly alter microbiome structure 
[95]. The impact of diet has been studied in mice after 
they have switched from a diet low in fat and high in 
complex polysaccharides to a westernized diet, rich in 
fat and sugars. Within a day, the mice display distinct 
alterations in microbiota composition, gene expression 
and metabolic pathways, and develop significant adiposity 
within two weeks [96]. Moreover, diets limited in simple 
sugars enable mouse intestinal microbiota to outcompete 
pathogenic Citrobacter rodentium [97]. Similarly, the 
Drosophila intestinal microbiota interacts with dietary 
ingredients to produce vitamin B and proteins or 
modify the lipid/carbohydrate storage of the host [98]. 
Interestingly, fly studies show that diet preference and 
bacterial intestinal colonization level can be affected 
by the presence of bacterial metabolites in the fly food 
[99]. Such feeding behaviors and metabolites may have 
a profound influence on the establishment of intestinal 

microbiota and the shape of the intestinal biochemical 
environment. Moreover gender-specific effects of diet on 
gut microbiota composition and metabolism have been 
reported across different vertebrate species. For example, 
Lactobacillus and Clostridium are more abundant in male 
mice fed a high-fat rather than chow diet, whereas in 
females these genera are less abundant in high-fat diets 
[100]. In Drosophila, aspects of the interaction between 
the microbiota and the host metabolic programs, such as 
energy storage and protein content, are also sex specific 
[98]. 

Changes in diet that modify microbiota may affect 
the development of inflammatory and malignant diseases. 
For example, high fat diet promotes the expansion of 
intestinal bacterium Bilophila wadsworthia and colitis 
in IL10-deficient mice [101]. In addition, lower dietary 
fiber intake precedes the development of inflammatory 
pathologies by reducing the production of microbial 
immunomodulatory products, such as SCFAs [102]. 
SCFAs selectively expand IL10-producing regulatory 
T cells (Treg) in the intestine, which in turn suppress 
inflammation [103]. Interestingly, the SCFA effects on 
Treg are mediated in part by histone acetylation of the 
FoxP3 (forkhead box P3) locus leading to elevated 
expression of FoxP3, a transcription factor required for the 
differentiation of CD4+ T lymphocytes to Treg [104, 105]. 
These findings suggest that microbial metabolic products 
of diet epigenetically modulate host gene expression and 
hint to important links between commensal microbiota 
and epigenetic changes in the immune system that may 
influence the onset of inflammation and cancer in the 
intestine. In line with this hypothesis, high levels of 
Fusobacterium that typify both IBD and CRC, correlate 
with aberrant CpG island methylation in inflamed and 
malignant tissue [106, 107]. However, as Fusobacterium 
is also part of the normal microbial ecosystem and is 
not associated with DNA methylation in cancer-free 
subjects, further studies are required to establish causative 
links between Fusobacterium species and epigenetic 
re-programming of the host and to identify putative co-
factors that enable them to promote intestinal disease.

In terms of carcinogenesis, a number of studies 
have demonstrated a correlation between saturated fats 
and CRC [108, 109]. Dietary fat intake increases the 
production of bile acids. The primary products of bile 
acid metabolism are synthesized in the liver, where they 
get conjugated with glycine and taurine. These products 
get deconjugated by colonic bacteria to form secondary 
bile acids, namely lithocholic and deoxycholic acid. 
Accumulating evidence indicates that patients with CRC 
have elevated amounts of fecal lithocholic and deoxycholic 
acids compared to healthy controls [110]. Lithocholic and 
deoxycholic acids stimulate the production of reactive 
oxygen and nitrogen species, and the activation of the 
NF-κΒ signalling pathway [111, 112]. Chronic exposure 
to these secondary bile acids may enhance mutagenesis 
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and increase epithelial cell proliferation and/or survival. 
Taken together, lithocholic and deoxycholic acids could 
be considered as proinflammatory and procarcinogenic 
bacterial metabolites. Further understanding of the 
interactions between indigenous microbiota and 
intestinal metabolites could thus take us one step forward 
in elucidating the complex relationship among diet, 
microbiota and colorectal pathologies. 

Accumulating evidence indicates that probiotics 
could be used as therapeutic strategies for the treatment 
of metabolic syndromes and chronic inflammatory 
diseases associated with aberrant gut microbiota [113]. 
Manipulation of microbiota through probiotic intervention 
may enhance resistance to intestinal colonization by 
pathogenic microbes, improve intestinal barrier function, 
increase the metabolism of nutrients and modulate 
immune responses [114]. For instance, the lactic acid 
bacteria Lactobacillus plantarum and Lactobacillus brevis 
may inhibit the secretion of pro-inflammatory cytokines 
and degrade bacterial glycosaminoglycan in a chemically 
induced colitis mouse model [115]. Inoculation of mice 
with Lactobacillus acidophilus early in life enhances 
host defense and prevents Citrobacter rodentium induced 
colitis [116]. Despite the lack of adaptive immune 
responses that may mediate the beneficial responses to 
Lactobacillus species, fly autochthonous bacteria, such as 
L. plantarum, but also pathogens, such as Pseudomonas 
aeruginosa, induce regenerative inflammatory signaling 
via the highly conserved JNK and STAT pathways, as part 
of the host defense response against intestinal infection 
[11, 117-119].

Probiotics have also been tested for their ability to 
prevent intestinal carcinogenesis in mouse models, with 
promising results [120]. Beyond the role of dysbiosis in 
the development of CRC, the gut microbiota impacts the 
therapeutic activity of anticancer agents by influencing 
pharmacodynamic and immunological parameters 
that define drug bioavailability and shape the tumor 
microenvironment respectively [121]. Manipulating 
the composition of gut microbiota through probiotics, 
prebiotics (that is, non-digestible agents that stimulate 
the growth and/or functions of specific microbiota 
components) and other dietary interventions may thus hold 
promise for the improved management of cancer patients. 
A better characterization of the interactions between 
bacterial species using axenic and gnotobiotic Drosophila 
and mouse models will facilitate this goal. 

Differences in the gut microbiota are more 
striking between different geographic areas, presumably 
because they encompass both genetic e.g. race and 
dietary differences. For instance, the microbiota of 
some African children fed with a diet rich in fiber, as 
compared to some European children, were found to be 
enriched in Bacteroidetes, Xylanibacter and Prevotella 
species and poor in Enterobacteriaceae [122]. The same 
African children produced significantly more SCFAs 

in their intestinal lumen [122]. Japanese, on the other 
hand, despite high standards of hygiene, do not show 
high allergy incidence (as the hygiene hypothesis would 
dictate), presumably due to the high intestinal levels 
of SCFAs, which are produced by the gut microbiota 
as a byproduct of fermentation of dietary fiber [102]. 
Nevertheless, other environmental factors, such as 
differences in pharmaceutical treatments may contribute 
to the microbiota composition [96]. 
Antibiotics and other drugs

Antibiotic treatment affects the gut microbiota 
abundance and diversity at the level of bacterial species. 
Bacterial communities more vulnerable to common 
antibiotics are reduced or lost allowing other communities 
to expand. As a result, intestinal dysbiosis may develop by 
the expansion of opportunistic pathogens. For example, 
antibiotics are usually associated with the expansion of 
E. coli, an inhabitant of the mammalian and invertebrate 
intestine [123]. An increase in the intestinal E. coli 
population is associated with the onset of IBD [124]. 
Drugs may assist pathogens indirectly by reducing the 
competitiveness of the host and the healthy microbiota 
against indigenous opportunistic pathogens. For instance, 
patients receiving chemotherapy or antibiotics are more 
vulnerable to P. aeruginosa infections, primarily due 
to compromised host immunity and altered intestinal 
microbiota [125, 126]. Similarly, antibiotic treatment 
in mice reduces the resistance of animals to intestinal 
colonization with P. aeruginosa [126]. Of note, 
endogenous P. aeruginosa can cross the intestinal barrier, 
translocate to and infect other organs, thereby causing 
systemic inflammation [127].

Although most of the bacterial families manage to re-
colonize the gut following an antibiotic regime, the time in 
between is particularly critical for the host health, because 
antibiotic-resistant or -tolerant microbes may expand and 
become established for years [50, 128]. An example of this 
situation is the persistence of Staphylococcus epidermidis 
following clarithromycin treatment [129]. Since most 
antimicrobials cannot discriminate between pathogenic 
and non-pathogenic bacteria, dysbiosis is a likely result 
of extensive antimicrobial treatments. Similarly, frequent 
transfer of flies on new food containing preservatives 
eliminates most of their intestinal bacteria [130]. Thus 
identifying the microbial populations that become more 
abundant or virulent following antimicrobial treatments 
should be a serious consideration. 
Hygiene hypothesis

Strachan was the first to mention the role of 
hygiene in disease predisposition [131]. He coined the 
term “hygiene hypothesis” in his attempt to elucidate 
how the decreased exposure to infectious agents in 
early childhood, as a result of improved hygiene, could 
lead to an allergic incidence later in life. According to 
epidemiological studies, a dramatic increase in colon 
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cancer, IBD, type 1 diabetes, atopy and asthma incidence 
has been observed during the past 50 years, principally 
in industrialized countries [132-134]. Communities 
with low socioeconomic status do not show a similar 
increase in disease incidence, implying that the immune 
system becomes educated by experiencing a range of 
microbes throughout life and consequently, acquires 
tolerance to relatively innocuous microorganisms 
[135]. Notwithstanding fundamental issues of hygiene, 
Tanzania’s hunter-gatherer Hadzabe people often consume 
the uncooked stomachs and colons of killed animals which 
may increase gut microbial diversity to the benefit of 
maintaining health in their ecosystem [136]. In developed 
countries vaccination and antimicrobial therapy must be 
taken into consideration to better understand and explain 
these population-based observations. Nevertheless, 
exposure to infectious agents early in life, may promote 
the development of regulatory T cells which in turn 
attenuates the inflammatory response via the induction 
of IL10 and transforming growth factor (TGF)-β1. For 
example, induction of IL10 following infection with 
enteric helminthes in mice protects against particular food 
allergens [137]. Further studies are warranted to address 
which microbes and anti-inflammatory responses are able 
to protect against chronic intestinal inflammation.

ANIMAL MODELS IN INFLAMMATION 
AND CANCER

Various organisms may be used to model aspects 
of pathophysiology of human intestinal inflammation 
and cancer [138, 139]. Among them primarily rodents 
and secondarily flies are the most popular because they 
combine feasibility and significant similarity to humans. 
The mouse is highly conserved in many aspects of the 
human disease and well streamlined for various small-
scale experiments. Drosophila on the other hand shares 
surprisingly high similarity to humans regarding disease 
related genes and signaling pathways while being less 
complex, which is an advantage for studying some of the 
basic principles of disease biology and performing large-
scale in vivo studies on inflammation and cancer [11, 14, 
140].

Commonalities and differences between mouse 
and Drosophila intestinal anatomy and physiology

The mammalian and invertebrate gastrointestinal 
tracts are defined by unique compartments, each of which 
is responsible for the execution of distinct biological 
processes. The fly intestine is segregated into five main 
compartments; the foregut, the crop, the midgut, the 
malpighian tubules and the hindgut [141]. The foregut 
corresponds to the mammalian esophagus, whereas the 
crop and the acidic copper cell region in the middle of the 

midgut stores and helps digesting food, respectively, thus 
sharing similarities with the mammalian stomach. The 
midgut corresponds to the fast renewing mammalian small 
intestine where the majority of digestion and nutrient 
absorption takes place [142-144] and is further subdivided 
into various anterior and posterior regions of distinct 
expression profiles and stem cell regulation [145, 146]. 
The malpighian tubules have renal-like properties and are 
located at the midgut-hindgut boundary. Hindgut is the 
last compartment of invertebrate intestine and corresponds 
to the slow, damage-induced renewing property of the 
mammalian large intestine [144, 147]. The hindgut is the 
tissue where water and ions most likely get absorbed and 
the fecal content is promoted to the rectum for excretion 
[14, 148]. 

The Drosophila midgut is a linear tube that lacks the 
mammalian intestine crypts and villi. Nevertheless, both 
of these tissues are of endodermal origin, containing an 
epithelial monolayer of cells. Enterocytes (ECs) are the 
most abundant cells in the intestine and have absorptive 
functions, while secretory enteroendocrine cells (EE), 
intestinal stem cells (ISCs) and enteroblasts (EBs), account 
for the minor cell populations of the gut epithelium [143]. 
Similarly to the mammalian gut, ISCs are maintained 
by Wg/Wnt signaling and divide asymmetrically to give 
rise to transient cells, the EBs, and new ISCs or divide 
symmetrically to increase the number of ISCs [149, 150]. 
In Drosophila, transient cells do not undergo any cell 
division but they differentiate into either an EC or an EE, 
while mammalian transit amplifying cells also produce 
the goblet and Paneth cells, which secrete mucus and 
antimicrobial peptides, respectively [14, 144]. 

In both Drosophila and mammals, a layer of 
basement membrane underlines and supports the intestinal 
epithelium and an outer musculature confers intestinal 
motility. In mammals, however, three additional layers 
are found in sequence between the outer musculature and 
the basement membrane: the submucosa, the muscularis 
mucosae and the lamina propria. The latter contains 
immune cells and specialized immunity tissues, such as 
the Peyer’s patches [14]. Despite the lack of adaptive 
immunity as we know it in humans and mice, Drosophila 
phagocytes accumulate outside the adult midgut upon 
infection contributing to regenerative inflammatory 
signaling [12]. Moreover, the Drosophila tracheal system 
has been paralleled with the mammalian circulatory 
system, since both have been characterized as branched 
tubular networks that transport gasses to all organs, 
although the Drosophila tracheal system does not transport 
blood as in mammals [151]. In addition, the diversity 
of gut microbial community in flies is a hundred times 
lower than in mammals, and is totally devoid of obligate 
anaerobes [148]. Therefore, flies offer a basic but not 
the complete inflammation-tumor microenvironment as 
it occurs in humans. Accordingly, fly models can serve 
as a point to accelerate the discovery of basic principles 
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that govern cancer, but the mouse is more suitable for 
the investigation of specialized aspects of the intestinal 
inflammation and cancer that depend, for example, on 
obligate anaerobes, the adaptive immunity, secretion of 
bile acids and specialized cells of submucosa or lamina 
propria. 

Regenerative inflammatory signaling and tumor 
modeling in the Drosophila intestine reveals 
synergisms among the host, its microbes and the 
intestinal chemical environment

The contribution of Drosophila to cancer research 
is instrumental [152, 153]. Up to 75% of genes that 
associate with human diseases, including cancer, have 
functional homologues in Drosophila [154]. In addition, 
the Drosophila genome has fewer genes compared to 
the human genome and a lower genetic redundancy, 
making the identification of disease-related signaling 
pathways easier. Thus, Drosophila studies have identified 
many genes and signaling pathways before their human 
counterparts were linked to cancer. For example, 
Notch pathway mutant flies were first identified due 
to a phenotype of notched wings. Years after the initial 
characterization of the notched phenotype in flies, the 
human homologue Notch1 was found to cause T cell 
lymphoplastic leukaemia [155]. Likewise, the hedgehog 
and hippo signaling pathways, which play a role in human 
tumorigenesis, have been initially studied in Drosophila 
[156]. Pertinent to human leukemia and CRC, fly studies 
were the first to demonstrate the role of constitutive JAK-
STAT signaling pathway activation in hematopoietic 
disorders and intestinal regeneration [119, 157]. 

Due to the great availability of genetic tools that 
enable the modulation of gene expression in a time 
and tissue specific manner [140], tumor modeling in 
Drosophila is relatively easy and robust. Tumors can 
be easily induced in larvae and adult flies following 
constitutive or conditional knockout of tumor suppressor 
genes, such as cell polarity growth control regulators. 
For example, loss of scribbled and salvador tumor 
suppressors cause the transformation of renal stem 
cells into dysplastic-like tumors in the adult Drosophila 
malpighian tubules [158]. Carcinogenesis in flies can be 
modeled also by using gain of function conditions similar 
to those leading to tumor development in humans [153]. 
For instance, cancer models combining oncogenic Ras 
activity and mitochondrial dysfunction lead cooperatively 
to excessive ROS generation. This in turn activates a Wnt/
Wg and JNK signaling pathway which inactivates Hippo 
and upregulates the IL6-like Upd leading to tumorigenesis 
[159].

Drosophila studies have also advanced our 
knowledge on intestinal response to infection and damage 
and the concomitant intestinal regenerative inflammatory 

signaling [11, 151]. Under pathogenic conditions, such 
as EC damage and stress or aging, a series of highly 
conserved Drosophila signaling pathways, including 
the EGFR, Wnt/Wg, PDGF/PVF2, INSR/InR and 
the JNK-Hippo-JAK/STAT, induce stem-cell driven 
regeneration [117, 160-166]. Regeneration necessitates 
ISC proliferation and differentiation, as a compensatory 
defense response replenishing damaged cells [70, 117]. 
Nonetheless, perturbations of this response, due to 
mutations, aging or imbalances within the microbiota 
may lead to an overproduction of differentiating cells 
and tissue dysplasia-like phenotypes [14, 60, 117, 118, 
161]. While these phenotypes that accrue during aging 
are reminiscent of spontaneous tumors [167], they are not 
invasive and it remains to be established if they are a result 
of spontaneous mutations as in humans. 

Moreover, intestinal infection with P. aeruginosa in 
Drosophila activates the c-Jun N-terminal kinase (JNK) 
pathway, which causes apoptosis of enterocytes and 
leads to proliferation of ISCs [117]. Strikingly, genetic 
predisposition via a K-Ras/Ras1 oncogene expression in 
ISCs synergizes with P. aeruginosa-induced inflammatory 
signals promoting stem cell-mediated tumorigenesis. 
Interestingly, P. aeruginosa virulence against Drosophila 
is enhanced when exposed to peptidoglycan derived from 
human commensal Gram(+) bacteria [168]. Moreover, 
sustained intestinal infection with P. aeruginosa in 
Drosophila induces the NF-κB/Imd pathway, which 
synergizes with the Ras1V12 oncogene to activate the 
JNK pathway. This synergism leads to invasion and 
dissemination of oncogenic hindgut cells to distant 
sites [169, 170]. Another striking example of microbe-
gene synergism is the overabundance of the intestinal 
pathobiont Gluconobacter morbifer upon persistent NF-
κB/Imd pathway activation, which in turn induces the 
NADPH oxidase Duox to produce reactive oxygen species 
and concomitant hyperplasia [58].

Additional studies reveal a role for Drosophila 
phagocytes in solid tumor biology. Drosophila 
phagocytes, named plasmatocytes, are responsible for the 
engulfment of apoptotic cells and invading pathogens. 
Tumor models are used for studying the role of these 
cells in tumor progression [171]. For example, double 
mutant RasV12/scrib−/− tumors within the Drosophila larval 
tissues increase the number of circulating plasmatocytes 
and attract them to the tumor site. Invasive tumors and 
concomitant tissue damage activates JNK signaling, 
which in turn induces JAK/STAT pathway-activating 
cytokines. These cytokines are amplified by additional 
cytokine expression in circulating plasmatocytes and the 
fat body [172]. Moreover, expression of the cytokine TNF 
by circulating plasmatocytes stimulates the JNK pathway 
and subsequently matrix metalloproteases in malignant 
cells, which assist tumor invasiveness [173]. While these 
studies do not address the role of plasmatocytes in the 
intestine, Drosophila phagocytes were recently shown to 
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Table 1: Examples of detrimental synergisms between the host genetic background and intestinal microbes, nutrients 
or metabolites
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accumulate in the Drosophila midgut upon infection or 
oxidative stress contributing to regenerative inflammatory 
signaling [12].

Inflammation and tumor modeling in the mouse 
intestine reveals synergisms among the host, its 
microbes and the intestinal environment

Historically, the contribution of rodent models 
in cancer research begun with the generation and 
maintenance of mouse strains, inbred to the extent of total 
homozygosity. Spontaneous mutations arising within these 
inbred strains provided fundamental information regarding 
basic mechanisms of carcinogenesis. The laboratory mouse 
Mus musculus is the most frequently used animal model 
in in vivo cancer studies primarily because approximately 
99% of human genes have murine orthologues [174]. 
Even more frequently than in flies, human disease 
genes display an analogous role in mice [175]. Despite 
the increased complexity as compared to flies, the 
mouse genome can be manipulated experimentally and 
carcinogenic, microbial and inflammatory agents can 
be combined to study inflammation and cancer in the 
intestine [176]. Available models integrating dysbiosis, 
inflammation and tumorigenesis broadly fall into 2 groups: 
(a) Models in which epithelial integrity disruption is the 
primary event, for example, following administration 
of the luminal toxin dextran sodium sulfate (DSS), or 
by genetic ablation of the NF-κB regulatory gene IKKγ/
NEMO, or by loss of heterozygosity of the APC tumor 
suppressor gene in intestinal epithelial cells. The ensuing 
tissue damage allows the translocation of bacteria from 
the lumen into the mucosa triggering a potent colitis-like 
inflammatory response or in the case of APC, aberrant 
cell proliferation. (b) Models in which inflammation is the 
primary pathological event due to either genetic disruption 
of immunological balance (e.g. IL10 or combined T-bet/
Rag2 deficiency) or introduction of pathogenic bacteria 
(e.g. Helicobacter hepaticus) causing dysbiosis. Damage 
to the epithelium is likely secondary to the microbiota-
driven inflammatory response and is mediated by tissue-
resident immune cells and their products. Combinations 
of such models have also been used to further our 
understanding of intestinal pathologies. Thus, C. 
rodentium and Fusobacterium nucleatum infection of Apc 
mutant mice enhances the recruitment of tumor-infiltrating 
myeloid cells, thereby establishing an inflammatory 
environment that favors tumor progression [177, 178]. 
Similarly, Helicobacter hepaticus amplifies inflammation-
driven tumorigenesis in IL10-deficient mice exposed to 
the mutagen azoxymethane [179]. Conversely, probiotic 
bactreria and fermented milk create a nonpermissive 
environment for colitogenic Enterobacteriaceae in T-bet/
Rag2 mutant mice [180].

These models have highlighted diverse functions 

of microbial-sensing pattern recognition receptors 
(PRRs) in epithelial versus innate immune cells [181]. 
Among them, Toll-like (TLR) and NOD-like (NLR) 
receptors have attracted particular attention because of the 
association of NOD2, NLRP3/inflammasome and TLR4 
genotypic profiles with human IBD. The picture that 
emerges suggests that upon disruption of the epithelial 
barrier, PRR signaling in enterocytes is required to restore 
epithelial architecture and to induce the expression of 
anti-microbial peptides that dampen microbial effects. 
NF-κB dominates the protective PRR response [182, 183], 
while defective PRR signaling in enterocytes results in 
pathogen outgrowth and exaggerated inflammation. TLR4 
is also required for de novo expansion of an intestinal 
cell subpopulation, designated as ISC compartment, in 
response to microbial products [184]. 

By contrast, PRR signaling in innate immune 
cells mediates pathogenic inflammatory responses. 
Unresolved inflammation establishes a microenvironment 
conducive to malignant transformation of intestinal 
epithelium undergoing cycles of damage and regeneration, 
eventually leading to tumorigenesis. For example, TLR5 
signaling activation promotes Salmonella Typhimurium 
pathogenesis [185]. Also, PRR signaling in myeloid 
cells leads to NF-κB-dependent production of the pro-
inflammatory cytokine IL-6, which promotes the survival 
and proliferation of premalignant intestinal epithelial cells 
through STAT3 pathway activation [30]. Similarly, IL-
22 produced by intestinal inflammation-induced innate 
lymphoid cells is necessary for STAT3 activation in ECs 
and tumor maintenance [31]. Therefore, PRR signals must 
be finely balanced to maintain intestinal homeostasis: 
diminished PRR activation may compromise epithelial 
barrier function whereas excessive PRR signaling may 
lead to pathogenic inflammatory responses to microbiota 
and malignant transformation of epithelial cells. 

Notwithstanding the similarity to humans at the 
anatomical, histological and genomic level, mouse models 
are impractical for large-scale studies of the intestinal 
holo’ome during homeostasis, inflammation and cancer. 
Experimental limitations aside, there are ethical concerns 
in using large numbers of mice. Accordingly, simpler 
organisms, such as fruit flies, provide adjunct systems to 
identify new genes, pathogenesis mechanisms and drug 
treatments, wherever the tissues involved are molecularly 
conserved and cellularly analogous [140].

A reductionist and a systems biology roadmap to 
the dynamic intestinal holo’ome

One of the major efforts to systematically reveal the 
role of microbiota in human health and disease is that of 
the NIH Human Microbiome Project Consortium, the first 
phase of which (2008-2012) focused on the diversity and 
composition of human microbiome. Collectively, these 
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studies demonstrated that the taxonomic composition of 
the microbiome varies significantly between individuals 
and could not be used to explain the role of microbiota 
in health and disease [186]. Studies looking specifically 
at individuals with inflammatory bowel disease (IBD) 
showed relative changes in microbial composition, but no 
simple biomarkers or therapeutic targets were identified. 
Instead, microbiome metabolic pathways and functions 
appear to be linked to IBD, prompting the Integrative 
Human Microbiome Project to gather and analyze in its 
second phase (2013-2016) personalized, longitudinal 
multi-omic data on the microbiota, the host, host-
microbiota interaction and the role of lifestyle in disease 
[186]. Similarly to IBD, colon cancer is caused by many 
factors that act in combination rather than independently. 
Therefore, it will be pivotal to identify the synergistic 
activities among the host, its microbes and the systemic 
and intestinal environment that cause disease. While gene 
allele combinations, such as between oncogenes and 
tumor suppressors have been shown to synergize during 
carcinogenesis [24, 187, 188], combinations between 
intestinal microbes, the blood and intestinal environment 
as shaped by lifestyle, and host genetic background may 
provide a more complete synergistic assessment. 

There are various examples of synergisms between 
the host genetic background and intestinal microbes, 
nutrients or metabolites using animal models (Table 
1). These suggest mechanisms of disease, but unless 
validated in additional models and in humans they do 
not provide proof of disease causation. Using different 
models e.g. different host strains, diets and microbiota is 
particularly important because quantitative experimental 
outcome is context-dependent. Similarly, controlling 
for the genetic polymorphisms, the microbiome and the 
habits in human individuals necessitates a personalized 
medicine approach, because the abundance, distribution 
and virulence of microbes and metabolites, and gene 
expression in the intestine differs from person to person 
and may change over time [92, 126]. The lack of sufficient 
epidemiological data linking specific microbes, gene 
alleles and diets to intestinal disease may reflect the 
lack of clinical studies assessing all of these parameters 
together in each individual (Figure 1). Multi-omic 
profiling, such as MOPED (http://www.kolkerlab.org/
projects/statistics-bioinformatics/moped), that integrates 
protein and gene expression databases linking them to 
genes, their pathways and function is an indicative tool 
towards this direction. Moreover, microbial multi-omics 
are fairly well established encouraging their adaptation for 
intestinal microbiota analysis [189]. Nevertheless, host-
microbiota-environment interactions are significantly 
more challenging requiring customized and sophisticated 
software, integrated data repositories and standardized 
sampling of blood, colon biopsy and stool. In this respect 
the Integrative Human Microbiome Project is expected 
to pave the way. In essence these studies will identify 

measurable lifestyle and molecular parameters across 
different platforms calculating their shift between the 
young (disease free) and the old (disease-prone) state 
of the same person. Moreover, follow up studies using 
genetically defined Drosophila and mammalian hosts 
may assess the role of lifestyle and molecular parameters 
in facilitating intestinal disease, e.g. by assessing the 
impact of specific microbes or dysbiotic vs. symbiotic 
microbiota, upon different diets in wild type vs. genetically 
predisposed hosts. Lastly, clinical studies can be designed 
to assess the effectiveness of therapies against dysbiotic 
combinations of gene alleles, microbes and environmental 
factors revealed by model organism studies. 

To streamline the assessment of causation in 
CRC we propose that human intestinal holo’omes be 
tested at various levels: 1) the host genome (e.g. SNPs), 
transcriptome and proteome (from colon biopsies), 2) the 
mucosal microbial composition (from colon biopsies) and 
fecal microbiota metagenome and metatranscriptome, 
3) the blood secretome (cytokines, metabolites) and 4) 
intestinal metabolome and proteome (from stool samples) 
[190] . Assuming that even a subclinical (histologically 
defined) deregulation predisposes for CRC, holo’ome 
analysis will need to be done in stool, blood and normal 
appearing colonic mucosa samples taken at two points 
in time for each human individual: (a) at a disease-free 
age, years before the onset of disease or long after disease 
remission, and (b) at a disease-prone age, upon the onset 
of subclinical disease (Figure 2). Collected data should be 
analyzed to: (i) pinpoint detrimental molecular synergisms 
correlating with intestinal disease e.g. being present in an 
individual in the disease-prone vs. the disease-free state; 
(ii) determine if detrimental molecular synergisms promote 
intestinal disease in the appropriately adapted model hosts 
(i.e. in genetically manipulated flies or mice fed or injected 
with specific microbes and metabolites), and (iii) targeted 
elimination of these synergisms e.g. elimination of the 
dysbiotic microbiota and/or normalization of the blood 
cytokines or intestinal metabolites should decrease the 
prevalence of disease in human clinical trials. Prebiotic, 
probiotic, fecal transplantation and bacteriophage therapies 
are some of the treatment options potentially available in 
the foreseeable future [191-193] (Figure 1). Importantly, 
one should discriminate between the different stages of 
tumor development (i.e. initiation vs. progression and 
benign vs. invasive), because the detrimental synergisms 
may differ accordingly.

While primarily an open-ended search, measuring 
CRC-related homo’ome parameters is expected to shed 
light into key aspects of the disease [194], such as:

a) The age-related and metabolic factors driving 
chronic low-grade intestinal inflammation, regeneration 
and tumorigenesis.

b) The relative contributions of local regenerative 
inflammatory signaling vs. systemic inflammatory factors 
in driving CRC during aging.

http://www.kolkerlab.org/projects/statistics-bioinformatics/moped
http://www.kolkerlab.org/projects/statistics-bioinformatics/moped
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c) Interventions (dietary, nutrition or physical 
exercise) that can modulate or eliminate the sources of 
chronic inflammation.

d) Senescent stem cell, progenitor and enterocyte 
responses to intestinal damage and stress.

CONCLUSIONS

Drosophila is the simplest model organism sharing 
substantial human disease gene conservation and intestinal 
epithelium pathophysiology with humans. Thus, fly in 
addition to mouse models may guide clinical studies in 
defining basic parameters of intestinal inflammation and 
cancer, taking into account the multifaceted and highly 
complex traits of human intestinal holo’omes. Controlling 
for the complex genetic, epigenetic, microbiota, lifestyle, 
gender and age background in future experiments will 
be critical because in most cases the traits that lead to 
disease emergence are many, a sum of synergies among 
gene alleles, microbes and diets that change as we age. 
Molecular prognosis, diagnosis and treatment options 
regarding intestinal CRC should be more personalized, and 
take into consideration synergy within evolving holo’omes 
of disease-prone vs. the disease-free individuals, rather 
than merely tumor specific genetic/epigenetic markers, 
as is now customary. At the population level detrimental 
synergies are likely many and diverse, but our current 
knowledge is not sufficient to explain the emergence and 
establishment of CRC. Pinpointing novel factors that drive 
CRC through longitudinally-changing holo’omes might be 
laborious and expensive, but necessary to improve CRC 
prognosis, diagnosis and therapy. 

Such a holo’ome approach might also be applicable 
to other cancers influenced by our microbiota and 
lifestyle-related factors according to the “Second-Expert-
Report” (World Cancer Research Fund). Unlike cancers 
that develop at a very young age, such as retinoblastoma 
and neuroblastoma, which depend heavily on the genetic 
background of neonates, other malignancies, such as 
lung, liver and pancreatic cancer, are influenced by 
our environment, low-grade chronic inflammation and 
metabolism. Accordingly, intestinal microbiota may affect 
our inflammatory and metabolic status and may not only 
impact CRC, but also other cancers developing at an old 
age. 
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