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Abstract: Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by
small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a
predisposing genetic background and triggering factors that causes a persistent activation of immune
system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial
alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition,
and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations
of this disease, which can be highly heterogeneous according to the different entity of each pathogenic
step in individual subjects. Although substantial progress has been made in the management of SSc
in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in
SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These
include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin,
and mTOR), as well as molecules and cells involved in the persistent activation of the immune system
(e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of
the most promising therapeutic targets that could improve the future clinical management of SSc.

Keywords: systemic sclerosis; pathophysiology; therapy

1. Introduction

Scleroderma, or systemic sclerosis (SSc), is an immune-mediated chronic disorder with
a systemic involvement characterized by small vessel alterations and progressive fibrosis
of the skin and internal organs, such as lungs, gastrointestinal tract, and heart [1]. SSc is a
devastating and severe disease, burdened with significant morbidity and mortality. When
a severe pulmonary or cardiac involvement is present, patients with SSc have a 3-year
survival rate of 47–56% [2–4].

The skin is involved in the majority of patients with SSc. Two different clinical subsets,
according to the extent of skin involvement, are usually recognized: diffuse cutaneous SSc
(dcSSc), in which the skin damage is extended proximally to elbows and/or knees or to
thorax and/or abdomen at any given time during disease course, and limited cutaneous SSc
(lcSSc), in which the skin damage remains distal to elbows and knees without involvement
of either thorax or abdomen. Although this clinical distinction has been demonstrated to be
able to predict the onset of severe complications, including life-threatening lung and heart
fibrosis, classification based on the extent of skin involvement has several limitations [5].

Scleroderma is now conceived as a complex syndrome with multiple pathogenic
pathways. While there are still many unanswered questions, understanding of these
pathways has greatly improved in recent years. In particular, the central role of immune
system cells and inflammatory mediators, fibroblasts, and other cells determining the
regulation of the extracellular matrix (ECM) is now recognized [6,7].
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Substantial progress has also been made in the management of SSc complications in
recent years, which has led to increased survival and quality of life. This includes better con-
trol of complications in specific organs (such as interstitial lung disease (ILD) [8], pulmonary
arterial hypertension (PAH) [9], scleroderma renal crisis, and Raynaud’s phenomenon), as
well as standardized follow-up and early diagnosis of potential complications [10].

Despite recent advances, however, an effective disease-modifying treatment approved
for the treatment of SSc is currently lacking. Given the heterogeneity of pathways implicated
in SSc onset and progression, new treatment strategies for SSc should ideally target many,
if not all, such pathogenetic pathways, including those involved in immune activation,
immune-mediated inflammation, vasculopathy, and fibrosis.

Herein, we review the pathogenic pathways, current treatment, and potential new
therapeutic approaches for SSc.

2. Pathogenic Pathways in Systemic Sclerosis

The etiopathogenesis of SSc is still elusive. As for many other immune-mediated
diseases, the most accepted hypothesis is that the combination of a predisposing genetic
background and a triggering factor or event may cause a break of tolerance toward self-
antigens with persistent activation of the immune system, not timely downregulated by
endogenous regulatory cells and checkpoints. The first site of persistent immune-mediated
inflammation is most likely the microvessel wall, causing alterations involving not only
the endothelium, but also all the vessel layers, with subsequent myofibroblast activation,
excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis [11]
(Figure 1).
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Figure 1. Simplified scheme showing the main processes involved in the pathogenesis of sys-
temic sclerosis.

Several genetic loci have been associated to increased risk of developing SSc, in-
cluding genes encoding molecules specifically involved in fibrotic and/or vasculopathy
pathways [12–14]. Recently, few HLA class II and one HLA class I alleles were found to be
strongly enriched in the SSc cohort and, of note, selectively associated with distinct clinical
and serological SSc subsets, providing novel functional insights [15].

2.1. Immunological Changes

The latter report highlights, once more, the role of the immune system in SSc. Dysreg-
ulation of the immune system is witnessed by the presence of autoantibodies, several of
which are exclusive of this disease and associated with clinical complications and specific
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phenotypes (Table 1) [6,16]. Some of these autoantibodies have been directly implicated in
the pathogenesis of SSc. For example, agonistic antibodies stimulating the Platelet Derived
Growing Factor Receptor α (PDGFRα) are capable of inducing the persistent activation of
the intracellular signaling cascade that is usually transiently triggered by PDGF, leading
to chronic myofibroblast activation and subsequent ECM accumulation [16–18]. Unlike
the natural, non-stimulatory, anti-PDGFRα autoantibodies, agonistic anti-PDGFRα autoan-
tibodies recognize specific conformational epitopes, largely overlapping with the PDGF
binding site, suggesting their pathogenic role in the SSc-specific, unbalanced autoimmune
response against cellular antigens [19–21].

Table 1. Autoantibodies in systemic sclerosis.

Antibody ANA Staining Pattern Target Clinical Associations

Anti-centromere (ACA) Discrete speckled CENP-A, B and C lcSSc, PAH, peripheral
vascular disease

Anti-topoisomerase I
(Anti-SCl-70) Speckled DNA topoisomerase I dcSSc, ILD

Anti-RNA polymerase III Speckled RNA polymerase III complex
dcSSc, rapidly progressive

skin thickening, renal crisis,
malignancy, GAVE

Anti-U3 RNP Nucleolar U3 RNP complex ILD, PAH, renal crisis, small
bowel disease

Anti-Th/To Nucleolar RNase P and RNase MRP lcSSc, ILD, PAH

Anti-PmScl Nucleolar Exosome protein complex
(PM-Scl-100, PM-Scl-75) SSc-myositis overlap

Anti-U1 RNP Speckled U1 RNP complex Inflammatory arthritis,
myositis, PAH (MCTD)

Anti-Ku Speckled Ku80 and Ku70 Myositis

Anti-RuvBL1/2 Speckled RuvBL1 and RuvBL2 dcSSc, myositis

Anti-Ro52 Speckled TRIM21 ILD, overlap syndromes

Anti-Nor90 Nucleolar Nucleolar transcription factor
1

Unclear (favourable
prognosis?)

Anti-ANP32A N/D Acidic leucine-rich nuclear
phosphoprotein PAH

B cells from SSc patients not only produce autoantibodies, but can also infiltrate tissues
and show increased activation markers such as CD19, CD21, costimulatory molecules, and
B cell activating factor (BAFF). There is evidence in murine models that overexpression
of CD19 induces the production of cutaneous fibrosis and that the absence of B cells is
associated with decreased fibrosis [14].

Moreover, T lymphocytes from SSc patients show an increased expression of activation
markers. Th2 cells, producing IL-4 and IL-13, and Th17, and producing IL-17, are increased
in both skin and peripheral blood of patients with SSc, particularly in patients with the
diffuse form of the disease [22]. The role of regulatory T cells in SSc is less clear [23]. Other
relevant immune system cells, such as macrophages and dendritic cells (DCs), can also
infiltrate skin of SSc patients, producing proinflammatory and profibrotic cytokines and
chemokines, which in turn are responsible for the process of endothelial-mesenchymal
transition (EMT). In this process, endothelial and epithelial cells are activated and acquire
characteristics similar to myofibroblasts [24]. Fibrocytes from the peripheral circulation
are also co-opted to become activated fibroblasts producing collagen and other ECM
proteins [11].



Biomedicines 2022, 10, 163 4 of 21

Although the factors that promote the persistent activation of cells of the immune
system are unknown, recent studies have highlighted the possible role of Toll-like receptors
(TLR) in the activation of dendritic cells, which could in turn secrete proinflammatory
cytokines and present antigens to the T cells. Overexpression of TLR4 and TLR2 has been
found in skin and fibroblasts of patients with SSc [25,26]. Activation of dendritic cells
through TLRs generally leads to the production of several proinflammatory cytokines,
particularly type I interferons (IFN), which have been found overexpressed in the sera
of patients with SSc [27]. Up to 50% of SSc patients may show this so-called “interferon
signature” in the peripheral blood. Interestingly, these abnormalities may be seen in early
phases of the disease, before overt skin fibrosis [27]. The increased expression of type I
IFN in SSc may induce monocyte activation, as well as increased differentiation, survival,
proliferation, and activation of T, B, and dendritic cells [28]. Moreover, type I IFN stimulates
the expression of TLRs on DCs and fibroblasts, indirectly leading to increased inflammatory
cytokine production by fibroblasts.

Interleukin (IL)-33 is an alarmin of the IL-1 family related to inflammation and fibrosis
and has been recently implicated in the pathogenesis of SSc [29]. Following the production
of IL-33 and IL-25 by innate lymphoid cells, there is an overproduction of IL-4 and IL-13 that
increases collagen deposition by fibroblasts and induces the differentiation of macrophages
towards a profibrotic phenotype [30]. Evidence of the involvement of macrophages in
the pathogenesis of SSc is extensive. Increased CD14+CD163+CD204+ cells have been
found in peripheral blood of patients with SSc, as well as increased markers of macrophage
migration and activation (CCL18 and CD163) in microarrays of lung tissue from patients
with progressive pulmonary fibrosis [31]. Macrophages can also be stimulated through
TLRs and their activation towards a profibrotic phenotype (M2 polarization) would lead
to the production of cytokines such as IL-6, IL-10, and IL-13, transforming growth factor
(TGF)-β and PDGF [32,33].

2.2. Endothelial Dysfunction

The endothelium plays a pivotal role in the initiation and perpetuation of vasculopathy
associated with SSc. Endothelial damage is thought to occur early in the pathogenesis
of SSc. The activation of endothelial cells leads to vasoconstriction and subendothelial
fibrosis, contributing to the development of intraluminal thrombosis and proliferation of
the muscular layers [34], which in turn leads to the vascular phenomena of SSc. Abnormal
angiogenesis due to the increased expression of angiogenic factors such as PDGF, VEGF,
and ET-1, and TGF-β is also a hallmark of SSc [35].

2.3. Fibrotic Changes

Fibrosis, consequent to the excessive production of collagen and other ECM proteins,
is the key pathogenic alteration of SSc and the main process that leads to end-organ
failure [11]. Myofibroblasts can derive from different type of cells, both resident and
circulating endothelial cells, following EMT [34]. The aberrant activation of endothelial
cells leads in turn to expression of alpha smooth muscle actin (αSMA), vimentin, and type I
collagen, until they become similar to myofibroblasts [36].

Additionally, in patients with SSc there is evidence of abnormal epithelial regeneration,
leading to EMT via the upregulation of ET-1 and TGF-β [37]. During EMT, epithelial cells
lose their intercellular junctions, change their polarity and express different surface markers,
gradually gaining a mesenchymal phenotype [38].

Depending on the microenvironment, fibroblasts can produce different amounts of
procollagen, fibronectin, proteases, collagenases, and other regulators of the extracellular
matrix. For example, inactive fibroblasts express ET-1 and ICAM-1, whereas fibroblasts
exposed to mechanical stress in the microenvironment, a situation that occurs in SSc,
express α-SMA, TGF-β, and genes associated with the production of ECM proteins [39,40].



Biomedicines 2022, 10, 163 5 of 21

3. Current Therapeutic Options in Systemic Sclerosis

There are several treatment options for managing the diverse clinical manifestations
of SSc (Table 2, [41]).

Table 2. Currently available treatment options for SSc.

Drug Route of
Administration Mechanism of Action Indication

Nifedipin Oral Calcium channel
blocker RP prevention

Iloprost Intravenous Synthetic analogue of
prostacyclin PGI2

RP prevention; digital
ulcers

Fluoxetine Oral SSRI RP prevention

Sildenafil Oral PDE5 inhibitor
PAH

Refractory RP
Digital ulcers

Tadalafil Oral PDE5 inhibitor PAH
Digital ulcers

Bosentan Oral Endothelin receptor
antagonist

PAH
Digital ulcers

Ambrisentan Oral Endothelin receptor
antagonist PAH

Macitentan Oral Endothelin receptor
antagonist PAH

Riociguat Oral Stimulator of soluble
guanylate cyclase PAH

Selexipag Oral Prostacyclin receptor
agonist PAH

ACE inhibitors Oral Inhibition of ACE Renal crisis

Methotrexate Oral,
subcutaneous

Dihydrofolate
reductase inhibitor

Early diffuse skin disease
Arthritis

Cyclophosphamide Oral or
intravenous

Precursor of an
alkylating nitrogen

mustard

Progressive skin disease
ILD

Mycophenolate
mofetil Oral

Inhibitor of inosine
monophosphate
dehydrogenase

Progressive skin disease
ILD

Autologous HSCT / Resets the immune
system

Rapidly progressive
disease

Abatacept Subcutaneous
CD80/86-

CD28 costimulatory
pathway inhibitor

Progressive skin disease

Rituximab Intravenous Anti-CD20 Progressive skin disease
ILD

Nintedanib Oral Tyrosine kinase
inhibitor ILD

Tocilizumab Subcutaneous IL-6R inhibitor ILD
Arthritis

Abbreviations: PDE: phosphodiesterase; PGI2: prostaglandin I2; PAH: pulmonary arterial hypertension; ILD:
interstitial lung disease; HSCT: hematopoietic stem cell transplantation; ACE: angiotensin-converting enzyme; RP:
Raynaud’s phenomenon; SSRI: selective serotonin reuptake inhibitor.
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3.1. Vasodilating Agents

Vasodilators, such as calcium antagonists, phosphodiesterase type 5 (PDE5) inhibitors,
and synthetic analogues of prostacyclin and endothelin receptor antagonists (ERAs), are
indicated for the treatment of Raynaud phenomenon, ischemic digital ulcers, and PAH.

Bosentan, ambrisentan, and macitentan are the endothelin receptor antagonists cur-
rently approved for the treatment of PAH, including connective tissue disease associated-PAH.

Bosentan has higher affinity towards ETB receptors and essentially the same affinity for
the ETA receptors, and it occupies the orthosteric site of the receptor to block the action of
ET-1 by sterically preventing the inward movement of transmembrane helix six of the ETB
receptor [42], a mechanism that is expected to be preserved in the ETA subtype. Aside from
PAH, it has also been proven to reduce the number of new digital ulcers, even in patients
with multiple ones, regardless of usage of calcium channel blockers, PDE-5 inhibitors, or
iloprost therapy, having a highly evident effect in patients with four or more digital ulcers
at baseline in the RAPIDS-2 trial [43].

On the other hand, macitentan was designed to have improved efficacy and higher po-
tency and selectivity over bosentan [44]. Additionally, macitentan and its active metabolite
both have a long half-life (16 and 48 h, respectively), which supports a once-daily dosing reg-
imen. It has been approved for the long-term treatment of patients with PAH as monother-
apy or in combination with other therapies, following the results of the SERAPHIN trial [45].
Given that bosentan has previously been shown to prevent the occurrence of new digital
ulcers in patients with SSc, even though it had no effect on their healing [43], the results of
the DUAL trial, in which macitentan showed no efficacy in reducing the burden of digital
ulcers in SSc patients, were quite disappointing [46].

Oral phosphodiesterase 5 (PDE-5) inhibitors include sildenafil and tadalafil [47]. Both
agents are approved for the treatment of PAH, having showed remarkable efficacy alone
or in combination with ERAs [41]. Moreover, the efficacy of sildenafil in healing digital
ulcers has been demonstrated in the SEDUCE trial [48]. PDE5 inhibitors prevent the
hydrolysis of cGMP, which has vasodilatory and antiproliferative effects on the pulmonary
vasculature [48].

Riociguat is a soluble guanylate cyclase (sGC) stimulator with vasoactive, anti-proliferative
and anti-fibrotic effects. It is currently approved for the treatment of connective tissue
disease (CTD)-associated PAH following the results of the PATENT studies [49]. In a recent
trial, treatment with riociguat did not reduce the number of digital ulcers compared to the
placebo at 16 weeks [50]. Despite its well-known action on fibrosis in vitro [51], riociguat
has disappointed the expectations in the recently reported phase IIb RISE-SSc study, where
the primary endpoint was not met even though there was a difference in the skin score
progression rate favoring riociguat over placebo at week 52 [52].

Selexipag is an oral, selective IP prostacyclin receptor agonist that has recently been
approved for the long-term treatment of PAH [53]. Selexipag is considered to have a good
safety profile, with minimal adverse events, ranging from mild to moderate in severity [54].
In a post hoc analysis of the GRIPHON trial, selexipag reduced the risk of composite
morbidity/mortality events in patients with CTD-PAH by 41% [55]. Given its mechanism
of action, selexipag treatment was unexpectedly shown to be no better than placebo for the
prevention and treatment of Raynaud’s phenomenon attacks in patients with SSc [56].

3.2. Immunosuppressive Agents

Immunosuppressive agents, such as methotrexate (MTX), cyclophosphamide (CYC),
and mycophenolate mofetil (MMF), are indicated for skin disease and ILD.

MTX had previously shown some efficacy on skin disease in small non-recent stud-
ies [57,58].

The efficacy of CYC in SSc has been extensively evaluated in a phase III trial (Sclero-
derma Lung Study I), in which it demonstrated a significant but modest beneficial effect
on lung function, dyspnea, thickening of the skin, and the health-related quality of life.
Though modest, the effects on lung function were maintained through the 24 months of the
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study [59]. More recently, the potential efficacy of CYC on both skin and lung fibrosis has
also been reported by several observational studies [60,61].

In the Scleroderma Lung Study II, treatment of SSc-ILD with MMF for 2 years, or CYC
for 1 year, both resulted in significant improvements in lung function over the two-year
course of the study. Given the better tolerability and toxicity profile, MMF is currently the
preferred treatment for SSc-ILD [62]. Post hoc analyses from SLS-II also demonstrated that
both MMF and CYC treatment resulted in improvements in skin disease in patients with
dcSSc over 24 months [63].

Based on the results of a large phase III trial [64], in which it showed long-term
benefits in patients with SSc, including improved event-free and overall survival, at a cost
of increased toxicity, autologous hematopoietic stem-cell transplantation (HSCT) has also
been recently recommended for the treatment of patients with progressive disease who are
at risk of organ failure.

Abatacept is a CTLA-4-Ig fusion protein that inhibits the CD80/86-CD28 costimulatory
pathway preventing T cell activation. Although abatacept is not approved for the treatment
of SSc, a recent phase II study, and its open-label extension, showed that a clinically
significant improvement of skin sclerosis and disability could be achieved with abatacept
over an 18-month period, with a good safety profile, albeit the study did not meet its
primary endpoint [65].

Rituximab (RTX) is a well-known chimeric monoclonal antibody targeting CD20,
which is extensively expressed from the pre-B cell stage to the pre-plasma cell stage [66].
Given its mechanism and the potential role of B cell depletion for the treatment of SSc, as
outlined in the previous sections, several observational studies that used off-label RTX for
the treatment of SSc patients were conducted, suggesting its antifibrotic effect, as well as its
potential to improve inflammatory alterations and lung function [67–70].

In a recent systematic review [71] that included three RCTs and five cohort studies,
RTX was associated with a significant improvement of the skin score and, only in RTCs, of
lung function. As such, RTX may be an alternative treatment for cutaneous and pulmonary
manifestations in patients with SSc, with a favorable safety profile.

Tocilizumab (TCZ) is a monoclonal antibody directed against the IL-6 receptor that has
been recently evaluated for the treatment of SSc. IL-6 is thought to play a prominent role in
the pathogenesis of SSc [72]. Indeed, there is an increase in IL-6 expression in endothelial
cells and skin fibroblasts and an increase in serum IL-6 levels in SSc patients [73,74].

In the phase II study (faSScinate), TCZ was not associated with a significant reduction
in skin thickening. However, less decline in FVC was observed in SSc patients treated
with TCZ versus placebo [75]. Results from the extension study suggested that patients
originally assigned to receive placebo in the double-blind period who transitioned to open-
label TCZ at week 48 experienced improvements in the skin thickness by week 96 that
were similar to those of patients who received TCZ throughout the study. Furthermore,
patients originally assigned to receive TCZ during the double-blind period maintained
and continued the improvements in the skin score observed during the first 48 weeks
of treatment on receiving another 48 weeks of open-label TCZ. Finally, no patients who
completed week 96 of the study experienced a decline more than 10% in %FVC during the
open-label period while receiving TCZ [76].

Although the subsequent phase III trial (focuSSced) [77], which randomized 210 SSc
patients, failed to meet its primary end point (change in skin score) at week 48, patients
treated with TCZ had a lower rate of decline of FVC, particularly in patients with elevated
acute-phase reactants.

Post-hoc analyses of the focuSSced trial confirmed that TCZ stabilized FVC% over
48 weeks in SSc-ILD with progressive features, regardless of the radiographical extent [78].

Considering the lack of effective therapies in SSc, TCZ should be considered for the
treatment of SSc-ILD, especially for patients at high risk of progression [79].
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3.3. Anti-Fibrotic Agents

The most recent additions to the therapeutic armamentarium available for SSc are
agents targeting the fibrotic pathway. Nintedanib, a tyrosine kinase inhibitor (TKI) targeting
fibroblast growth factor (FGF) receptor, PDGF receptor, and vascular endothelial growth
factor (VEGF) receptor, has been recently approved for the treatment of SSc-ILD by the Food
and Drug Administration (FDA) and the European Medicines Agency (EMA), following
the results of the phase III SENSCIS trial [80]. In this study, among 663 patients were
randomized, the adjusted rate of decline in the FVC was lower with nintedanib than with
the placebo, for a between-group difference of 107.0 mL per year. Diarrhea was the most
common adverse event, reported in 66.9% and 23.9% of patients treated with nintedanib
and placebo, respectively. Nintedanib treatment was not effective for skin disease.

Several post-hoc and subgroup analyzes of the SENSCIS study suggest that the efficacy
of nintedanib is consistent across the disease spectrum, regardless of predicted % FVC,
disease duration, magnitude of fibrotic changes in HRCT, autoantibody status, SSc subtype,
and drug use (including MMF) at baseline [81].

The more recent INBUILD trial, which enrolled 663 patients, including participants
with SSc-ILD and progressive features (i.e., a relative decline in the FVC of at least 10% of the
predicted value, a relative decline in the FVC of 5% to less than 10% of the predicted value,
and worsening of respiratory symptoms or an increased extent of fibrosis on high-resolution
CT, or worsening of respiratory symptoms and an increased extent of fibrosis), further
confirmed the benefit of this antifibrotic in reducing the rate of decline of lung function,
independent of the fibrotic pattern on high-resolution CT, though without meaningful
changes in quality of life [82]. Further longitudinal studies are needed to assess the
long-term efficacy of nintedanib in SSc-ILD and its impact on mortality and quality of
life measures.

Current therapeutic options are mainly limited to the management of vascular and
fibrotic manifestations, but none of them are actually curative or disease-modifying. More-
over, none of these therapies have been shown to substantially improve survival. Finally,
some of these therapies are burdened with the occurrence of clinically important adverse
events, even death, as in the case of HSCT. The development of new targets and treatment
options for SSc is therefore warranted.

4. Novel Agents Targeting Inflammation and Fibrosis

Several molecules involved in SSc pathogenetic pathways are under evaluation as
possible therapeutic targets in clinical trials, and agents targeting these pathways are in
different stages of development (Table 3).

Table 3. Ongoing or recently completed pharmacological clinical trials in systemic sclerosis.

Drug Mechanism of Action Trial Identifier Phase Sample
Size

Estimated or Actual
Completion Date

Romilkimab Bispecific IL4/IL13 antibody NCT02921971 II 97 April 2019

Sirolimus mTOR inhibitor NCT03365869 II 72 June 2019

Tofacitinib Janus kinase inhibitor NCT03274076 I/II 15 November 2019

GSK 2330811 Oncostatin M inhibitor NCT03041025 II 35 July 2020

Ziritaxestat Autotaxin inhibitor NCT03798366 II 33 June 2020

Bortezomib Proteasome inhibitor NCT02370693 II 30 June 2020

Lenabasum Cannabinoid receptor
CB2 agonist NCT03398837 III 365 December 2020
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Table 3. Cont.

Drug Mechanism of Action Trial Identifier Phase Sample
Size

Estimated or Actual
Completion Date

AVID 200 TGF-β inhibitor NCT03831438 Ib 24 January 2021

Bermekimab IL-1 alpha inhibitor NCT04045743 II 20 July 2021

IgPro20/IgPro10 Human normal immunoglobulin NCT04137224 II 26 August 2021

Belimumab +
rituximab

Anti-BAFF
Anti-CD20 NCT03844061 II 30 February 2022

FT-011 TGF-ß1/PDGF-BB inhibitor NCT04647890 II 30 April 2022

Belumosudil Rho-associated kinase inhibitor NCT03919799 II 60 May 2022

Pirfenidone + MMF Antifibrotic NCT03856853 II 150 June 2022

Brentuximab Vedotin Anti-CD30 NCT03198689 II 10 July 2022

TEPEZZA IGF-1R inhibitor NCT04478994 II 25 September 2022

Guselkumab IL-23p40 inhibitor NCT04683029 II 56 December 2022

Ifetroban TxA2/PGH2 receptor inhibitor NCT02682511 II 34 December 2022

hUC-MSC Umbilical cord derived MSC NCT04356287 I/II 18 December 2022

Dersimelagon Melanocortin type I agonist NCT04440592 II 72 February 2023

Brodalumab IL-17 receptor antagonist NCT03957681 III 100 March 2023

HZN-825 LPA receptor inhibitor NCT04781543 II 300 July 2023

Ixazomib Proteasome inhibitor NCT04837131 II 12 April 2024

ACE-1334 TGF-βRII/IgG1 fusion protein NCT04948554 I/II 210 May 2028

Abbreviations: mTOR: mammalian target of rapamycin; TGF: transforming growth factor; BAFF: B-Cell Activating
Factor; PDGF: Platelet-Derived Growth Factor; MMF: Mycophenolate mofetil; IGF: insulin-like growth factor;
TxA2/PGH2: thromboxane A2/prostaglandin H2; MSC: mesenchymal stromal cell; LPA: Lysophosphatidic acid.

4.1. Agents in Phase III

Lenabasum is an oral small-molecule, selective cannabinoid receptor type 2 (CB2)
agonist, which preferentially binds to CB2 expressed on activated immune cells and fi-
broblasts. CB2 activation triggers physiologic pathways that resolve inflammation, speed
bacterial clearance, and halt fibrosis [83,84]. CB2 activation also induces the production of
specialized pro-resolving lipid mediators that activate an endogenous cascade responsible
for the resolution of inflammation and fibrosis, while reducing production of multiple
inflammatory mediators. Through activation of CB2, lenabasum also is designed to have a
direct effect on fibroblasts. Lenabasum is believed to induce resolution of inflammation
rather than immunosuppression by triggering biological pathways to turn “off” chronic
inflammation and fibrotic processes [85].

Lenabasum has demonstrated promising efficacy in preclinical models of inflammation
and fibrosis. Preclinical and human clinical studies have shown lenabasum to have a
favorable safety, tolerability, and pharmacokinetic profile. At the clinical level, the drug has
demonstrated significant benefit in a phase II study in dcSSc, maintaining the improvements
in skin scores and multiple patient-reported outcomes in the long-term open-label extension
study [86,87].

A phase III trial of lenabasum administration in patients with diffuse SSc has been
completed in December 2020 (NCT03398837).

Pirfenidone is an antifibrotic agent with anti-inflammatory properties, including inhi-
bition of proinflammatory cytokines and inhibition of inflammatory cell proliferation [88].
Pirfenidone has been approved for the treatment of patients with idiopathic pulmonary
fibrosis (IPF), a chronic, progressive, and almost invariably fatal disease [89,90]. Despite dif-
ferences in their clinical presentation, IPF and SSc-ILD share some overlapping pathogenic
mechanisms, including injury to structural cells, fibroblast activation, myofibroblast ac-
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cumulation, expression of fibrogenic cytokines and growth factors, and progressive ILD.
Pirfenidone is generally well tolerated in patients with IPF, and compared with placebo,
pirfenidone significantly reduces disease progression (as measured by change in percent-
predicted FVC) and increases progression-free survival. Pirfenidone also significantly
reduces the risk of mortality in patients with IPF compared with placebo.

In the phase II LOTUSS study, designed to assess the safety of pirfenidone in patients
with SSc-ILD at the same therapeutic dose used in IPF, the drug showed an acceptable
tolerability profile but exploratory disease outcomes remained largely unchanged [91].

The Scleroderma Lung Study III, a phase III trial evaluating the combination of MMF
and pirfenidone in SSc-ILD, is currently ongoing (NCT03221257). However, in a small
randomized controlled trial conducted in India, treatment with pirfenidone failed to demon-
strate a beneficial effect over placebo in stabilizing FVC, functional status, or skin disease
after 6 months of therapy [92].

IL-23/IL-17 axis is implicated in the pathogenesis of several autoimmune and inflam-
matory diseases [93,94]. Although its precise role in SSc is unclear, preclinical studies
indicate a potential role for IL-17 in regulating dermal and cardiac fibroblast prolifera-
tion, [95,96] and altered IL-17 expression has been reported in cells from patients with
SSc [97]. Moreover, growing evidence from experimental models of fibrosis indicates
that expression of IL-17 and of its receptor is upregulated in lung fibrosis, with increased
expression of TGFβ [98].

The use of biologic agents that target IL-17 is therefore a promising potential strategy
in SSc. A phase III clinical trial of brodalumab, an IL-17 receptor antagonist, in currently
ongoing (NCT03957681).

Likewise, a phase II clinical trial evaluating the safety and efficacy of guselkumab, a
IL23-p40 inhibitor, has just started recruiting (NCT04683029).

4.2. Agents in Phase II

Though promising, RTX alone has some limitations in the treatment of a complex
disease such as SSc. Several lines of evidence indicate that the major limit may be the
persistence of autoreactive long-lived plasma cells, not targeted by RTX, in various survival
niches [99]. Moreover, RTX treatment triggers the secretion of B-cell activating factor
(BAFF), which perpetuates autoreactive B cells [100]. To overcome these issues, different
solutions have been proposed.

The first is to use belimumab, a BAFF inhibitor, currently licensed for use in systemic
lupus erythematosus (SLE). In a pilot phase II trial [101], 20 patients with dcSSc were
randomized to either belimumab or placebo. Although there was a greater improvement in
the skin thickness in the belimumab group, the difference did not achieve statistical signifi-
cance. However, changes in gene expression were consistent with mechanism of action and
showed that clinical response to treatment with belimumab is associated with a significant
decrease in profibrotic genes and pathways. To investigate the efficacy of the combination
of RTX and belimumab in SSc, a phase II trial is currently ongoing (NCT03844061).

Another possibility to overcome the limitations of RTX in depleting antibody-producing
plasma cells is to target them with proteasome inhibitors.

Anecdotal evidence shows that bortezomib, a proteasome inhibitor licensed for multi-
ple myeloma, is able to induce a depletion of autoantibodies and control disease manifesta-
tions in patients with various autoimmune diseases, including primary Sjögren’s syndrome,
refractory SLE and ANCA-associated vasculitis [99]. A small phase II trial with bortezomib
in SSc has been conducted (NCT02370693), but results have not been reported yet.

Ixazomib is the first orally available proteasome inhibitor. A proof-of-concept clinical
trial in SSc in ongoing (NCT04837131).

Romilkimab (SAR156597) is a humanized bispecific IgG4 antibody that utilizes an
innovative tetravalent bispecific tandem immunoglobulin format to bind and neutralize
circulating IL-4 and IL-13. Both IL-13 and IL-4 are important mediators in allergy and,
most importantly, fibrosis. SSc is well-known to be associated with a Th2 polarization
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and IL-13 levels are elevated both in the blood and in the skin of patients [102]. Therefore,
IL-13 may be a promising target in SSc and fibrotic disorders.

Despite these premises, a recent phase II study failed to demonstrate a benefit for
romilkimab in the treatment of IPF [103]. A proof-of-concept phase II trial in diffuse SSc has
recently been reported [104]. In this study, which randomized 97 patients to romilkimab or
placebo for 24 weeks, change in the skin score favored romilkimab. Adverse events were
mostly mild-to-moderate and discontinuations were low. The significant effects on skin
changes with romilkimab in early dcSSc await confirmation in a phase III study.

Sirolimus (rapamycin) is an oral inhibitor of mammalian target of rapamycin (mTOR),
acting through the reduction in protein phosphorylation, cell cycle progression, and cy-
tokine production. It is currently approved for the prophylaxis of organ rejection in adult
patients at low to moderate immunological risk receiving a renal transplant.

Sirolimus was demonstrated to inhibit collagen production by liver and lung fibrob-
lasts [105]. In a mouse model of SSc, the production of profibrotic cytokines, such as IL-4,
IL-6, IL-17, and TGF-β1, was attenuated by rapamycin. In addition, sirolimus treatment
inhibited proliferation and collagen production of mouse fibroblasts in a dose-dependent
manner [106].

In a small pilot study, sirolimus and MTX were compared in SSc patients. Rapamycin
was well tolerated but the disease activity scores at 48 weeks and the changes in these
scores from baseline were not significantly different between the groups [107].

Another phase II study of sirolimus treatment in SSc was planned and registered but
the current status is unknown (NCT03365869).

Tofacitinib is an oral Janus kinase (JAK)-1/3 inhibitor that is currently approved for
the treatment of rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis. JAKs are
intracellular enzymes that phosphorylate and activate Signal Transducers and Activators
of Transcription (STATs), which in turn modulate intracellular activity including gene ex-
pression. Tofacitinib modulates the signaling pathway at the point of JAKs, preventing the
phosphorylation and activation of STATs, and the production of several proinflammatory
cytokines [108].

A recent study showed that JAK/STAT gene signatures were aberrant in biopsies
from SSc patients, as well as JAK and STAT3 phosphorylation in both skin and lung
biopsies. Furthermore, treatment of mice with the selective JAK inhibitor tofacitinib not
only prevented bleomycin-induced skin and lung fibrosis but also improved established
skin fibrosis [109].

Given its potential antifibrotic effect, tofacitinib has been recently evaluated in a phase
I/II study in SSc patients. Among 15 participants, tofacitinib was well tolerated and there
were trends in efficacy favoring tofacitinib at month 6, including the skin score. Other
non-randomized studies suggested the potential efficacy of tofacitinib particularly for
cutaneous involvement [110]. A phase III trial of tofacitinib for diffuse SSc has not been
planned yet.

Subcutaneous and intravenous immunoglobulins (Ig) are approved for the treatment
of various autoimmune diseases, including chronic inflammatory demyelinating polyneu-
ropathy (CIDP) and immune thrombocytopenic purpura (ITP). The mechanisms of action
of Ig are complex, but are mostly due to different pathways that depend on the Fc and/or
the F(ab′)2 fragments [111]. The off-label use of Ig in patients with SSc provided evidence
of their potential efficacy on multiple clinical manifestations, including skin fibrosis, gas-
trointestinal involvement, muscle strength and quality of life [112,113]. A phase II trial
investigating the safety and efficacy of both subcutaneous and intravenous Ig in SSc is
currently ongoing (NCT04137224).

Brentuximab vedotin is an anti-CD30 monoclonal antibody, currently approved for
the treatment of anaplastic large cell lymphoma, cutaneous T-cell lymphoma, Hodgkin’s
disease, and mycosis fungoides. Following binding to CD30, brentuximab vedotin is rapidly
internalized and transported to lysosomes where monomethyl auristatin E (MMAE) is
released and binds to tubulin, leading to cell cycle arrest and apoptosis [114]. A small pilot
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study that will treat ten patients with early or active dcSSc with brentuximab vedotin is
ongoing (NCT03198689).

Bermekimab is a human IgG1 monoclonal antibody that neutralizes the activity of
human IL-1α. IL-1α is up-regulated in the lesional skin and serum of SSc patients and also
induces the production of IL-6 and PDGF, promoting the fibrosis [115].

A phase II proof-of-concept trial (NCT04045743) of bermekimab administration in
20 patients with SSc has just been completed.

Oncostatin M (OSM) is a pleiotropic member of the glycoprotein 130 (gp130)/IL-6
cytokine family that also includes IL-6 [116]. It is produced by leukocytes, including
macrophages, activated T cells and neutrophils, and acts primarily via OSM receptors on a
broad range of cell types. OSM functions include activation of endothelium, induction of
the acute phase response, induction of cellular proliferation and/or differentiation of cell
types such as fibroblasts, epithelial cells and keratinocytes, modulation of erythropoiesis
and megakaryopoiesis, inflammatory mediator release, and promotion of wound healing.
OSM has been implicated in a broad range of inflammatory and fibrotic diseases, including
SSc [117].

GSK2330811 is a humanized immunoglobulin G1 kappa (IgG1κ) monoclonal antibody
that functionally blocks human OSM from binding to the gp130 receptor. A randomized
and placebo-controlled phase II trial enrolling 35 SSc patients has recently been completed
(NCT03041025) and the results awaited.

Ziritaxestat (GLPG 1690) is an autotaxin inhibitor that has been recently evaluated
in a pilot phase II study in SSc patients. Autotaxin was shown to be required for the
development and maintenance of dermal fibrosis in the bleomycin mouse model of SSc,
enabling two major mediators of fibrogenesis, lysophosphatidic acid (LPA) and IL-6, to
amplify each other’s production [118]. Additionally, pharmacologic inhibition of autotaxin
attenuated dermal fibrosis and IL-6 expression in the mouse model. Moreover, autotaxin
was found to be overexpressed in skin samples from SSc patients [119]. Increased autotaxin
levels were also observed in pulmonary fibrosis, where it was found to contribute to the
activation of TGF signaling and the stimulation of fibroblast accumulation [120]. In the
small phase II NOVESA study, ziritaxestat significantly improved the skin score versus
placebo at week 24 and was well tolerated (NCT03798366). These results suggest that
inhibition of the autotaxin pathway may be an effective therapeutic strategy for SSc.

Belumosudil (KD 025) is an inhibitor of Rho-associated coiled-coil kinase 2 (ROCK2).
It binds to and inhibits the serine/threonine kinase activity of ROCK2, downregulating
its signaling pathways, which play major roles in pro-and anti-inflammatory immune cell
responses [121].

Increased ROCK activity has been found in the lungs of patients with IPF and treatment
with belumosudil reduced lung fibrosis in the bleomycin mouse model [122]. Therefore,
belumosudil may have a therapeutic benefit by targeting the fibrotic processes mediated by
the ROCK signaling pathway.

Basing on these promising results, a phase II clinical trial of belumosudil administra-
tion in patients with diffuse SSc is currently ongoing (NCT03919799). In this trial, a total
of 60 adult subjects will be enrolled and randomized into three groups to either receive
orally administered belumosudil (two doses) or matched placebo for 28 weeks. The study
will be double-blinded for the first 28 weeks followed by an open label extension period
of 24 weeks. Another open-label study of belumosudil in diffuse cutaneous SSc has been
recently initiated (NCT04680975).

Dersimelagon (MT-7117) is a selective melanocortin-1 receptor (MC1R) agonist that
is currently being evaluated in a phase II study in SSc (NCT04440592). α-Melanocytic
Hormone, the ligand of MC1R, has been implicated in chronic inflammation and fibrosis
and evaluated in various preclinical models, including the bleomycin-induced fibrosis [123].
It is thought to exert its mechanism of action by reducing proinflammatory and profibrotic
mediators such as TGF-β.
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4.3. Agents in Phase I or Supported by Preclinical Evidence

TGF-β is a master regulator a of the pathogenesis of SSc. Various processes, including
cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated
by TGF-β, a type of cytokine secreted by macrophages and many other cell types [124].

AVID200 is a novel inhibitor of TGF-β1 and β3, avoiding TGF-β2 related cardiac
and hematopoietic toxicity. Overexpression of these TGF-β isoforms has been closely
associated with the progression of fibrosis and cancer [125]. A Phase Ib trial of AVID
200 administration in SSc patients has just been completed (NCT03831438). Preliminary
results demonstrated anti-fibrotic effects of AVID200 as indicated by rapid and sustained
declines in skin fibrosis. AVID200 was well-tolerated, and no dose-limiting toxicities were
observed [126].

ACE-1334 is another TGF-βRII/IgG1 fusion protein that inhibits TGF-β1 and 3, but
not TGF-β2. It has shown robust anti-fibrotic activity in multiple preclinical models of
fibrosis, and a phase I/II trial in SSc is set to start soon (NCT04948554).

FT-011 is a novel antifibrotic that, in vitro and in preclinical models, inhibited both
TGF-β1 and PDGF-BB induced collagen production. A small phase II clinical trial to
evaluate its effect in SSc is about to start (NCT04647890).

TEPEZZA (teprotumumab-trbw, HZN-001) is a fully human monoclonal antibody in-
hibitor of the IGF-1 receptor (IGF-1R). While being an important survival factor for various
cell types, IGF-1 has also been implicated in fibrotic disorders, including SSc, where serum
IGF-1 levels are elevated in patients with more severe skin and lung fibrosis [127,128]. A
phase I trial of TEPEZZA in patients with diffuse cutaneous SSc is ongoing (NCT04478994).

Ifetroban is a potent and selective thomboxane A2/prostaglandin H2 receptor antago-
nist. TxA2 and its precursors are thought to play an important role in vascular contraction
and have been implicated in platelet activation, as well as vasculo-inflammatory activation
leading to the characteristic pathologies of chronic ulcers [129]. A proof-of-concept clinical
trial of ifetroban administration in SSc is currently recruiting (NCT02682511).

Mesenchymal stromal cells (MSC) are adult multipotent cells that can be isolated
from bone marrow (BM), adipose tissue, umbilical cord (UC), and other tissues, and,
moreover, their ability of differentiating into different cell lineages have raised growing
interest because of their broad immunomodulatory properties. Preclinical evidence has
suggested their potential efficacy in fibrotic disorders. For example, systemic administration
of human UC-MSC significantly reduced lung inflammation and fibrosis in bleomycin
mouse models through a selective inhibition of the IL6-IL10–TGFβ axis involving lung
M2 macrophages [33]. Phase I studies and single case reports also suggested that MSC are
well tolerated and potentially effective in patients with SSc [130]. A small proof-of-concept
study evaluating the effect of UC-MSC infusion in SSc patients is set to star this year
(NCT04356287).

Lysophosphatidic acid (LPA) is a phospholipid growth factor that targets specific
G-protein-coupled receptors that could possibly contribute to excessive tissue fibrosis,
primarily through the activation of the LPA 1 receptor [131].

SAR100842 is a low molecular weight, orally available selective inhibitor of LPA 1
receptor that has been evaluated in a small study in SSc [132]. There was a clinically
important skin score improvement after 24 weeks of treatment, and the drug was overall
well tolerated, with mild to moderate adverse effects. The clinical development program of
SAR100842 in SSc was initially discontinued by the manufacturer, but a phase II study of
this compound, now renamed HZN-825, has recently started enrollment (NCT04781543).

Anifrolumab is a human IgG1κ monoclonal antibody that has been tested in a phase I
trial to treat SSc [133]. This drug blocks the formation of the ternary IFN/IFNAR1/IFNAR2
signaling complex by sterically inhibiting the binding of IFN ligands to IFNAR1 [134].
Anifrolumab has recently shown to be effective in SLE in a phase III trial [135], whereas the
clinical development for SSc has been discontinued by the manufacturer.

Basiliximab is a chimeric monoclonal antibody directed against the α chain (CD25)
of the IL-2 receptor that has recently been proposed for the treatment of SSc based on the
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latest discoveries regarding the crucial role of effector T cells in this disease, particularly
Th17 and T regulatory subsets. In an open-label study [136], basiliximab was well tolerated
in SSc patients, showing potential efficacy on skin thickness, but no trials in SSc have been
planned yet.

Otherwise known as hyperimmune caprine serum, AIMSPRO is a polyclonal antibody
that contains mainly caprine immunoglobulins as well as cytokines, including IL-4 and
IL-10, proopiomelanocortin, arginine vasopressin, β-endorphin, and corticotropin-releasing
factor. In a phase II double-blind placebo-controlled trial AIMSPRO treatment was well
tolerated and showed potential efficacy on skin thickness [137].

As previously mentioned, TLR4 stimulation promotes the production of cytokines
by Th1 and Th17 cells, and increased levels of this molecule and its ligands have been
found in SSc patients. TAK242, a small molecule TLR4 inhibitor, was studied in preclinical
fibrosis models. This treatment prevented, and promoted the regression of, bleomycin-
induced dermal and pulmonary fibrosis, and reduced the expression of several pro-fibrotic
mediators. Furthermore, TAK242 reduced spontaneous hypodermal thickness in the model
mice and abrogated collagen synthesis and myofibroblasts differentiation in explanted
constitutively active SSc fibroblast [138]. To date, no trials in SSc patients with TAK242 have
been planned yet.

Imatinib is a TKI that blocks both PDGF and TGF-β signaling pathways. It showed
antifibrotic effects in SSc experimental models [139]. Dasatinib and nilotinib, which are
second-generation TKIs, were also evaluated for the treatment of dermal fibrosis in vitro
and in murine models with promising results [140].

In a phase II pilot study, imatinib had no significant effects on skin involvement in SSc
patients, but appeared to stabilize lung function in patients with SSc-ILD [141]. However,
no phase III trial in SSc has been conducted or planned.

Fresolimumab is a monoclonal antibody that can target all isoforms of TGFβ and has
yielded very promising results in SSc [142]. Patients treated with this drug experienced
a rapid improvement in skin scores, as well as a downregulation of the expression of
TGFβ-regulated genes. However, no further trials in SSc have been planned yet.

Abituzumab is a novel, humanized monoclonal IgG2 antibody targeting CD51 (in-
tegrin alpha V), preventing ECM attachment, cell motility, and apoptosis, without cross-
reacting with other integrins, which is elemental in inhibiting TGF-β [143]. Unfortunately,
the phase III trial in SSc that had been planned was recently terminated due to difficulties
in enrolling subjects under the eligibility criteria, not allowing for completion of the study
within a reasonable time-frame.

5. Conclusions

Systemic sclerosis is an immune-mediated disease of unknown etiology, currently
devoid of definitive therapy. Thanks to recent advances in deciphering some of the patho-
genetic mechanisms, especially in the complex regulation of inflammatory and fibrotic
processes, new therapeutic approaches are being evaluated in clinical trials, with the goal
of hopefully changing the natural history of this high-impact multi-organ disorder.
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