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A B S T R A C T   

Zinc Cobaltite (ZCO) and Nickel Oxide (NiO) nanoparticles (NPs) were synthesized using a sol-gel 
technique, and their composites with different weight ratios were prepared using a straightfor-
ward sonication method. The NiO and ZCO NPs had small crystallite size of 10 nm and 18 nm, 
respectively. According to the ultraviolet–visible (UV–Vis) spectra, pure NiO and ZCO NPs 
exhibited band gaps of ~3.5 eV and 3.3 eV. Antibacterial activity against gram-positive (Staph-
ylococcus aureus) and gram-negative (Escherichia coli) bacterial strains was also tested for the 
composite counterpart and its equivalents. Compared to pure NPs, the composite of 30 % ZCO- 
NiO (NZ3) had higher antibacterial activity with zone of inhibition of ~13 mm against E. coli. 
The electrical and electrochemical properties were also explored and it was found that the 
composite of 50 % ZCO-NiO (NZ5) shows high specific capacitance of 188 F/g.   

1. Introduction 

In the face of mounting concerns over the finite supply of fossil fuels, environmental sustainability, and the need for cleaner energy 
sources, the quest for efficient and eco-friendly energy solutions has never been more crucial. This imperative has sparked a surge of 
interest in renewable energy alternatives, like solar, tidal, and wind power, as well as the development of advanced energy storage 
technologies to harness and utilize these intermittent energy sources. Among these storage solutions, supercapacitors have garnered 
substantial attention for their high-power density, extended cyclic stability, and rapid recharge capabilities [1]. Various transition 
metal oxides, spinels, carbon-based materials, etc. have been considered as candidates for supercapacitors. Among them, NiO, a p-type 
semiconductor having visible light transparency with a wide band gap, is acknowledged for its high theoretical capacitance. Moreover, 
it finds utility in diverse fields, including energy production and storage, memory devices, antimicrobial films, and gas sensors [2–6]. 
However, low conductivity of NiO nanoparticles (NPs) limits its performance as a supercapacitor which can be enhanced by employing 
strategies such as nano-composite formation, doping, and surface modification [7–9]. ZnCo2O4 (ZCO) with high conductivity and 
structural stability may synergistically work with NiO to result in high electrochemical activity [10–12]. 

Concurrently, in the realm of healthcare, the surge in antibiotic-resistant bacterial infections has spurred the search for novel 
antibacterial interventions [13,14]. The rapid rise of antibacterial resistance outpacing the speed at which new antibiotics are being 
discovered, poses a significant challenge in healthcare. However, innovative approaches such as the utilization of nanoparticles 
directly as antibiotics, for targeted drug delivery and magnetic hyperthermia etc. are being researched as a potential solution [15–19]. 
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Using nanoparticles to achieve antibacterial potency is one step towards the future where medicine could be revolutionized by the 
integration of nanoparticles and genetic-based therapies. Nanomaterials, particularly transition metal oxide like ZnO, NiO, and CuO2, 
are being considered due to their potential antibacterial efficacy, cost-effectiveness, and abundance [13,14,20]. 

Recognizing these existing challenges and the potential synergy between the properties of ZCO and NiO, this study centres on the 
synthesis of NiO-ZCO composite nanostructures at varying concentrations. Specifically, the focus lies in synthesizing and exploring the 
optical, electrical, antibacterial, and electrochemical activities of NiO-ZCO nanostructures. Remarkably, our investigations revealed 
the growth-inhibitory and antibacterial activities of the NiO-ZCO composites against pathogenic bacteria, particularly E. coli and 
S. aureus, signalling potential applications in transparent antimicrobial coatings for diverse purposes, such as glass windows, walls and 
beds of operation theatres and labour rooms, and on medical and surgical instruments and implants. Moreover, the NiO-ZCO com-
posites also showed enhanced specific capacitance suggesting their potential to serve as an effective material for supercapacitor 
electrodes. 

Fig. 1. (a) XRD spectra (b) Absorbance spectra of bare NiO, ZnCo2O4, and NiO– ZnCo2O4 composites.  

Fig. 2. (a) Tauc Plot (b)–(d) Arrhenius Plot of bare NiO, ZnCo2O4, and NiO–ZnCo2O4 composites.  
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2. Experimental 

The information can be found in the Supplementary file. 

3. Results and discussion 

3.1. Characterization of the samples 

Fig. 1a shows the XRD pattern of the synthesized samples. The peaks marked in black are in agreement with JCPDS 47–1049 
showing successful synthesis of NiO nanoparticles with space group fm3m and a face-centered cubic crystal structure [21–23]. The 
peaks in red are for spinel ZnCo2O4 nanoparticles (JCPDS 23–1390), showing a tetragonal structure with fd3m [24]. No extra peaks 
could be seen in the XRD pattern for the NiO–ZnCo2O4 composite. The peaks could be discerned for both the 30 % and 50 % ZCO-NiO 
(here onwards referred as NZ3 and NZ5) samples easily however for the 10 % ZCO composite sample (NZ1), the intensity of the peak is 
much less, amounting to a lesser percentage of ZCO as compared to NiO. There is no change in peak position after composite formation 
indicating that ZnCo2O4 did not integrate into NiO lattice [25]. The size of crystallites (Dhkl) was assessed through the application of 
Scherrer’s formula. 

Dhkl =
Kλ

βhkl × cos θ
(1)  

where K = 0.9 is the factor accounting for crystallite shape, βhkl is the full width at half-maximum, λ stands for the X-ray wavelength of 
Kα radiation, and θ is the Bragg angle [26]. The determined Dhkl for NiO, ZnCo2O4, NZ1, NZ3, and NZ5 are ~10.5, 18.2, 16.2, 14.8 and 
15.3 nm, respectively. 

As illustrated in Fig. 1b, UV–visible spectroscopy was conducted to uncover the optical characteristics of the materials. The band 
gap energy was determined using Tauc plot analysis (Fig. 2a). This estimation was done using Kubelka-Munk function (α) in the 
equation: 

[αhν]n =A
(
hν − Eg

)
(2)  

Where ν represents frequency of light, h is Planck’s constant, n is ½ for indirect allowed and 2 for direct allowed transitions, A is a 
constant, and Eg is the band gap [27,28]. NiO is known to be a wide band gap semiconductor, and we obtained a value of 3.52 eV in 
accordance with our previous reports. For ZnCo2O4, we got a value of 3.32 eV that agrees with the reported values [29,30]. Stoica et al. 
reported a band gap of around 3.72 eV and concluded that the valence band is significantly influenced by O 2p orbitals, with a deep 
valence hybridization with the Zn 3d orbitals and substantial shallow hybridization with Co 3d orbitals [31]. For the composite 
samples, the band gap values are 3.29 eV, 3.40 eV, and 3.46 eV for NZ1, NZ3, and NZ5, respectively. For transition metal oxides, it has 
also been observed that band gap is size dependent and increases with decrease in crystallite size [32,33]. Moreover, the band gap 
value is also affected by emergence of new energy states for composites [34]. Hence, the observed trend in band gap variation may be 
explained by combined effect of new energy states and the increased crystallite size that cause shifting of absorption bands towards 
lower wavelength. 

The absorption coefficient (α) is known to exhibit exponential behaviour concerning photon energy near the band edge, typically 
referred to as the Urbach region (hυ < Eg): 

Fig. 3. (a) Spectral mapping via FTIR (b) DC conductivity of bare NiO, ZnCo2O4 and NiO–ZnCo2O4 composites.  
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α ∼ exp
(

hυ
Eu

)

(3)  

Here, Eu denotes the Urbach energy, and α is the absorption coefficient. Eu signifies the width of the band tails associated with localized 
states accounting for transitions between localized and extended states within the conduction band and provides insight into structural 
irregularities within materials, leading to indirect assessment of defect concentrations in nanomaterials. We have determined the 
Urbach value by analysing the slope of the linear part of the plot (ln α vs hυ) as depicted in Fig. 2(b–d). The resulting Eu values are 0.55 
eV for pure NiO, 3.21 eV for ZCO, 0.90 eV for NZ1, 0.67 eV for NZ3, and 0.70 eV for NZ5. Notably, the Eu values display irregular 
increase in the composites. This could be attributed to the emergence of various imperfections in the crystal lattice, leading to the 
creation of additional localized levels within the bandgaps. 

The FT-IR spectra of the individual sample along with the composites are shown in Fig. 3a. The strong peak seen at 400 cm− 1 for 
pure NiO can be ascribed to the metal-oxygen bond stretching, specifically the Ni–O stretching mode [23,35]. In the ZnCo2O4 spectra, 
bands around 570 cm− 1 and 670 cm− 1 are allotted to Co–O and Zn–O vibrations, respectively [24]. In general, the vibrational fre-
quency is determined by atomic weight of metallic ions as well as the bond length between the octahedral and tetrahedral sites. The 
varied vibrational frequencies in the zinc cobaltite spinel structure are caused by this variation in bond length [36,37]. We can see 
broad curves between 1550 and 1750 cm− 1 and 3000-3800 cm− 1, which can be allocated to bending and stretching mode of water [38, 
39]. These two modes demonstrate the adsorbed water on the NPs’ surface. The formation of composite is implied by the distinctive 
peaks of NiO and ZnCo2O4 in the spectra. 

SEM images were used to examine the morphology and microstructure of ZCO and NiO-ZCO composite, as shown in Fig. 4 a,b. The 
ZCO nanoparticles exhibit a distinctive nanorod morphology, characterized by elongated structures with well-defined facets. The 
nanocomposite reveals the incorporation of NiO nanoflakes, which intercalate among the ZCO nanorods. The nanorod-shaped ZCO 
may provide high aspect ratios, facilitating efficient charge transport pathways, while the NiO nanoflakes likely contribute to increased 
surface area, which synergistically results in higher electrochemical activity as seen in the later section. The elemental composition of 
the ZCO and NiO-ZCO composite, as determined by energy dispersive X-ray analysis (EDX), is shown in Figs. S2 and S3 (SI). It was 
confirmed that Zn, Co, Ni, and O were present in the composite. 

3.2. Electrical properties 

The variation of DC conductivity with temperature for both the individual sample and the composites with varying ZCO content is 
shown in Fig. 3b. All the samples demonstrate negative temperature coefficients of resistance; this increase in conductivity with the 
rise in temperature reveals their semiconducting nature. Arrhenius type dc conductivity is expressed for all the samples except for the 
NZ5 sample, which is a weak function of temperature above 358 K. The most plausible reason for p type conductivity in NiO is the 
charge compensation of the Nickel vacancies. The understanding of nature of this electronic compensation is tricky with localized 
charges forming either on nickel or oxygen atoms. Poulain et al. studied the role of deposition temperature for sputtered NiO thin films 
and concluded that this charge compensation is enabled by peroxo-species and free holes [40]. A DC conductivity of order 10− 7 Scm− 1 

is achieved at room temperature for both NiO and ZCO, which is comparable to the reported values. The interaction between Co 3d 
electrons (with tetrahedral coordination) and the O 2p electrons significantly impacts the electrical properties in ZCO, while Zn atom 
(with octahedral coordination) is comparatively passive in deciding the valence electronic properties for the zinc cobaltite spinel 
structure [31]. 

The conductivity of the composite is determined by the accumulation of excess charges at the interface along with the intra-grain 
defects at the boundary [41]. As the temperature increases, the electrons attain enough energy to overcome the potential barrier and 
hop between the sites. The number of charge carriers may potentially increase with increasing amount of ZCO; therefore, a trend of 
increasing conductivity is observed. However, the low conductivity of the NZ5 sample can be explained by a large number of 

Fig. 4. Sem image of (a) ZCO (b) NiO–ZnCo2O4 composites.  
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intra-grain defects due to the increased concentration of the component, along with the presence of agglomerated particles. 
When we fit the experimental data to the Arrhenius thermally activated equation given as: 

σ = σ0

(

e
− ΔE
KT

)

(4) 

we find a good linear fit. The relationship between the natural logarithm of σ and the reciprocal of temperature (expressed as 1000/ 
T) displays nonlinear behaviour across the entire temperature range for all the samples, as can be seen from Fig. S1 (SI). This 
nonlinearity observed in the data confirms that multiple thermally activated processes contribute to these samples’ conductivity. Our 
primary objective is to determine the activation energy by examining the slope of the linear portion of the Arrhenius plot, specifically 
within the lower temperature range of 294–344 K. The calculated activation energy values for all the samples in this temperature range 
fall within the 200–400 meV range. The value of the activation energy points towards hopping between the nearest neighbouring sites 
[42–44]. 

3.3. Electrochemical performance 

Fig. 5 illustrates the cyclic voltammetry (CV) plots of various electrodes within 0.0–0.5 V (versus Ag/AgCl) at scan rates ranging 
from 5 mV/s to 50 mV/s. All of these electrodes exhibit clear redox peaks resulting from Faraday oxidation-reduction reactions, 
indicating that they possess characteristics similar to those of battery-type electrode materials [45]. For NiO, the peaks occur at ~0.15 
V and 0.42 V which can be attributed to faradaic redox reactions [46]. For the NiO-ZCO composite samples, the presence of reversible 
faradaic reactions in the curves is associated with A–O and A–O–OH, where A can be Zn, Co or Ni [47]. The redox reaction can be 
written as: 

ZnCo2O4 +H2O+OH− → ZnOOH+2CoOOH + e− (5)  

CoOOH+OH− → CoO2 +H2O + e− (6)  

NiO+OH− → NiOOH + e− (7) 

The composite electrodes show a superior response in terms of current and feature larger enclosed areas within the CV curves when 
compared to the individual sample. This observation reveals the exceptional charge storage capacity of the composite electrodes. 

Notably, the NZ5 electrode displays the highest current and the largest enclosed CV curve area, highlighting the influence of the 
composite’s composition and proportions on the electrochemical efficiency of the electrodes. 

Fig. 5. (a–d) CV of bare NiO and NiO–ZnCo2O4 nano-composite.  
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The specific capacitance of the composite was determined by utilizing equation: 

Csp =

∫
I dV

m × k × ΔV
(8)  

which factors in parameters such as the applied scan rate voltage (k), the active mass of the electrode material (m), the potential 
window range (Δ V), and the region beneath the CV curve as determined by the integral of the current response. The specific 
capacitance values obtained for the samples for different scan rates are detailed are summarized in Table S1. The highest specific 
capacitance of 188F/g was obtained for NZ5 for 5 mV/s. 

3.4. Antibacterial activity 

The results obtained from the agar well diffusion method (Fig. 6) and minimum inhibitory concentration (MIC) determination 
(Table-1) provide valuable insights into the antibacterial activity of the nanoparticles, warranting further discussion. Firstly, the 
significant bacterial growth inhibition observed for both individual and composite samples highlight the potential of the nanoparticles 
as effective antibacterial agents. The formation of distinct zones of inhibition surrounding the wells suggests that the nanoparticles 
possess inherent antimicrobial properties, which could be attributed to their chemical composition, size, and surface characteristics. 
The variation in MIC values among the tested nanoparticles indicates that their antibacterial efficacy varies depending on the specific 
composition and structure. Notably, nano-composite NZ3 exhibited the lowest MIC values, indicating its superior potency against both 
gram-positive (S. aureus) and gram-negative (E. coli) bacteria compared to other samples. The observed differences in antibacterial 
efficacy among composite nanoparticles can be attributed to factors such as composition ratio, synergistic effects between components, 
and nanoparticle characteristics. NZ3, with an optimized composition ratio of NiO and ZnCo2O4, exhibited the highest efficacy against 
both bacterial strains. The observed variability in MIC values against different bacterial strains underscores the importance of 
considering bacterial diversity when assessing antibacterial agents. The differences in MIC values may arise from variations in bacterial 
cell wall composition, membrane permeability, and susceptibility to antimicrobial agents. Understanding the underlying mechanisms 
of bacterial inhibition by the nanoparticles could provide valuable insights into their selective antibacterial activity. The mechanisms 
underlying the antibacterial activity of the nanoparticles may involve several processes, including reactive oxygen species (ROS) 
generation, disruption of bacterial cell membranes, release of metal ions, and surface interactions [48]. These mechanisms collectively 
contribute to the destabilization and eventual death of bacterial cells upon exposure to the nanoparticles. 

Fig. 6. Antibacterial efficiency shown by Zone of Inhibition using NiO, ZCO and the composites.  

Table 1 
Zone of Inhibition using NiO, ZCO and the composites for both gram-positive and gram-negative bacteria.  

Nanoparticles S. aureus E coli 

Zone of Inhibition (mm) MIC (μg/ml) Zone of Inhibition (mm) MIC (μg/ml) 

NZ1 12.40 ± 0.30 16 12.90 ± 0.20 16 
NZ3 14.10 ± 0.20 10 13.80 ± 0.50 12 
NZ5 9.50 ± 0.20 20 11.20 ± 0.50 19 
ZCO 8.0 ± 0.50 23 10.10 ± 0.20 21 
NiO 7.20 ± 0.30 28 9.20 ± 0.40 25  
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Overall, the results suggest that the tested nanoparticles possess antibacterial properties with varying degrees of potency against 
different bacterial strains. These results have significant implications for the potential use of these nanoparticles in developing anti-
microbial agents or coatings for various applications. 

4. Conclusions 

NiO and ZCO nanoparticles were synthesized using the sol-gel method, and their composite was prepared via ultrasonication. 
Comprehensive characterization was performed using XRD, FT-IR, and UV–Vis techniques. The composites displayed a band gap 
indicative of visible light transparency, while the Urbach energy values suggested the presence of disorder and imperfections. The 
electrical properties of the samples, including NiO, ZCO, and NiO-ZCO composites, were analyzed as a function of temperature, 
confirming their semiconducting nature. Electrochemical analysis revealed the charge storage capabilities of the composites, with the 
NZ5 composite exhibiting a specific capacitance of approximately 188 F/g as determined from CV curves. Furthermore, the anti-
bacterial efficacy of the composites was assessed, demonstrating activity against both gram-positive and gram-negative bacteria. The 
NZ3 composite, in particular, showed low MIC and high ZOI values. These results suggest that these composites hold significant 
potential for diverse applications, including energy storage and antibacterial uses. The induced properties from composite formation 
indicate promising future applications in areas where spinel materials have been underutilized. 
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