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Minimally invasive surgery (MIS) has been the preferred surgery approach owing to its 
advantages over conventional open surgery. As a major limitation, the lack of tactile 
perception impairs the ability of surgeons in tissue distinction and maneuvers. Many 
studies have been reported on industrial robots to perceive various tactile information. 
However, only force data are widely used to restore part of the surgeon’s sense of touch 
in MIS. In recent years, inspired by image classification technologies in computer vision, 
tactile data are represented as images, where a tactile element is treated as an image 
pixel. Processing raw data or features extracted from tactile images with artificial intelligence 
(AI) methods, including clustering, support vector machine (SVM), and deep learning, has 
been proven as effective methods in industrial robotic tactile perception tasks. This holds 
great promise for utilizing more tactile information in MIS. This review aims to provide 
potential tactile perception methods for MIS by reviewing literatures on tactile sensing in 
MIS and literatures on industrial robotic tactile perception technologies, especially AI 
methods on tactile images.

Keywords: tactile sensors, tactile perception, tactile images, minimally invasive surgery, robotic surgery, 
artificial intelligence

INTRODUCTION

Minimally invasive surgery (MIS) is a surgery approach that provides indirect access to anatomy 
for surgeons by introducing specially designed surgical instruments or flexible catheters into 
a patient’s body through minimally sized incisions (Verdura et al., 2000). Compared to conventional 
open surgery, MIS offers many advantages including reduced anesthesia and hospitalization 
time, mitigated tissue trauma and risk of postoperative infection, decreased intraoperative 
blood loss, and accelerated recovery (Puangmali et  al., 2008). However, the indirect access to 
the anatomy brings two challenges: low degree of freedom (DOF) during manipulation and 
absence of tactile feedback during tool–tissue interactions (Abushagur et  al., 2014). With the 
development of mechatronics, robot-assisted minimally invasive surgery (RMIS) systems, such 
as the ZEUS Surgical System (Uranues et  al., 2002) and the da Vinci Surgical System (Guthar 
and Salisbury, 2000), have been developed to improve the dexterity of tools during manipulation, 
which partly resolve the motion constrain problem. Despite this, there are still limitations 
existing for MIS, including reduced hand-eye coordination, a narrowed field of vision, and 
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limited workspace of the tools (Bandari et  al., 2020). More 
importantly, surgeons have little tactile information in MIS 
compared to the rich tactile feedback of human hands, which 
severely impairs the surgeon’s ability to control the applied 
forces, thus causing extra tissue trauma or unintentional damage 
to healthy tissue (Ahmadi et  al., 2012).

Tactile feelings, including but not limited to force, distributed 
pressure, temperature, vibrations, and texture, are complicated 
information that a human obtains through cutaneous receptors 
during physical interaction with environment. Depending on 
the sensing modalities, tactile sensors can be  categorized into 
different kinds, including force sensors for measuring contact 
forces, slippage sensors for detecting slippage between tissue, 
and surgical instruments vibration sensors for measuring 
vibrations during contact. The goal of tactile technologies in 
MIS is to restore all the tactile information so that surgeons 
feel they are contacting that patients’ anatomy directly with 
their own hands rather than operating a mechanism. Among 
this tactile information, force data are relatively easy to acquire, 
model, quantify, and display, so it is most widely used in MIS. 
The sensing principles, design requirements, specifications, 
developments of force sensors, and their applications in MIS 
have been thoroughly reviewed (Eltaib and Hewit, 2003; 
Puangmali et  al., 2008; Schostek et  al., 2009; Tiwana et  al., 
2012; Abushagur et  al., 2014; Konstantinova et  al., 2014; 
Saccomandi et  al., 2014; Park et  al., 2018; Al-Handarish et  al., 
2020; Bandari et  al., 2020). In contrast, studies on utilizing 
other tactile information in MIS are very rare. Researchers 
have begun to realize the advantages of various tactile information 
in MIS, but challenges remain. Van der Putten et  al. found 
that slippage and texture information can augment force 
information to prevent tissue trauma during manipulation but 
limited by cost and changes in instability; few studies were 
about texture information (Westebring-van der Putten et  al., 
2008). Okamura found some studies on tactile sensor arrays 
to perceive pressure distribution or deformation over a contact 
area, but it was challenging to acquire and display tactile data 
due to size and weight constraints (Okamura, 2009).

Tactile sensors are often categorized into single-point tactile 
sensor and the tactile array with respect to their spatial resolution. 
The single-point tactile sensor is usually embedded in the tip 
of the equipment to confirm the object-sensor contact and 
detect tactile signals at the contact point. The tactile array is 
composed of several single-point tactile sensors arranged 
according to certain rules. Compared with single-point tactile 
sensors, tactile array sensor can cover a wider area and can 
capture the tactile information of the object from multiple 
dimensions, so it can achieve high spatial resolution of touch.

In the field of industrial robots, tactile perception technologies 
have received considerable attention. Tactile perception is a 
procedure that obtains tactile information from tactile data 
sensed by tactile sensors. Many methods have been proposed 
to accomplish robot tactile perception tasks, including shape 
recognition, texture recognition, stiffness recognition, and sliding 
detection (Liu et  al., 2017). In the early years, single-point 
tactile sensors were used to create point cloud models to finish 
tactile perception tasks. A current trend of tactile perception 

researches is to represent tactile data as images, where a tactile 
element is treated as an image pixel. From tactile images that 
tactile sensor arrays acquired, features are extracted, such as 
statistical features, vision feature descriptors, principal component 
analysis (PCA)-based features, and self-organizing features (Luo 
et al., 2017). These features are usually processed by AI methods 
like clustering, support vector machine (SVM), and deep neural 
networks, to obtain tactile information.

Robotically assisted surgery is a type of surgical procedure 
that is done using robotic systems. It was developed to overcome 
the limitations of pre-existing minimally invasive surgery and 
to enhance the capabilities of surgeons performing open surgery. 
According to their level of autonomy, surgical robotic systems 
are often classified into two categories: autonomous systems, 
which automatically execute tasks without interventions of the 
practitioner, and nonautonomous systems, which reproduce the 
surgeon’s motion in either a master/slave teleoperated 
configuration or a hands-on configuration (Okamura, 2009). 
Due to the technical complications and high demanded reliability, 
most surgical robots belong to the second category. However, 
the development of robot tactile perception is promising for 
autonomous robotic systems. In the last decades, sensors have 
become smaller, cheaper, and more robust. Enormous studies 
on industrial robots aimed to perceive tactile in small areas 
like fingertips, on which sensors are tiny. Some studies accomplish 
tactile perception tasks with sensors made of soft material. In 
MIS, tactile information is usually displayed in the form of 
raw tactile data, which demands extra analysis. These tactile 
perception studies make it possible to provide more intuitive 
tactile information (e.g., stiffness distribution map) for surgeons 
utilizing nonautonomous surgical robotic systems and offer 
potential designs of autonomous surgical robotic systems.

In this paper, we  review literatures on tactile perception 
technologies in industrial robots and MIS in the last decades 
to analyze the advantages and feasibility of applying tactile 
perception methods on MIS, especially the state-of-the-art AI 
methods on tactile images. Similarly, the features and advantages 
of tactile sensors varying in sensing modalities are analyzed, 
together with their applications in MIS.

The remainder of this paper is organized as follows: Tactile 
Sensors and Their Applications in MIS introduced tactile sensors 
and their applications in MIS. In Tactile Perception Algorithms 
in MIS, tactile perception algorithms in MIS are reviewed. In 
Tactile Perception Applications in MIS, the feasibility of applying 
tactile perception methods on MIS is analyzed. In Conclusion, 
a summary of the challenges and perspectives hoped for the 
future with tactile perception in MIS is presented.

TACTILE SENSORS AND THEIR 
APPLICATIONS IN MIS

Tactile sensors are used to collect tactile data at the contact 
point between the surgical equipment and tissues. Depending 
on modalities of tactile signal, various physical properties (e.g., 
softness and roughness) of a tissue can be  extracted from 
tactile data. Tactile feedback is then provided for surgeons 
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based on these detected physical properties. In most of the 
literatures, force feedback is the main form of tactile feedback, 
and force sensors are the most widely used tactile sensors. 
Tactile sensors can be  categorized into the single-point tactile 
sensor and the tactile array sensor. In this section, studies on 
providing force feedback with the above two kinds of tactile 
sensors are reviewed. Except for force sensors and force feedback, 
some novel tactile sensors and tactile feedback methods 
are investigated.

Single-Point Tactile Sensor and Force 
Feedback
A single-point tactile sensor is usually embedded on the tip 
of the surgical equipment to confirm the object–sensor contact 
and detect tactile signals at the contact point. In MIS, force 
feedback is extremely important to doctors in the consideration 
of the various consistency of the tissue. The force feedback 
implies the active force applied to the operators’ hands directly 
where the active force is usually related to the reactive force 
from the tissue to the tools. Many studies investigated the 
different application scenarios of force feedback in MIS. 
We  summarized related cases into knotting, insertion, and 
incision, which will be  described in the later paragraphs. After 
that, we  will expound on the importance of force feedback 
in the abovementioned cases by a series of relevant studies, 
while the comparison with visual force feedback will also 
be  referred to. We  also investigated the development of force 
feedback in a famous minimally invasive surgical robotic system 
named da Vinci robot. Finally, the limitation of force feedback 
in minimally invasive surgery has been given out.

Knotting
In the knotting situation through the laparoscopic procedures, 
the force feedback indicating the tension of the thread from 
the tip of the tools is extremely important to guarantee the 
firmness of the knots but prevent damage to the tissue. To 
sense the point force feedback from tool tips, load cells are 
commonly used, as the case in (Song et  al., 2009). Moreover, 
in (Song et  al., 2011), a load cell with fiber Bragg grating 
(FBG) sensors was applied to measure the tension of the thread, 
where FGB sensors are optical fiber sensors improving the 
accuracy by encoding the wavelength. Richards et  al. utilized 
the force/torque at the grasper-side to calculate the grasping 
force (Richards et  al., 2000). Fazal and Karsiti decomposed 
the reactive force happened during the insertion process into 
three types by a piezoelectric type one-dimensional sensor and 
mathematical statistics, which were the force generated due to 
the stiffness of the tissue, the friction force, and the cutting 
force, thus enabling us to analyze each type of force separately 
(Fazal and Karsiti, 2009). Mohareri et  al. creatively passed the 
reactive force produced by one hand to another hand and 
improved the knotting accuracy to 98% (Mohareri et al., 2014).

Incision
Apart from the suture scenario, the incision situation is  
another indispensable part of minimally invasive surgery. 

Callaghan and McGrath designed a force-feedback scissor 
with button load cells attached to the scissor blades to measure 
the interforce between the blades and the tissue (Callaghan 
and McGrath, 2007). However, a load cell normally could 
only sense force from one axial and two moments; therefore, 
the more complicated design is considered in the later 
researches. In (Valdastri et  al., 2006), an integrated triaxial 
force sensor was developed and attached to the cutting tool 
for fetal surgery. A similar design of 3-DOF sensors could 
be  found in (Berkelman et  al., 2003). In (Kim et  al., 2015), 
a type of surgical instrument with force sensors of 4 DOFs 
was developed, which could be applied to measure the normal 
force and the tangential force from the tip of the tools by 
capacitive transduction principle.

Palpation
Another conspicuous application scenario of force feedback 
in minimally invasive surgery is palpation. Since the tumor 
is always stiffer than the surrounding skin, the pressure intensity 
on the tumor tends to be  obviously larger; therefore, sensors 
with a single point of contact can detect tumors by palpation 
(Talasaz and Patel, 2013). Similarly, to detect abnormal masses 
in the breast, a tactile sensing instrument (TSI) was designed 
in (Hosseini et  al., 2010) and applied in a simulated scenario 
with a certain detecting route, which was the transverse scan 
mode. By combining the stress variation curves of each line, 
users could determine the x‐ and y-axis coordinates of the 
abnormal masses. The stress variations of the sensor in the 
two cases that were operating manually and by a robot showed 
a similar pattern. Besides, a new tactile sensory system was 
developed in (Afshari et al., 2011) by combining the displacement 
sensor and the force sensor to determine the existence and 
detect the location of kidney stones during laparoscopy. Since 
the surface stiffness was proportional to the result of the 
force sensor as well as the displacement sensor, the stiffness 
could be  presented by these two values and depicted by a 
curving line through the path on the surface of model. Besides, 
Yip et  al. first developed a miniature uniaxial force sensor 
to do endocardial measurements (Yip et  al., 2010). In the 
research of (Munawar and Fischer, 2016), an elastic spherical 
proxy regions was designed to sense the forces from 
various directions.

Necessity of Force Feedback
To support the multiple cases in the above paragraphs, we also 
investigated the necessity of force feedback in minimally 
invasive surgery, which was proved and explained in (Morimoto 
et  al., 1997) and (Tholey et  al., 2005). The accuracy of the 
force applied seemed to be  improved with the increasing 
force feedback in (Wagner and Howe, 2007) and (Bell et  al., 
2007). The reasons could be  generalized into two points as 
in (Mohareri et  al., 2014). One is sensing the invisible 
property such as the stiffness and the texture. Another one 
is preventing the undesired damage of tissue. Many studies 
investigated the cases of providing force feedback, visual 
feedback, visual force feedback (force feedback in the forms 
of image, sometimes like color bars), and no feedback. 
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A B

FIGURE 1 | (A) An example of tactile wave diagram, where each waveform indicates voltage sensed by a sensing unit. This diagram shows the sensing result of a 
case that a capacitive stylus touched the surface of a 4 × 4 tactile array sensor along a path: 4 → 7 → 10 → 13 (Wang et al., 2016). (B) An example of tactile image 
sequences, where each sequence represent tactile data over time sensed by an tactile array sensor, and each image pixel represents tactile data sensed by a 
sensing unit in a certain time (Cao et al., 2016).

Mahvash et  al. put forward the result that providing force 
feedback generated less error than other cases in the cardiac 
palpation (Mahvash et  al., 2008). A similar result could 
be  found in (Kitagawa et  al., 2005). Mohareri et  al. found 
out that the tightening degree in the knitting situation tended 
to be  less uniform with visual feedback and summed up 
that the visual feedback could compensate part of the force 
feedback but was entirely not enough while applying the 
needles and thread (Mohareri et  al., 2014). Reiley et  al. 
investigated the practicability of the visual force feedback 
and concluded that operators without robotic experience 
could benefit from visual force feedback while practitioners 
do not as much as their counterparts (Reiley et  al., 2008). 
Similar results were also shown in (Gwilliam et  al., 2009) 
and summarized in (Okamura, 2009). However, visual force 
feedback could be the better solution in knot-tightening tasks 
as demonstrated in (Talasaz et  al., 2012) and (Talasaz et  al., 
2017). Later, after (Talasaz et  al., 2012), Talasaz and Patel 
first operated the system with an MIS tactile sensing probe 
remotely and viewed the feedback through a camera display 
(Talasaz and Patel, 2013). Besides, Guo et  al. applied visual 
force feedback in vascular interventional surgery and showed 
great conformity (Guo et  al., 2012).

Based on the aforementioned techniques, many operation 
platforms for minimally invasive surgery have been developed, 
including Robodoc, Probot, Zeus, and the most recent one 
named da Vinci (Marohn and Hanly, 2004; Puangmali et  al., 
2008; Munawar and Fischer, 2016). The da Vinci operation 
system solved several major limitations in recent minimally 
invasive surgeries, including the need for hand motion feedback, 
hand–eye coordination, feeling hands inside the body, expanding 
the DOF, elimination of surgeon tremor, and variable motion 
scaling (Guthar and Salisbury, 2000). Many pieces of research 
were applying based on the da Vinci operation system; however, 
the force feedback has been added to this system only recently. 
The examples could be  found in (Mahvash et  al., 2008) and 
(Reiley et  al., 2008).

Challenges
Force feedback has been very promising for a long while; 
however, it has also faced some unsolved problems. Although 
the force feedback provides better tumor localization performance 
and more precise suture and incision operation with 
straightforward quantitative measures, it can be  somehow time 
consuming since the measurement from one point to another 
is low effective in the algorithm level as shown in (Talasaz 
and Patel, 2013). Apart from this problem, another problem 
from the force feedback method is the attenuation of the force 
signal since the surgical tools are always long and stiff. To 
solve this problem, force amplification is considered as shown 
in (Song et  al., 2009). However, due to the unpredictable 
disturbance of the tissues, the small disturbing force might 
also be  amplified leading to fatal maloperation. To solve this 
problem, several actions in the laparoscopic cholecystectomy 
procedure are described and modeled in spatial coordinates 
in (Pitakwatchara et al., 2006) to amplify the operation reactive 
force but remain the disturbing force. Nevertheless, the research 
remained on the theoretical level without any real model.

Tactile Array Sensor
A tactile array sensor is composed of several single-point tactile 
sensors arranged according to certain rules. It is usually a flat 
cuboid with M  ×  N tactile sensing units, where M and N 
indicate the number of rows and columns of sensing units. 
In the last decades, tactile data sensed by tactile array sensor 
was generally displayed as a wave diagram with M  ×  N 
waveforms, each of which indicates a time-dependent physical 
quantity obtained by a sensing unit. Recently, with the 
development of computer version, the methods for processing 
images have been faster and more accurate, inspired by which 
tactile data are represented as image sequences, where each 
sequence represent tactile data over time sensed by a tactile 
array sensor, and each image pixel represents tactile data sensed 
by a sensing unit in a certain time. Figure 1 shows a comparison 
between a wave diagram and tactile images.
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For example, Trejos et  al. developed a TSI that uses a 
commercially available pressure pad (Trejos et  al., 2009). The 
TSI is shown in Figure  2A. The TSI industrial TactArray on 
this instrument consists of an array with 15 rows and 4 
columns of electrodes, which are oriented orthogonally to each 
other. Each overlapping area created by the row and column 
electrodes forms a distinct capacitor. The results from the 
tactile sensor as shown in Figure  2B converts the measured 
voltage values from the capacitive sensor to pressure 
measurements and displays these results in a color contour 
map of pressure distributions.

Zapata-Impata et  al. used the BioTac SP tactile sensor 
manufactured by Syntouch (Zapata-Impata et  al., 2019). 
Figure 3A shows a representation of the location of the electrodes 
in the sensor. A tactile image can be  created for this 2D array 
in which the 24 electrodes values ei  are spatially distributed 
to occupy the image pixels at certain coordinates i j,( ) . Basically, 
the tactile image consists of a 12  ×  11 matrix in which the 
24 electrodes are distributed as shown in Figure 3B. Figure 3C 
shows the final tactile image; all the gaps (cells without assigned 
values) are then filled using the mean value of the eight-
closest neighbors.

A

B

FIGURE 2 | (A) A tactile sensor array with 4 × 15 sensing elements. (B) a typical contour map of a tumor obtained from the visualization software (Trejos et al., 2009).

A B C

FIGURE 3 | (A) The BioTac sensor with 24 electrodes distributions, (B) distribution of the BioTac SP electrodes in a 12 × 11 tactile image, (C) result of filling the 
gaps in the tactile image with the mean value of the eight-closest neighbors (Zapata-Impata et al., 2019).
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TABLE 1 | Representative tactile sensors and their applications.

Literature Application Sensor type

Eklund et al., 1999
In vitro tissue hardness 
measurement

Catheter type version of 
piezoelectric vibration 
sensor

Baumann et al., 2001
Measuring mechanical 
tissue impedance

Electromechanic 
vibrotactile sensor

Song et al., 2009
Measuring the tension of 
the thread

Single-point FBG force 
sensor

Trejos et al., 2009

Assessing the feasibility 
of using the tactile 
sensing instrument 
under robotic control to 
locate underlying tumors.

Six-DOF force/torque 
sensor array

Hosseini et al., 2010
Detecting abnormal 
masses in the breast

Tactile probe

Afshari et al., 2011
Detecting the location of 
kidney stones

Force sensor and 
displacement sensor

Mohareri et al., 2014

Passing the reactive 
force produced by one 
hand to another hand for 
bimanual robot-assisted 
surgery

Single-point force sensor

Chuang et al., 2015
Detecting submucosal 
tumors

Piezoelectric hardness 
sensor

Kim et al., 2015

Measuring the normal 
force and the tangential 
force from the tip of the 
tools in the incision 
situation

Four-DOF force sensor

Wang et al., 2016
Real-time tactile 
mapping

Triboelectric sensor array

Li et al., 2018
Detecting and locating 
tissue abnormalities

Optical tactile sensor 
array

Wang et  al. reported a self-powered, high-resolution, and 
pressure-sensitive triboelectric sensor matrix (TESM) based on 
single-electrode triboelectric generators that enable real-time 
tactile mapping (Wang et al., 2016). Figure 4A shows a flexible 
16  ×  16 pixelated TESM with a resolution of 5 dpi can map 
single and multipoint tactile stimuli in real time via the 
multichannel data acquisition method while maintaining an 
excellent pressure sensitivity of 0.06  kPa−1 and long-term 
durability. Figure  4B is a schematic of how the sensor matrix 
images the pressure distribution when a mold in the shape 
of a “6” is pressed against the top of the TESM.

Compared with single-point tactile sensors, a tactile array 
sensor can cover a wider area and can capture the tactile 
information of the target from multiple dimensions, so it can 
achieve high spatial resolution of touch. Therefore, it is applied 
to minimally invasive surgery now. For vascular interventional 
surgery, Guo et  al. reported a novel catheter sidewall force 
tactile sensor array, which is based on a developed robotic 
catheter operating system with a master–slave structure (Guo 
et  al., 2013). It can detect the force information between the 
sidewall of the catheter and the blood vessel in detail and 
transmit the detected force information to the surgeon through 
the robot catheter system. Besides, to reduce the postoperative 
pains, Li et al. proposed an original miniature three-dimensional 
force sensor that can detect the interaction forces during tissue 
palpation in minimally invasive surgery (Li et  al., 2015). In 
addition, to detect and locate tissue abnormalities, Li et  al. 
presented a novel and high-sensitivity optical tactile sensor 
array based on fiber Bragg grating (FBG) (Li et  al., 2018). 
Each tactile unit is mainly composed of a spiral elastomer, a 
suspended optical fiber engraved with an FBG element, and 
a contact connected with elastomers with threads. Moreover, 
for tissue palpation, Xie et  al. proposed a new type of optical 
fiber tactile probe, which consists of 3  ×  4 tactile sensors (Xie 
et  al., 2013). In this paper, one single camera is employed to 
capture and detect the light intensity changes of all sensing 
elements and convert to force information. Finally, for tissue 
palpation, Roesthuis et  al. proposed an experimental bench, 
which includes a tendon-driven manipulator. A kind of nitinol 
FBG wire is fabricated, on which 12 FBG sensor arrays are 
integrated and distributed over four different groups. In closed-
loop control, the minimum average tracking error of circular 
trajectory is 0.67  mm (Roesthuis et  al., 2013).

Novel Tactile Sensor and Tactile Feedback
Novel Tactile Sensor
In conventional open surgery, surgeons make ample use of 
their cutaneous senses to differentiate tissue qualities, which 
can hardly be  achieved with force sensors alone, motivating 
some researchers to expend effort on enabling other sensing 
modality in MIS. In the last decades, researchers have made 
an attempt to use other tactile signals to measure properties 
of tissues. Eklund et  al. developed an in vitro tissue hardness 
measurement method using a catheter-type version of piezoelectric 
vibration sensors (Eklund et al., 1999). Eltaib and Hewit proposed 
a tactile sensor by attaching a pressure sensor to the end of 
a sinusoidally driven rod of the tactile probe. The sensor measured 
both vibration and contact force to detect differences between 
soft and hard tissues and assist surgeons in detecting abnormal 
tissues (Eltaib and Hewit, 2000). Baumann et  al. presented a 
method of measuring mechanical tissue impedance by determining 
resonance frequency with an electromechanic vibrotactile sensor 
integrated into an operating instrument (Baumann et al., 2001). 
Chuang et al. reported a miniature piezoelectric hardness sensor 
mounting on an endoscope to detect submucosal tumors (Chuang 
et  al., 2015). Kim et  al. fabricated sensorized surgical forceps 
with five-degree-of-freedom (5-DOF) force/torque (FIT) sensing 
capability (Kim et  al., 2018). A summary of the representative 
tactile sensors and their applications is presented in Table  1.

A B

FIGURE 4 | (A) Photograph of a fabricated 16 × 16 TESM with good flexibility. 
(B) Demonstration of the mapping output voltage of the sensor matrix under 
the pressure of a module in the shape of a “6” (Wang et al., 2016).
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Tactile Feedback
Some novel tactile display systems were developed to provide 
feedback for surgeons based on various tactile information. 
Schostek et  al. proposed a tactile sensor, integrated into a 
laparoscopic grasper jaw, to obtain information about shape and 
consistency of tissue structures (Schostek et al., 2006). The tactile 
data were wirelessly transferred via Bluetooth and graphically 
displayed to the surgeon. However, tissue exploration time was 
longer compared to a conventional grasper. Prasad et al. presented 
an audio display system to relay force information to the surgeon, 
but continual noise in an operating room setting remained a 
problem (Prasad et  al., 2003). Fischer et  al. developed a system 
that displayed oxygenation values to surgeons. They simultaneously 
used force sensors and oxygenation sensors to measure tissue 
interaction forces and tissue oxygenation next to translational 
forces, when tissue oxygenation decreases below a certain value, 
trauma will occur (Fischer et al., 2006). Pacchierotti et al. reported 
a cutaneous feedback solution on an da Vinci surgical robot. 
They proposed a model-free algorithm based on look-up tables 
to map the contact deformations, dc pressure, and vibrations to 
input commands for the cutaneous device’s motors. A custom 
cutaneous display was attached to the master controller to reproduce 
the tactile sensations by continually moving, tilting, and vibrating 
a flat plate at the operator’s fingertip (Pacchierotti et  al., 2016).

TACTILE PERCEPTION ALGORITHMS IN 
MIS

Recent researches on tactile perception algorithms are focused 
on the tactile array sensor. With the tactile array sensor, we can 
collect an M  ×  N tactile image, where each tactile element is 
treated as an image pixel. From tactile images that tactile 
sensor arrays acquired, features are extracted, such as statistical 
features, vision feature descriptors, PCA-based features, and 
self-organizing features. These features are usually processed 
by AI methods like clustering, SVM, and deep neural networks 
to obtain tactile information. After training the algorithm, 
we  can use it to assist doctors in minimally invasive surgery. 
There are a lot of scenarios where the algorithm can be  used. 
We  summarized related cases into wall following, shape 
recognition, stable scraping, and hardness detection.

Wall Following
To perform wall following, Fagogenis et  al. designed an image 
classifier, which is based on machine learning and can distinguish 
between blood (no contact) or ventricular wall tissue and the 
bioprosthetic aortic valve (Fagogenis et al., 2019). The algorithm 
used the bag-of-words method to group tactile images, which 
is based on the number of occurrences of specific features of 
interest. During training, the algorithm can select features that 
were of interest and the relationship between their number and 
the tactile image class. For training, they used OpenCV to detect 
features in a set of training images based on manually labeled. 
Then, the detected features are mathematically encoded with 
LUCID descriptors to achieve efficient online computation.  

In order to reduce the number of features, they used clustering 
(k-mean) to identify the optimal feature representatives. The 
resulting cluster centers were the representative features used 
for the rest of the training and for runtime image classification. 
After determining the representative feature set, they traversed 
the training data for the second time and constructed the feature 
histogram for each image by calculating the number of times 
each representative feature appeared in the image. The last step 
was to train an SVM classifier, which learned the relationship 
between the feature histogram and the corresponding classes. 
Using the trained algorithm, we  first detected the features and 
calculated the corresponding LUCID descriptors and then classified 
the images. Then, these features were matched to the nearest 
representative features, and the resulting feature histogram was 
constructed. Based on the histogram, the SVM classifier is used 
to predict the tissue-based contact state. They used a small 
group of training tactile images (~2,000 images) with training 
taking just a few minutes (~4  min) and achieved good results. 
Because image classification took 1 ms, our haptic vision system 
estimated contact state based on the camera’s frame rate (~45 
frames/s). The accuracy of contact classification algorithm is 
97% (tested on 7,000 images not used for training) with type 
I error (false positive) of 3.7% and type II (false negative) of 2.3%.

Shape Recognition
To recognize the shape of an object, Liu et  al. proposed a 
new algorithm to identify the shape of an object by tactile 
pressure images, which can distinguish the contact shapes 
between a group of low-resolution pressure maps (Liu et  al., 
2012). The algorithm can be  divided into four steps. The first 
step of the algorithm is “Data extraction.” Data extraction 
normalizes the strongly correlated tactile images sequence into 
a single map to save computational cost and reduce the 
disturbances from signal noise. The second step is “Preprocessing.” 
It consists of several subalgorithms to prepare the information 
for its latter “Feature extraction.” Preprocessing is essential not 
only to prepare the information for further steps but also to 
enhance the interests of tactile images. The third step is “Feature 
extraction.” In this step, the tactile image is transformed into 
a 512-feature vector, and the extracted features are used to 
train the developed neural network for object shape recognition. 
These features are not affected by occlusion, position, or scale, 
as well as image size, resolution, and number of frames. All 
these characteristics make the algorithm robust and effective. 
Finally, a three-layer neural network is developed to train, 
validate, and test the efficiency and success rate of the algorithm. 
It is trained to use the features extracted at the previous stage 
as a classifier. Figure  5 shows a diagram of the three-layer 
neural network for object classification. Through the experimental 
study, it was found that using four different contact shapes 
to test, the average classification accuracy reached 91.07%. The 
shape recognition algorithm based on the feature extraction 
has strong robustness and effectiveness in distinguishing different 
target shapes. It can be  directly applied to minimally invasive 
surgery to identify the shape of the contact site and determine 
whether the tissue is abnormal, which is convenient for doctors 
to detect abnormal tissues with abnormal shapes in time.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Huang et al. Tactile Perception in MIS

Frontiers in Physiology | www.frontiersin.org 8 December 2020 | Volume 11 | Article 611596

FIGURE 6 | Architecture of the ConvLSTM network tested in the experimentation (Zapata-Impata et al., 2019).

Stable Scraping
To judge the stability of the grip, Zapata-Impata et  al. proposed 
a spatiotemporal tactile features learning method based on 
convolutional long short-term memory (ConvLSTM) (Zapata-
Impata et al., 2019). This method preprocessed the tactile readings 
and fed to a ConvLSTM that learns to detect multiple types of 
slip directions with just 50  ms of data. The architecture of the 
ConvLSTM network is shown in Figure  6. For preprocessing 
data, this method used a sensor with 24-electrode distributions 
to obtain tactile images. In more detail, the sensor uses these 
electrodes to record signals from four emitters and measure the 
impedance in the fluid between them and the elastic skin of 
the sensor. The fluid moves while contact is experienced by 
these sensors, thus affecting the measurements made by the 
electrodes. The whole method used four object sets, containing 
a total of 11 different objects, and was used to capture a new 
tactile dataset, recording seven different types of slip directions: 
north, slip south, slip east, slip west, slip clockwise, slip anticlockwise, 

or touch. Basically, the method created the ConvLSTM learns 
spatial features from pictures while simultaneously learning temporal 
ones. In the process of creating ConvLSTM, this method studied 
how the performance of the ConvLSTM changes depending on 
several parameters: the number of ConvLSTM layers, the size 
of the convolutional filters, and the number of filters inside each 
ConvLSTM layer. Finally, according to the experimental results, 
the network structures of five ConvLSTM layers, 3  ×  3 filters, 
and ConvLSTM layers with 32 filters are selected to focus more 
attention on the low-level details in the tactile image and get 
better accuracy. For feature learning in time series, this method 
only needs three to five continuous tactile images, and the network 
can accurately learn to detect the sliding direction. In the task 
of detecting these seven states on seen objects, the system achieved 
an accuracy rate of 99%. Even if the ConvLSTM network was 
sensitive to new objects, during the robustness experiments, its 
performance dropped to an accuracy rate of 82.56% in the case 
of new objects with familiar properties (solids set) and an accuracy 
rate of 73.54 and 70.94% for stranger sets like the textures and 
small sets. The spatiotemporal tactile features learning method 
can be directly applied to minimally invasive surgery to improve 
the stability of tissue detect/mass grasp. However, at present, the 
single-point sensor is used to judge the grasping stability, and 
the judgment of the slip direction is only based on the single-
point tactile characteristics. If the array tactile map is used, the 
regional feature information can be  considered in the process 
of judgment to improve the stability of grasping. Therefore, it 
is very promising to apply this algorithm to minimally 
invasive surgery.

Hardness Detection
To detect hardness, Yuan et al. designed a deep learning method 
that can estimate shape-independent hardness (Yuan et al., 2017). 
The algorithm, the convolutional neural network (CNN) feature 
layer of VGG network, is used to extract the physical signs of 
the tactile image, and a feature sequence is generated and input 
to LSTM to evaluate the softness and hardness of the sample. 
The algorithm can estimate the hardness of objects with different 
shapes and hardness ranging from 8 to 87  in Shore 00 scale. FIGURE 5 | The three-layer neural network for object classification (Liu et al., 2012).
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In minimally invasive surgery, tissue hardness detection is very 
important. Tumor detection is a very good example: some solid 
tumors are harder than the surrounding tissue, and their existence 
can also be  obtained through tactile feedback to determine the 
location of resection and increase the success rate of surgery. 
Xie et  al. proposed a method based on pixel calculation to 
measure the normal force and its distribution in the sensor 
area, to judge the hardness range of the area and determine 
the abnormal structure (Xie et al., 2013). As shown in Figure 7, 
in this method, the tactile image data of different brightness 
under different forces are captured by an optical fiber tactile 
sensor containing 3 ´  4 sensing elements, and the tactile image 
is divided into 12 different regions in turn. By calculating the 
pixel values of each sensing region, and according to the 
predetermined linear relationship, the magnitude of the force 
applied in the region is obtained. The sensor outputs responses 
after palpation in two different areas; Figure  7C shows areas 
including the nodule, while Figure  7D shows areas that do 
not. From the result, outputs of each sensing element in the 
nodule-free area vary mostly in the range of 0–0.4  N. while 
in the nodule-embedded area, outputs of the sensing elements 
in contact with the nodule exceed the value of 0.8  N. The 
location of the nodules can be  seen more clearly by subtracting 
Figure 7C of Figure 7D from Figure 7E. This method determines 
the tissue lump according to the pressure distribution map; 
although it is effective in some ways, the method based on 
linear fitting has a risk of producing large errors, and the 

definition range of hardness is single. If the image processing 
algorithm is used, the above two defects can be  improved. 
Therefore, in the tissue hardness detection method, the method 
based on array tactile image processing is worth studying.

TACTILE PERCEPTION APPLICATIONS 
IN MIS

In the minimally invasive surgery, given the very small holes 
for the tools to operate, the capacity to feel tends to be  limited 
as discussed in (Eltaib and Hewit, 2003). In line with that, 
Dargahi and Najarian summarized four categories of properties 
that were usually considered to be  important in minimally 
invasive surgery including the force, position and size, hardness/
softness, and roughness and texture (Dargahi and Najarian, 
2004). However, with the help of tactile perception, the general 
performance is liable to be  improved. To show the feasibility 
of the assistance provided by the tactile perception in the 
minimally invasive surgery, we  will discuss the assistance 
provided by tactile perception catering for each property, 
respectively, after which the general discussion will be  given.

Obtaining Tactile Properties of Tissues
Measuring the acting and reactive force from tissues could 
be  applied in many cases such as controlling the surgical knife 
on the liver tissue (Chanthasopeephan et  al., 2003), measuring 

A

C D E

B

FIGURE 7 | (A) Schematic design of proposed tactile sensor using camera, (B) measured output responses of sensing element 1 to the normal force applied, 
(C) test results on nodule area, (D) test results on nodule-free area, and (E) effective stiffness distribution map by compare test result on two areas (Xie et al., 2013).
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the tension of the thread while knotting (Song et  al., 2009), 
modeling needle insertion force (Fazal and Karsiti, 2009), and 
differentiating between tissue samples in the scissoring process 
(Callaghan and McGrath, 2007). The doctors usually rely on 
the magnitude of force feedback to estimate when to stop every 
single shearing or insertion operation. For example, He  et al. 
designed a 3-DOF force sensing pick instrument applied in the 
retinal microsurgery with fiber optic sensors placed at the distal 
tip of the surgical instrument. To realize multiple degrees of 
freedom, a linear model and second-order Bernstein polynomial 
were used to distinct forces in different directions (He et  al., 
2014). Besides, many previous studies like (Mohareri et al., 2014) 
show that, with the force-feedback data, doctors tend to make 
each separate operation more uniform, such as knots with similar 
thread tension. Nevertheless, the sensing directions and the 
accuracy are still of the top concern when researchers strive 
to improve the overall performance of the assistance of force.

The assistance in position and size is usually for tumor 
localization (Hosseini et al., 2006; Perri et al., 2010). For example, 
Liu et al. measured the indentation depth to detect the abnormal 
part of the tissue (Liu et  al., 2010). Lederman et  al. used rigid 
fingertip sheaths to locate the 3D mass (Lederman and Klatzky, 
1999). Afshari et al. utilized the stress distribution to determine 
the stone inside the kidney (Afshari et  al., 2010). Most of the 
time, the position and size of mass are reflected by the surging 
magnitude of rigidity sensed from the tools during palpation 
or the image constructed by an array of force sensors. In (Xie 
et  al., 2013), a 3  ×  4 sensing array was designed to detect 
the force distribution, and the doctors could be  provided with 
the visualized data on which area tended to be  stiffer. In the 
evaluation test on a lamb kidney with nodules embedded, the 
design presented a very effective performance. The doctors are 
more likely to rely on their experience to estimate the position 
and size based on the force feedback. Figure  8 shows an 
example of the mass localization utilizing an array of force sensors.

When calculating the hardness/softness, the sensors are usually 
placed on endoscopic graspers (Najarian et  al., 2006). In many 
cases, tissue hardness could also be  utilized to locate the mass 
in palpation. For instance, Ju et  al. relied on the sensors on 
the catheter robot to locate the mass (Ju et  al., 2018, 2019). 
Moreover, Kalantari et al. measured the relative hardness/softness 
of the tissue to sense various types of cardiac tissues while 
performing mitral valve annuloplasty (Kalantari et  al., 2011). 
In (Yip et  al., 2010), a creative uniaxial force sensor based on 
fiber optic transduction was developed, which could detect very 
small forces but show few root mean square (RMS) errors. In 
the designing process, properties of waterproof, electrical passivity, 
and material constraints were especially considered so that the 
instrument could perfectly meet the requirement of operating 
in the cardiac environment. However, there is no certain threshold 
to determine hard or soft by machine, which means the subjective 
judgment from doctors is indispensable.

Roughness and texture are the fourth groups of properties 
that can assist doctors in MIS. To measure roughness and 
texture, the sensors are usually placed on endoscopic graspers 
(Bonakdar and Narayanan, 2010), like laparoscopic graspers 
(Dargahi and Payandeh, 1998; Dargahi, 2002; Zemiti et al., 2006; 

Lee et  al., 2016), which could be  applied to cholecystectomy 
(Richards et al., 2000) and Nissen fundoplication (Rosen et al., 
2001), and could also measure viscoelastic properties of tissues 
(Narayanan et  al., 2006). In (Bicchi et  al., 1996), tissue elastic 
properties were measured. For instance, in (Dargahi, 2002), a 
polyvinylidene fluoride tactile sensor was designed to measure 
the compliance and roughness of tissues. The principle was 
to measure the relative deformation when the tissue contacted 
with the sensor surface. However, it is never the best choice 
to detect all the tissue surface points by point, which indicates 
the large time consumed. For wiser utilization, subjective 
judgment by humans should also be  taken into account.

AI-Based Tactile Perception Applications 
in MIS
In line with the aforementioned cases, some researchers have 
devoted to the intelligent algorithms that can diminish the 
participation of subjectivity. Many of them have been described 
in Tactile Perception Algorithms in MIS. In this subsection, 
we will introduce more AI-based tactile perception technologies 
that were proven to be  effective in MIS. Beasley and Howe 
used the pulsatile pressure variation from force sensors to 
find the artery through a signal processing algorithm and 
applied an adaptive extrapolation algorithm to generate the 
ultimate position prediction. The rough idea of adaptive 
extrapolation was applying 15 sensing samples and linear 
regression to fit the predicted arteries. It has been tested on 
the ZEUS Surgical Robot System and resulted in a  <  2-nm 
mean error (Beasley and Howe, 2002).

Sadeghi-Goughari et al. introduced a new minimally invasive 
diagnosis technique named intraoperative thermal imaging (ITT) 
based on artificial tactile sensing (ATS) technology and artificial 
neural networks (ANNs) (Sadeghi-Goughari et  al., 2016). In 
this study, a forward analysis and an inverse analysis based 
on ANN were proposed to estimate features including temperature 
and depth of a tumor using a brain thermogram. The brain 
thermogram is shown in Figure  9A. This work involved the 
forward analysis of heat conduction in cancerous brain tissue 
by employing a finite element method (FEM). Then, a 

A B

FIGURE 8 | (A) A kidney with invisible nodule buried in area B. (B) The 
sensing result by palpating on three areas. Various color blocks indicating 
different force values (Xie et al., 2013).
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three-layer feed-forward neural network (FFNN) with back 
propagation learning algorithm was developed to estimate related 
features of a tumor. Parameters of the proposed FFNN are 
shown in Figure 9B. The inputs of FFNN are thermal parameters 
extracted from tissue surface temperature profiles. Training of 
the ANN was performed by a backpropagation algorithm. By 
comparing estimated values of tumor features and expected 
values, potential brain tissue abnormalities were detected, which 
greatly facilitate the task of the neurosurgeon during MIS.

Zhao et  al. proposed a tracking-by-detection framework of 
surgical instruments in MIS (Zhao et  al., 2017). As shown in 
Figure  10A, the operation of conventional MIS instruments 
can be  subdivided into shaft portions and end effector. In the 
proposed method, the shaft portion was described by line 
features through the random sample consensus (RANSAC) 
scheme, and the end effector was depicted by some special 
image features based on deep learning through a well-trained 
CNN. With camera parameters and insertion points, a tracking 
method was proposed to estimate the 3D position and orientation 
of the instruments. As shown in Figure  10B, the scanning 
range was restricted to a sector area with the symmetry axis 
L i−( )1 , where I  is the image and s  is an arbitrary scale. 

For the current frame i , the bounding box p s,( )  slid along 
the symmetry axis L i( )  obtained by shaft detection. The 
parameter p  is the center of the bounding box. The image 
in the bounding box at every sliding step with scale s  was 
resized to 101 × 101 and then used as an input for the trained 
CNN. The highest score of the CNN positive output corresponds 
to the bounding box 

p si i,( ) , where pi  is treated as the imaged 

tip position direction of the current frame i . Figure  10C 
shows the selected frames from the tracking procedure of the 
proposed method. However, compared with those in the ex 
vivo test, the 2D measurement error in the in vivo test was 
at least 2.5 pixels. When the respective 2D tracking by the 
proposed method was applied to each frame with the CNN-based 
detection of instruments, the insufficient illumination of the 
image part (end effector) accounted for drifted tracking results 
in some frames (see Figure  10D), which is the main reason 
why the in vivo test has higher 2D measurement errors. This 
issue can be  resolved by adding samples of in vivo sequences 
into the training database.

Lee and Won presented a novel method to estimate the stiffness 
and geometric information of a tissue inclusion (Lee and Won, 
2013). The estimation was performed based on the tactile data 
obtained on the tissue surface. To obtain the tactile data, the 
author developed an optical tactile sensation imaging system (TSIS). 
The TSIS obtained tactile images with maximum pixel values, 
total pixel values, and deformation areas. These parameters were 
used to estimate the size, depth, and elasticity of the embedded 
lesions. The proposed method consisted of a forward algorithm 
and an inversion algorithm. The forward algorithm was designed 
to predict maximum deformation, total deformation, and deformation 
areas based on the parameters including size, depth, and modulus 
of the tissue inclusion. In the inversion algorithm, tactile parameters 
obtained from the TSIS and simulated values from the forward 
algorithm were used to estimate the size, depth, and modulus of 
the embedded lesion. Figure  11A describes a cross-section of an 
idealized breast mode. Figure  11B shows the sensing probe of 
TSIS modeled on top of the breast tissue. When the TSIS compressed 
against the tissue surface containing a stiff tissue inclusion, it 
produced different parameters: size d , depth h , and Young’s 
modulus E . The FEM in the forward algorithm quantified 
deformation as the maximum deformation OFEM1  (the largest 
vertical displacement of FEM elements of sensing probe from the 
nondeformed position), the total deformation OFEM2  (displacement 
summation of FEM elements of sensing probe from the nondeformed 
position), and the deformation area OFEM3  (the projected area of 
the deformed surface of the sensing probe), as shown in Figure 11C. 
The tactile data are necessary to relate FEM tactile data 
O O OFEM FEM FEM, ,
1 2 3( )  and TSIS tactile data O O OTSIS TSIS TSIS, ,

1 2 3( ).  
The definitions of TSIS tactile data are as follows: The maximum 
pixel value OTSIS1  is defined as the pixel value in the centroid 

of the tactile data. The total pixel value OTSIS2  is defined as the 
summation of pixel values in the tactile data. The deformation 
area of pixel OTSIS3  is defined as the number of pixels greater 

than the specific threshold value in the tactile data. The inversion 
algorithm was used to estimate 

d h E
  

, ,










 using the determined 

O O OTSIS TSIS TSIS, ,
1 2 3( ) . In this method, the multilayered ANN was 

considered as an inversion algorithm, as shown in Figure  11D.

A

B

FIGURE 9 | (A) Examples of the brain thermogram. (B) Parameters of artificial neural network (ANN; Sadeghi-Goughari et al., 2016).
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A B

C D

FIGURE 11 | (A) A cross-section of an idealized breast model for estimating inclusion parameters. The tissue inclusion has three parameters: size d, depth h, and 
Young’s modulus E. (B) Finite element method (FEM) model of an idealized breast tissue model. The sensing probe of tactile sensation imaging system (TSIS) is 
modeled on top of the breast tissue model. (C) The forward algorithm. (D) The inversion algorithm (Lee and Won, 2013).

A

D

C

B

FIGURE 10 | (A) The operation part of minimally invasive surgery (MIS) instrument: end effector and shaft portion; (B) line scanner application for detection of shaft 
edge lines and shaft image direction estimation; (C) selected frames of the instrument tracking and detection: the red circles are the tracked end-effector tip position, 
and the green dashed line is the shaft symmetry axis; (D) example frames of in vivo sequences with the end-effector positions shown by squares (Zhao et al., 2017).
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Despite these methods, algorithms design of tactile 
perception in the minimally invasive surgery is still a new 
subject, with related little research, although we  hold the 
opinion that this field could be  considerably promising due 
to the application need.

CONCLUSION

Minimally invasive surgery has been the preferred surgery 
approach owing to its advantages over conventional open 
surgery. Tactile information has been proven effective to 
improve surgeons’ performance, while most reviews for MIS 
were only focusing on force sensors and force feedback, 
neglecting other tactile information. In this paper, we reported 
tactile sensors, tactile perception algorithms, and tactile 
perception applications for MIS. These include a description 
of various tactile sensors and feedbacks not limited to force 
sensors and force feedback, the state-of-the-art and novel 
machine learning algorithms in tactile images for tactile 
perception in MIS, and potential tactile perception applications 
for MIS, especially for detecting tissue properties. Finally, 
this review contains some of the limitations and challenges 
of each technical aspect.

An emerging research and development trend in the literature 
is the fusion of various tactile information. Utilizing force 
information alone has met challenges, including low effectiveness 
in the algorithm level, the attenuation of the force signal, and 
amplified disturbing force. Therefore, some studies aimed to 
develop hybrid sensors employing more than merely one sensing 
principle to measure one or multiple physical stimuli (e.g., 
force, slippage, stiffness, etc.) to obtain more robust measurements 
of physical stimuli and cover wider working environments. 

With the development of tactile sensors of various sensing 
modalities, some novel tactile feedback systems were reported 
(e.g., graphical display system, audio display system, etc.). Some 
researchers attempted to obtain more tactile information at 
the algorithm level. Inspired by computer vision technologies, 
some researchers reported machine learning algorithms for 
obtaining more than merely one kind of tactile information 
from tactile images, where a tactile element is treated as an 
image pixel. Tactile perception algorithms design in MIS is 
still a new subject, with related little research; while considering 
the high accuracy, high robustness, and excellent real-time 
performance of machine learning algorithms, we  hold the 
opinion that this field could be  considerably promising due 
to the application need.

AUTHOR CONTRIBUTIONS

All authors researched the literature, drafted, and wrote the 
review article, and approved the submitted version.

FUNDING

This review was supported by grants from the Science and 
Technology Bureau of Ningbo National High-Tech Zone (Program 
for Development and Industrialization of Intelligent Assistant 
Robot), the Industrial Internet Innovation and Development 
Project in 2018 (Program for Industrial Internet platform 
Testbed for Network Collaborative Manufacturing), and the 
Industrial Internet Innovation and Development Project in 2020 
(Program for Industrial Internet Platform Application Innovation 
Promotion Center).

 

REFERENCES

Abushagur, A. A. G., Arsad, N., Reaz, M. I., and Bakar, A. A. A. (2014). 
Advances in bio-tactile sensors for minimally invasive surgery using the 
fibre bragg grating force sensor technique: a survey. Sensors 14, 6633–6665. 
doi: 10.3390/s140406633

Afshari, E., Najarian, S., and Simforoosh, N. (2010). Application of artificial 
tactile sensing approach in kidney-stone-removal laparoscopy. Biomed. Mater. 
Eng. 20, 261–267. doi: 10.3233/BME-2010-0640

Afshari, E., Najarian, S., Simforoosh, N., and Farkoush, S. H. (2011). Design 
and fabrication of a novel tactile sensory system applicable in artificial 
palpation. Minim. Invasive Ther. Allied Technol. 20, 22–29. doi: 10.3109/ 
13645706.2010.518739

Ahmadi, R., Packirisamy, M., Dargahi, J., and Cecere, R. (2012). Discretely 
loaded beam-type optical fiber tactile sensor for tissue manipulation and 
palpation in minimally invasive robotic surgery. IEEE Sens. J. 12, 22–32. 
doi: 10.1109/jsen.2011.2113394

Al-Handarish, Y., Omisore, O. M., Igbe, T., Han, S., Li, H., Du, W., et al. 
(2020). A survey of tactile-sensing systems and their applications in biomedical 
engineering. Adv. Mater. Sci. Eng. 2020, 1–17. doi: 10.1155/2020/4047937

Bandari, N., Dargahi, J., and Packirisamy, M. (2020). Tactile sensors for minimally 
invasive surgery: a review of the state-of-the-art, applications, and perspectives. 
IEEE Access 8, 7682–7708. doi: 10.1109/access.2019.2962636

Baumann, I., Plinkert, P. K., Kunert, W., and Buess, G. F. (2001). Vibrotactile 
characteristics of different tissues in endoscopic otolaryngologic surgery ‐ 
in  vivo and ex  vivo measurements. Minim. Invasive Ther. Allied Technol. 
10, 323–327. doi: 10.1080/136457001753337627

Beasley, R. A., and Howe, R. D. (2002). “Tactile tracking of arteries in robotic 
surgery” in 2002 IEEE International Conference on Robotics and Automation, 
Vols I-Iv, Proceedings; May 11-15, 2002. 

Bell, A. K., and Cao, C. G. L. (2007). “Effects of artificial force feedback 
in laparoscopic surgery training simulators” in 2007 Ieee International 
Conference on Systems, Man and Cybernetics, Vols 1–8; October 07-10, 
2007; 564–568.

Berkelman, P. J., Whitcomb, L. L., Taylor, R. H., and Jensen, P. (2003). A 
miniature microsurgical instrument tip force sensor for enhanced force 
feedback during robot-assisted manipulation. IEEE Trans. Robot. Autom. 19, 
917–922. doi: 10.1109/tra.2003.817526

Bicchi, A., Canepa, G., de rossi, D., Iacconi, P., and Scilingo, E. P. (1996). 
“A sensor-based minimally invasive surgery tool for detecting tissue 
elastic properties” in Proceedings of IEEE International Conference on 
Robotics and Automation; April 22-28, 1996; Minneapolis, MN, USA, 
USA: IEEE.

Bonakdar, A., and Narayanan, N. (2010). Determination of tissue properties 
using microfabricated piezoelectric tactile sensor during minimally invasive 
surgery. Sens. Rev. 30, 233–241. doi: 10.1108/02602281011051425

Callaghan, D. J., and McGrath, M. M. (2007). “A Force measurement evaluation 
tool for telerobotic cutting applications: development of an effective 
characterization platform,” in Proceedings of World Academy of Science, 
Engineering and Technology, Vol 25, ed. C. Ardil, 274–280.

Cao, L., Kotagiri, R., Sun, F., Li, H., Huang, W., Aye, Z. M. M., et al. (2016). 
“Efficient spatio-temporal tactile object recognition with randomized tiling 
convolutional networks in a hierarchical fusion strategy” in Thirtieth Aaai 
Conference on Artificial Intelligence; Febraury 12-17, 2016; 3337–3345.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.3390/s140406633
https://doi.org/10.3233/BME-2010-0640
https://doi.org/10.3109/13645706.2010.518739
https://doi.org/10.3109/13645706.2010.518739
https://doi.org/10.1109/jsen.2011.2113394
https://doi.org/10.1155/2020/4047937
https://doi.org/10.1109/access.2019.2962636
https://doi.org/10.1080/136457001753337627
https://doi.org/10.1109/tra.2003.817526
https://doi.org/10.1108/02602281011051425


Huang et al. Tactile Perception in MIS

Frontiers in Physiology | www.frontiersin.org 14 December 2020 | Volume 11 | Article 611596

Chanthasopeephan, T., Desai, J. P., and Lau, A. C. W. (2003). Measuring forces 
in liver cutting: new equipment and experimental results. Ann. Biomed. 
Eng. 31, 1372–1382. doi: 10.1114/1.1624601

Chuang, C. H., Li, T. H., Chou, I. C., and Teng, Y. J. (2015). “Piezoelectric tactile 
sensor for submucosal tumor hardness detection in endoscopy” in 2015 Transducers 
−2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems; 
June 21-25, 2015.

Dargahi, J. (2002). An endoscopic and robotic tooth-like compliance and 
roughness tactile sensor. J. Mech. Des. 124, 576–582. doi: 10.1115/1.1471531

Dargahi, J., and Najarian, S. (2004). Human tactile perception as a standard 
for artificial tactile sensing—a review. Int. J. Med. Robot. 1, 23–35. doi: 
10.1002/rcs.3

Dargahi, J., and Payandeh, S. (1998). “Surface texture measurement by combining 
signals from two sensing elements of a piezoelectric tactile sensor” in Sensor 
fusion: Architectures, algorithms, and applications ii. ed. B. V. Dasarathy  
(Orlando, FL, USA). 122–128.

Eklund, A., Bergh, A., and Lindahl, O. A. (1999). A catheter tactile sensor 
for measuring hardness of soft tissue: measurement in a silicone model 
and in an in  vitro human prostate model. Med. Biol. Eng. Comput. 37, 
618–624. doi: 10.1007/bf02513357

Eltaib, M., and Hewit, J. R. (2000). A tactile sensor for minimal access surgery 
applications. IFAC Proc. Vol. 33, 505–508. doi: 10.1016/S1474-6670(17)39194-2

Eltaib, M. E. H., and Hewit, J. R. (2003). Tactile sensing technology for minimal 
access surgery ‐ a review. Mechatronics 13, 1163–1177. doi: 10.1016/
S0957-4158(03)00048-5

Fagogenis, G., Mencattelli, M., Machaidze, Z., Rosa, B., Price, K., Wu, F., et al. 
(2019). Autonomous robotic intracardiac catheter navigation using haptic 
vision. Sci. Robot. 4:eaaw1977. doi: 10.1126/scirobotics.aaw1977

Fazal, I., and Karsiti, M. N. (2009). “Needle insertion simulation forces v/s 
experimental forces for haptic feedback device” in 2009 IEEE Student 
Conference on Research and Development: Scored 2009, Proceedings; November 
16-18, 2009.

Fischer, G. S., Akinbiyi, T., Saha, S., Zand, J., Talamini, M., Marohn, M., et al. 
(2006). “Ischemia and force sensing surgical instruments for augmenting 
available surgeon information” in 2006 1st IEEE Ras-Embs International 
Conference on Biomedical Robotics and Biomechatronics, Vols 1–3; Febraury 
20-22, 2006; 989.

Guo, J., Guo, S., Wang, P., Wei, W., and Wang, Y. (2013). “A Novel type of 
catheter sidewall tactile sensor array for vascular interventional surgery” in 
2013 Icme International Conference on Complex Medical Engineering; May 
25-28, 2013.

Guo, J., Guo, S., Xiao, N., Ma, X., Yoshida, S., Tamiya, T., et al. (2012). A 
novel robotic catheter system with force and visual feedback for vascular 
interventional surgery. Int. J. Mech. Autom. 2, 15–24. doi: 10.1504/
IJMA.2012.046583

Guthar, G. S., and Salisbury, J. K. (2000). “The IntuitiveTM telesurgery system: 
overview and application” in Proceedings-IEEE International Conference on 
Robotics and Automation 1; April 24-28, 2000; 618–621.

Gwilliam, J. C., Mahvash, M., Vagvolgyi, B., Vacharat, A., Yuh, D. D., 
Okamura, A. M., et al. (2009). “Effects of haptic and graphical force feedback 
on teleoperated palpation” in Icra: 2009 IEEE International Conference on 
Robotics and Automation, Vols 1–7; May 12-17, 2009; 3315.

He, X., Handa, J., Gehlbach, P., Taylor, R., and Iordachita, I. (2014). A 
Submillimetric 3-DOF force sensing instrument with integrated fiber Bragg 
grating for retinal microsurgery. IEEE Trans. Biomed. Eng. 61, 522–534. doi: 
10.1109/tbme.2013.2283501

Hosseini, S. M., Kashani, S. M. T., Najarian, S., Panahi, F., Naeini, S. M. M., 
and Mojra, A. (2010). A medical tactile sensing instrument for detecting 
embedded objects, with specific application for breast examination. Int. J. 
Med. Robot. 6, 73–82. doi: 10.1002/rcs.291

Hosseini, M., Najarian, S., Motaghinasab, S., and Dargahi, J. (2006). Detection 
of tumours using a computational tactile sensing approach. Int. J. Med. 
Robot. 2, 333–340. doi: 10.1002/rcs.112

Ju, F., Wang, Y., Zhang, Z., Wang, Y., Yun, Y., Guo, H., et al. (2019). A 
miniature piezoelectric spiral tactile sensor for tissue hardness palpation 
with catheter robot in minimally invasive surgery. Smart Mater. Struct. 
28:025033. doi: 10.1088/1361-665X/aafc8d

Ju, F., Yun, Y., Zhang, Z., Wang, Y., Wang, Y., Zhang, L., et al. (2018). A 
variable-impedance piezoelectric tactile sensor with tunable sensing 

performance for tissue hardness sensing in robotic tumor palpation. Smart 
Mater. Struct. 27:115039. doi: 10.1088/1361-665X/aae54f

Kalantari, M., Ramezanifard, M., Ahmadi, R., Dargahi, J., and Koevecses, J. 
(2011). A piezoresistive tactile sensor for tissue characterization during 
catheter-based cardiac surgery. Int. J. Med. Robot. 7, 431–440. doi: 10.1002/
rcs.413

Kim, U., Kim, Y. B., So, J., Seok, D. -Y., and Choi, H. R. (2018). Sensorized 
surgical forceps for robotic-assisted minimally invasive surgery. IEEE Trans. 
Ind. Electron. 65, 9604–9613. doi: 10.1109/tie.2018.2821626

Kim, U., Lee, D. -H., Yoon, W. J., Hannaford, B., and Choi, H. R. (2015). 
Force sensor integrated surgical forceps for minimally invasive robotic surgery. 
IEEE Trans. Robot. 31, 1214–1224. doi: 10.1109/tro.2015.2473515

Kitagawa, M., Dokko, D., Okamura, A. M., and Yuh, D. D. (2005). Effect 
of sensory substitution on suture-manipulation forces for robotic surgical 
systems. J. Thorac. Cardiovasc. Surg. 129, 151–158. doi: 10.1016/j.jtcvs. 
2004.05.029

Konstantinova, J., Jiang, A., Althoefer, K., Dasgupta, P., and Nanayakkara, T. 
(2014). Implementation of tactile sensing for palpation in robot-assisted 
minimally invasive surgery: a review. IEEE Sens. J. 14, 2490–2501. doi: 
10.1109/jsen.2014.2325794

Lederman, S. J., and Klatzky, R. L. (1999). Sensing and displaying spatially 
distributed fingertip forces in haptic interfaces for teleoperator and virtual 
environment systems. Presence Teleoperat. Virt. Environ. 8, 86–103. doi: 
10.1162/105474699566062

Lee, D. -H., Kim, U., Gulrez, T., Yoon, W. J., Hannaford, B., and Choi, H. R. 
(2016). A laparoscopic grasping tool with force sensing capability. IEEE-
Asme Trans. Mech. 21, 130–141. doi: 10.1109/tmech.2015.2442591

Lee, J. -H., and Won, C. -H. (2013). The tactile sensation imaging system for 
embedded lesion characterization. IEEE J. Biomed. Health Inform. 17, 452–458. 
doi: 10.1109/jbhi.2013.2245142

Li, K., Pan, B., Zhan, J., Gao, W., Fu, Y., and Wang, S. (2015). Design and 
performance evaluation of a 3-axis force sensor for MIS palpation. Sens. 
Rev. 35, 219–228. doi: 10.1108/sr-04-2014-632

Li, T., Shi, C., and Ren, H. (2018). A high-sensitivity tactile sensor array 
based on fiber bragg grating sensing for tissue palpation in minimally 
invasive surgery. IEEE-Asme Trans. Mech. 23, 2306–2315. doi: 10.1109/
tmech.2018.2856897

Liu, H., Greco, J., Song, X., Bimbo, J., Seneviratne, L., and Althoefer, K. (2012). 
“Tactile image based contact shape recognition using neural network” in 
2012 IEEE International Conference on Multisensor Fusion and Integration 
for Intelligent Systems (MFI); September 13-15, 2012; 138–143.

Liu, H., Puangmali, P., Zbyszewski, D., Elhage, O., Dasgupta, P., Dai, J. S., 
et al. (2010). An indentation depth-force sensing wheeled probe for abnormality 
identification during minimally invasive surgery. Proc. Inst. Mech. Eng. H 
224, 751–763. doi: 10.1243/09544119jeim682

Liu, H., Wu, Y., Sun, F., and Guo, D. (2017). Recent progress on tactile object 
recognition. Int. J. Adv. Robot. Syst. 14, 1–12. doi: 10.1177/1729881417717056

Luo, S., Bimbo, J., Dahiya, R., and Liu, H. (2017). Robotic tactile perception 
of object properties: a review. Mechatronics 48, 54–67. doi: 10.1016/j.
mechatronics.2017.11.002

Mahvash, M., Gwilliam, J., Agarwal, R., Vagvolgyi, B., Su, L. -M., Yuh, D. D., 
et al. (2008). “Force-feedback surgical teleoperator: controller design and 
palpation experiments.” in: Symposium on Haptics Interfaces for Virtual 
Environment and Teleoperator Systems 2008, Proceedings. eds. J. Weisenberger,  
A. Okamura and K. MacLean.

Marohn, M. R., and Hanly, E. J. (2004). Twenty-first century surgery using 
twenty-first century technology: surgical robotics. Curr. Surg. 61, 466–473. 
doi: 10.1016/j.cursur.2004.03.009

Mohareri, O., Schneider, C., and Salcudean, S. (2014). “Bimanual telerobotic 
surgery with asymmetric force feedback: A daVinci (R) surgical system 
implementation” in 2014 Ieee/Rsj International Conference on Intelligent Robots 
and Systems; September 14-18, 2014; 4272–4277.

Morimoto, A. K., Foral, R. D., Kuhlman, J. L., Zucker, K. A., Curet, M. J., 
Bocklage, T., et al. (1997). Force sensor for laparoscopic babcock. Stud. 
Health Technol. Inform. 39, 354–361.

Munawar, A., and Fischer, G. (2016). “Towards a haptic feedback framework 
for multi-DOF robotic laparoscopic surgery platforms” in 2016 IEEE/Rsj 
International Conference on Intelligent Robots and Systems; October 9-14, 
2016.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1114/1.1624601
https://doi.org/10.1115/1.1471531
https://doi.org/10.1002/rcs.3
https://doi.org/10.1007/bf02513357
https://doi.org/10.1016/S1474-6670(17)39194-2
https://doi.org/10.1016/S0957-4158(03)00048-5
https://doi.org/10.1016/S0957-4158(03)00048-5
https://doi.org/10.1126/scirobotics.aaw1977
https://doi.org/10.1504/IJMA.2012.046583
https://doi.org/10.1504/IJMA.2012.046583
https://doi.org/10.1109/tbme.2013.2283501
https://doi.org/10.1002/rcs.291
https://doi.org/10.1002/rcs.112
https://doi.org/10.1088/1361-665X/aafc8d
https://doi.org/10.1088/1361-665X/aae54f
https://doi.org/10.1002/rcs.413
https://doi.org/10.1002/rcs.413
https://doi.org/10.1109/tie.2018.2821626
https://doi.org/10.1109/tro.2015.2473515
https://doi.org/10.1016/j.jtcvs.2004.05.029
https://doi.org/10.1016/j.jtcvs.2004.05.029
https://doi.org/10.1109/jsen.2014.2325794
https://doi.org/10.1162/105474699566062
https://doi.org/10.1109/tmech.2015.2442591
https://doi.org/10.1109/jbhi.2013.2245142
https://doi.org/10.1108/sr-04-2014-632
https://doi.org/10.1109/tmech.2018.2856897
https://doi.org/10.1109/tmech.2018.2856897
https://doi.org/10.1243/09544119jeim682
https://doi.org/10.1177/1729881417717056
https://doi.org/10.1016/j.mechatronics.2017.11.002
https://doi.org/10.1016/j.mechatronics.2017.11.002
https://doi.org/10.1016/j.cursur.2004.03.009


Huang et al. Tactile Perception in MIS

Frontiers in Physiology | www.frontiersin.org 15 December 2020 | Volume 11 | Article 611596

Najarian, S., Dargahi, J., and Zheng, X. Z. (2006). A novel method in measuring 
the stiffness of sensed objects with applications for biomedical robotic 
systems. Int. J. Med. Robot. 2, 84–90. doi: 10.1002/rcs.75

Narayanan, N. B., Bonakdar, A., Dargahi, J., Packirisamy, M., and Bhat, R. 
(2006). Design and analysis of a micromachined piezoelectric sensor for 
measuring the viscoelastic properties of tissues in minimally invasive surgery. 
Smart Mater. Struct. 15, 1684–1690. doi: 10.1088/0964-1726/15/6/021

Okamura, A. M. (2009). Haptic feedback in robot-assisted minimally invasive 
surgery. Curr. Opin. Urol. 19, 102–107. doi: 10.1097/MOU.0b013e32831a478c

Pacchierotti, C., Prattichizzo, D., and Kuchenbecker, K. J. (2016). Cutaneous 
feedback of fingertip deformation and vibration for palpation in robotic 
surgery. IEEE Trans. Biomed. Eng. 63, 278–287. doi: 10.1109/tbme.2015.2455932

Park, M., Bok, B. -G., Ahn, J. -H., and Kim, M. -S. (2018). Recent advances 
in tactile sensing technology. Micromachines 9:321. doi: 10.3390/mi9070321

Perri, M. T., Trejos, A. L., Naish, M. D., Patel, R. V., and Malthaner, R. A. 
(2010). New tactile sensing system for minimally invasive surgical tumour 
localization. Int. J. Med. Robot. 6, 211–220. doi: 10.1002/rcs.308

Pitakwatchara, P., Warisawa, S. I., and  Mitsuishi, M. (2006). “Analysis of the 
surgery task for the force feedback amplification in the minimally invasive 
surgical system” in Conference proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society; August 
30-September 3, 2006; 829–832.

Prasad, S. K., Kitagawa, M., Fischer, G. S., Zand, J., Talamini, M. A., Taylor, R. H., 
et al. (2003). “A modular 2-DOF force-sensing instrument for laparoscopic 
surgery,” in Medical Image Computing and Computer-Assisted Intervention-
Miccai 2003, Pt 1. eds. R. E. Ellis and T. M. Peters, 279–286.

Puangmali, P., Althoefer, K., Seneviratne, L. D., Murphy, D., and Dasgupta, P. 
(2008). State-of-the-art in force and tactile sensing for minimally invasive 
surgery. IEEE Sensors J. 8, 371–381. doi: 10.1109/jsen.2008.917481

Reiley, C. E., Akinbiyi, T., Burschka, D., Chang, D. C., Okamura, A. M., and 
Yuh, D. D. (2008). Effects of visual force feedback on robot-assisted surgical 
task performance. J. Thorac. Cardiovasc. Surg. 135, 196–202. doi: 10.1016/j.
jtcvs.2007.08.043

Richards, C., Rosen, J., Hannaford, B., Pellegrini, C., and Sinanan, M. (2000). 
Skills evaluation in minimally invasive surgery using force/torque signatures. 
Surg. Endos. 14, 791–798. doi: 10.1007/s004640000230

Roesthuis, R. J., Janssen, S., and Misra, S. (2013). “On using an array of fiber 
bragg grating sensors for closed-loop control of flexible minimally invasive 
surgical instruments” in 2013 IEEE/Rsj International Conference on Intelligent 
Robots and Systems. ed. N. Amato. November 3-7, 2013; 2545–2551.

Rosen, J., Solazzo, M., Hannaford, B., and Sinanan, M. (2001). “Objective 
laparoscopic skills assessments of surgical residents using hidden Markov 
models based on haptic information and tool/tissue interactions” in Medicine 
meets virtual reality 2001: Outer space, inner space, virtual space. eds. 
J. D. Westwood, H. M. Hoffman, G. T. Mogel, D. Stredney and R. A. Robb  
(Amsterdam, BG: IOS Press). 417–423.

Saccomandi, P., Schena, E., Oddo, C. M., Zollo, L., Silvestri, S., and Guglielmelli, E. 
(2014). Microfabricated tactile sensors for biomedical applications: a review. 
Biosensors 4, 422–448. doi: 10.3390/bios4040422

Sadeghi-Goughari, M., Mojra, A., and Sadeghi, S. (2016). Parameter estimation 
of brain tumors using intraoperative thermal imaging based on artificial 
tactile sensing in conjunction with artificial neural network. J. Phys. D. 
Appl. Phys. 49:075404. doi: 10.1088/0022-3727/49/7/075404

Schostek, S., Ho, C. -N., Kalanovic, D., and Schurr, M. O. (2006). Artificial 
tactile sensing in minimally invasive surgery ‐ a new technical approach. 
Minim. Invasive Ther. Allied Technol. 15, 296–304. doi: 10.1080/13645700600836299

Schostek, S., Schurr, M. O., and Buess, G. F. (2009). Review on aspects of 
artificial tactile feedback in laparoscopic surgery. Med. Eng. Phys. 31, 887–898. 
doi: 10.1016/j.medengphy.2009.06.003

Song, H. -S., Kim, H., Jeong, J., and Lee, J. -J. (2011). “Development of FBG sensor 
system for force-feedback in minimally invasive robotic surgery” in 2011 Fifth 
International Conference on Sensing Technology; November 28-December 1, 2011.

Song, H. -S., Kim, K. -Y., and Lee, J. -J. (2009). “Development of the dexterous 
manipulator and the force sensor for minimally invasive surgery” in Proceedings 
of the Fourth International Conference on Autonomous Robots and Agents; 
Febraury 10-12, 2009.

Talasaz, A., and Patel, R. V. (2013). Integration of force reflection with tactile 
sensing for minimally invasive robotics-assisted tumor localization. IEEE 
Trans. Haptics. 6, 217–228. doi: 10.1109/ToH.2012.64

Talasaz, A., Trejos, A. L., and Patel, R. V. (2012). “Effect of force feedback on 
performance of robotics-assisted suturing.” in 2012 4th IEEE Ras and Embs 
International Conference on Biomedical Robotics and Biomechatronics. eds. 
J. P. Desai, L. P. S. Jay and L. Zollo. June 24-27, 2012; 823–828.

Talasaz, A., Trejos, A. L., and Patel, R. V. (2017). The role of direct and visual 
force feedback in suturing using a 7-DOF dual-arm Teleoperated system. 
IEEE Trans. Haptics. 10, 276–287. doi: 10.1109/toh.2016.2616874

Tholey, G., Desai, J. P., and Castellanos, A. E. (2005). Force feedback plays a 
significant role in minimally invasive surgery ‐ results and analysis. Ann. 
Surg. 241, 102–109. doi: 10.1097/01.sla.0000149301.60553.1e

Tiwana, M. I., Redmond, S. J., and Lovell, N. H. (2012). A review of tactile 
sensing technologies with applications in biomedical engineering. Sens. Actuat. 
Phys. 179, 17–31. doi: 10.1016/j.sna.2012.02.051

Trejos, A. L., Jayender, J., Perri, M. T., Naish, M. D., Patel, R. V., and Malthaner, R. A. 
(2009). Robot-assisted tactile sensing for minimally invasive tumor localization. 
Int. J. Robot. Res. 28, 1118–1133. doi: 10.1177/0278364909101136

Uranues, S., Maechler, H., Bergmann, P., Huber, S., Hoebarth, G., Pfeifer, J., 
et al. (2002). Early experience with telemanipulative abdominal and cardiac 
surgery with the Zeus™ robotic system. Eur. Surg. 34, 190–193. doi: 
10.1046/j.1563-2563.2002.t01-1-02049.x

Valdastri, P., Harada, K., Menciassi, A., Beccai, L., Stefanini, C., Fujie, M., 
et al. (2006). Integration of a miniaturised triaxial force sensor in a minimally 
invasive surgical tool. IEEE Trans. Biomed. Eng. 53, 2397–2400. doi: 10.1109/
tbme.2006.883618

Verdura, J., Carroll, M. E., Beane, R., Ek, S., and Callery, M. P. (2000). Systems 
methods and instruments for minimally invasive surgery. United  States patent 
application 6165184.

Wagner, C. R., and Howe, R. D. (2007). Force feedback benefit depends on 
experience in multiple degree of freedom robotic surgery task. IEEE Trans. 
Robot. 23, 1235–1240. doi: 10.1109/tro.2007.904891

Wang, X., Zhang, H., Dong, L., Han, X., Du, W., Zhai, J., et al. (2016). Self-
powered high-resolution and pressure-sensitive triboelectric sensor matrix for 
real-time tactile mapping. Adv. Mater. 28, 2896–2903. doi: 10.1002/adma.201503407

Westebring-van der Putten, E. P., Goossens, R. H. M., Jakimowicz, J. J., and 
Dankelman, J. (2008). Haptics in minimally invasive surgery ‐ a review. 
Minim. Invasive Ther. Allied Technol. 17, 3–16. doi: 10.1080/13645700701820242

Xie, H., Liu, H., Luo, S., Seneviratne, L. D., and Althoefer, K. (2013). “Fiber 
optics tactile array probe for tissue palpation during minimally invasive 
surgery” in 2013 IEEE/Rsj International Conference on Intelligent Robots and 
Systems. ed. N. Amato. November 3-7, 2013; 2539–2544.

Yip, M. C., Yuen, S. G., and Howe, R. D. (2010). A robust uniaxial force 
sensor for minimally invasive surgery. I.E.E.E. Trans. Biomed. Eng. 57, 
1008–1011. doi: 10.1109/tbme.2009.2039570

Yuan, W., Zhu, C., Owens, A., Srinivasan, M., and Adelson, E. (2017). “Shape-
independent hardness estimation using deep learning and a GelSight tactile 
sensor” in 2017 IEEE International Conference on Robotics and Automation 
(ICRA); May 29-June 3, 2017; Singapore, Singapore: IEEE.

Zapata-Impata, B. S., Gil, P., and Torres, F. (2019). Learning spatio temporal 
tactile features with a ConvLSTM for the direction of slip detection. Sensors 
19:523. doi: 10.3390/s19030523

Zemiti, N., Ortmaier, T., Vitrani, M. A., and Morel, G. (2006). “A force controlled 
laparoscopic surgical robot without distal force sensing” in Experimental robotics 
ix. eds. M. H. Ang and O. Khatib (Heidelberger, Berlin: Springer), 153.

Zhao, Z., Voros, S., Weng, Y., Chang, F., and Li, R. (2017). Tracking-by-detection 
of surgical instruments in minimally invasive surgery via the convolutional 
neural network deep learning-based method. Comput. Assist. Surg. 22, 
26–35. doi: 10.1080/24699322.2017.1378777

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2020 Huang, Wang, Zhao, Chen, Pan and Yuan. This is an open-access 
article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1002/rcs.75
https://doi.org/10.1088/0964-1726/15/6/021
https://doi.org/10.1097/MOU.0b013e32831a478c
https://doi.org/10.1109/tbme.2015.2455932
https://doi.org/10.3390/mi9070321
https://doi.org/10.1002/rcs.308
https://doi.org/10.1109/jsen.2008.917481
https://doi.org/10.1016/j.jtcvs.2007.08.043
https://doi.org/10.1016/j.jtcvs.2007.08.043
https://doi.org/10.1007/s004640000230
https://doi.org/10.3390/bios4040422
https://doi.org/10.1088/0022-3727/49/7/075404
https://doi.org/10.1080/13645700600836299
https://doi.org/10.1016/j.medengphy.2009.06.003
https://doi.org/10.1109/ToH.2012.64
https://doi.org/10.1109/toh.2016.2616874
https://doi.org/10.1097/01.sla.0000149301.60553.1e
https://doi.org/10.1016/j.sna.2012.02.051
https://doi.org/10.1177/0278364909101136
https://doi.org/10.1046/j.1563-2563.2002.t01-1-02049.x
https://doi.org/10.1109/tbme.2006.883618
https://doi.org/10.1109/tbme.2006.883618
https://doi.org/10.1109/tro.2007.904891
https://doi.org/10.1002/adma.201503407
https://doi.org/10.1080/13645700701820242
https://doi.org/10.1109/tbme.2009.2039570
https://doi.org/10.3390/s19030523
https://doi.org/10.1080/24699322.2017.1378777
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Tactile Perception Technologies and Their Applications in Minimally Invasive Surgery: A Review
	Introduction 
	Tactile Sensors and Their Applications in MIS
	Single-Point Tactile Sensor and Force Feedback
	Knotting
	Incision
	Palpation
	Necessity of Force Feedback
	Challenges
	Tactile Array Sensor
	Novel Tactile Sensor and Tactile Feedback
	Novel Tactile Sensor
	Tactile Feedback

	Tactile Perception Algorithms in MIS
	Wall Following
	Shape Recognition
	Stable Scraping
	Hardness Detection

	Tactile Perception Applications in MIS
	Obtaining Tactile Properties of Tissues
	AI-Based Tactile Perception Applications in MIS

	Conclusion
	Author Contributions

	References

