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Abstract

The non-enzymatic antioxidant system protects blood components from oxidative damage and/or injury. Herein, plasma non-
enzymatic antioxidant capacity after acute strenuous swimming exercise (Exe) and exercise until exhaustion (Exh) was
measured in rats. The experiments were carried out in never exposed (Nex) and pre-exposed (Pex) groups. The Nex group did
not undergo any previous training before the acute strenuous swimming test and the Pex group was submitted to daily
swimming for 10 min in the first week and 15 min per day in the second week before testing. Plasma glucose, lactate, and
pyruvate were measured and plasma total protein sulfhydryl groups (thiol), trolox equivalent antioxidant capacity (TEAC), ferric
reducing ability of plasma (FRAP), and total radical-trapping antioxidant parameter (TRAP) levels were evaluated. There were
marked increases in plasma lactate concentrations (Nex-Control 1.31±0.20 vs NexExe 4.16±0.39 vs NexExh 7.19±0.67) and
in thiol (Nex-Control 271.9±5.6 vs NexExh 314.7±5.7), TEAC (Nex-Control 786.4±60.2 vs NexExh 1027.7±58.2), FRAP
(Nex-Control 309.2±17.7 vs NexExh 413.4±24.3), and TRAP (Nex-Control 0.50±0.15 vs NexExh 2.6±0.32) levels after
acute swimming and/or exhaustion. Also, there were increased plasma lactate concentrations (Pex-Control 1.39±0.15 vs
PexExe 5.22±0.91 vs PexExh 10.07±0.49), thiol (Pex-Control 252.9±8.2 vs PexExh 284.6±6.7), FRAP (Pex-Control 296.5±
15.4 vs PexExh 445.7±45.6), and TRAP (Pex-Control 1.8±0.1 vs PexExh 4.6±0.2) levels after acute swimming and/or
exhaustion. Lactate showed the highest percent of elevation in the Nex and Pex groups. In conclusion, plasma lactate may
contribute to plasma antioxidant defenses, and the TRAP assay is the most sensitive assay for assessing plasma non-antioxidant
capacity after strenuous exercise.

Key words: Redox state; Physical exercise; Oxidative stress; Exhaustion; Reactive oxygen species; Lactate

Introduction

Cells have evolved a sophisticated enzymatic anti-
oxidant system that includes enzymes such as glutathione
peroxidase, glutathione reductase, superoxide dismutase,
and catalase that scavenge and prevent reactive oxygen
species (ROS) and reactive nitrogen species (RNS)
accumulation (1). Interestingly, plasma has been reported
to have lower antioxidant enzyme activities than the
intracellular environment (2).

This observation is due to the fact that plasma is
continuously exposed to ROS (3) and contains non-
enzymatic antioxidant substances, such as albumin,
ascorbic acid, a-tocopherol, bilirubin, creatinine, and uric
acid. This non-enzymatic antioxidant system protects
blood components from oxidative damage and/or injury
(4–7). Several studies have suggested that this increased

antioxidant capacity (8–11) is needed to prevent oxidative
stress (12).

Intense and exhaustive exercise increases oxygen
consumption and demand and stimulates oxidative
phosphorylation and ROS generation (13,14), thereby
inducing oxidative stress. Excessive ROS and RNS
production can modify and damage DNA, lipids, and
proteins (1), negatively influencing various physiological
functions and processes (4–7). Indeed, oxidant-induced
(i.e., oxidative) damage has been linked to the onset and
progression of diabetes, cardiovascular diseases, arthritis,
cancer, and other diseases and disorders (4–6).

The redox state, especially antioxidant defenses, in
exercising experimental animals and humans has been
extensively studied (3,8,11,13). However, these studies
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employed various exercise intensities, durations, and
training schedules, with participants of both genders and
different ages (8–11,13–15). Consequently, this hetero-
geneity limits and jeopardizes the evaluation of the role of
antioxidant defenses during strenuous exercise.

The present study assessed plasma lactate levels
after exercise and exhaustion and their potential associa-
tion with antioxidant defenses. Furthermore, the plasma
non-enzymatic antioxidant capacity was evaluated in
rats after acute strenuous swimming and swimming until
exhaustion using four different methods: total protein
sulfhydryl groups (thiol), trolox equivalent antioxidant
capacity (TEAC), ferric reducing ability of plasma (FRAP),
and total radical-trapping antioxidant parameter (TRAP).

Material and Methods

Ethical approval
The experimental procedures followed the interna-

tional laws and the institutional guidelines for practical
animal care and were approved by the Ethics Committee
of the State University of Maringá (CEUA protocol number
3659240315).

Chemicals
The 2,20-azo-bis-(2-amidinopropane) (ABAP), 2,20-

azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS),
dimethylsulfoxide (DMSO), 5,50-dithiobis-2-nitrobenzenic
acid (DNTB), 2,4-dinitrophenylhydrazine (DNPH), tripyr-
idyltriazine (TPTZ), and 6-hydroxy-2,5,7,8-tetrametyl-
chloraman-2-carboxylic acid (Trolox) were purchased
from Sigma-Aldrich (USA).

Animals
Male Wistar rats weighing from 210–240 g (7 weeks

old) were obtained from the State University of Maringá
breeding center and housed in a room with controlled
temperature (22±1°C) and humidity (60±10%) and a
12-h light/dark cycle. The animals had free to access to
standard rodent chow (Nuvital Nutrients S/A, Brazil) and
water.

Experimental protocol
The experimental protocol was approved by an

Institutional Review Board following the National Council
for the Control of Animal Experimentation and is present-
ed in Figure 1.

The swimming session was performed in cylindrical
tanks (60� 30 cm, 30 L capacity) with a water tempera-
ture of 31±1°C. Before each session, a load correspond-
ing to 6% of the body weight was tied to the tail of the
animals (15).

The never exposed group (Nex) was fasted overnight
(15 h). Then, two rats were simultaneously placed in the
swimming tank side by side for the acute swimming-test
protocol. When the first rat was exhausted (NexExh), the

second rat was also removed from the water (NexExe).
Exhaustion was defined as failure to stay above the water
surface, loss of symmetrical movements, and/or remaining
underwater for more than 5 s (15). The control group (Nex-
Control) consisted of overnight-fasted rats that were
placed in the swimming tank and immediately removed.

Rats in the pre-exposed (Pex) group were submitted to
10-min daily swimming sessions for one week and 15-min
daily swimming sessions for an additional week. Two days
of rest were given between the first and second weeks of
the pre-exposure protocol. On the final day of the second
week, the Pex group was fasted overnight. Then a pair of
rats were placed in the tank to swim for 15 min (PexExe)
or until exhaustion (PexExh). A control group (Pex-
Control) was fasted overnight, placed in the swimming
tank, and immediately removed.

Following the swimming tests, all rats (Nex and Pex
groups) were removed from the water, and their necks
were dried to prevent hemolysis. Then, each animal was
immediately euthanized by decapitation for blood collec-
tion. The time between removing the animals from the
water and decapitation was less than 15 s. The swimming
sessions for the Nex and Pex groups were performed on
different days.

Blood sample and biochemical analysis
After euthanasia, blood was collected in EDTA-contain-

ing tubes and immediately centrifuged at 1,700 g for 10 min
at 4°C. Plasma glucose, lactate, and pyruvate concentra-
tions were measured as previously described (16).

Determination of plasma antioxidant parameters
The plasma’s antioxidant capacity was assessed

using four different methods: thiol content, TEAC, FRAP,
and TRAP.

Thiol content was measured by spectrophotometry
using DNTB as previously described (7). Briefly, an aliquot
of plasma was incubated with a 90 mM TRIS buffer (pH
8.6), 5 mM EDTA solution. The initial absorbance was
taken at 412 nm. Then, 10 mM DTNB was added, the
samples were incubated in the dark for 15 min, and the
absorbance was measured again. The thiol content was
calculated using the molar extinction coefficient (e) of
1.36� 104 M–1�cm–1. The results are reported as nmol/mL
of plasma (17).

The spectrophotometric TEAC assay is based on
hydrogen peroxide reacting with ABTS to form an ABTS
cation (ABTS+), which strongly absorbs light at 734 nm.
The plasma’s ability to neutralize ABTS radicals causes a
reduction in absorbance. The total antioxidant capacity
was calculated from the standard curve prepared with
Trolox, a water-soluble analog of vitamin E. The results
are reported as nmol/mL of Trolox (7,18).

The FRAP method monitors the plasma-induced
conversion of Fe3+ to Fe2+. The plasma’s reducing ca-
pacity was measured spectrophotometrically at 595 nm
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using TPTZ and ferric chloride solutions. FRAP was
calculated from a standard curve prepared with Trolox.
The results are reported as nmol/mL of Trolox (19).

Lastly, using ABAP and luminol, the TRAP method
detects the hydrosoluble and/or liposoluble antioxidants in
the plasma by chemiluminescence (20). Herein, 20 mM
and 200 mM ABAP were used as the free radical source to
react with luminol and generate chemiluminescence. The
reaction is inhibited by superoxide dismutase, catalase,
and vitamin E analogs. The addition of 70 mL of plasma
attenuated the chemiluminescence to basal levels for a
period proportional to the plasma levels of TRAP until the
luminol radicals are regenerated. The system was
calibrated with Trolox. By comparing the induction time
after the addition of known concentrations of Trolox and
plasma, it is possible to obtain TRAP values as equivalent
Trolox levels. The peak chemiluminescence emission
was detected with a Glomax luminometer (Turner Designs
TD 20/20, USA), and TRAP values were calculated as

previously described (21). The results are reported as
nmol/mL of Trolox.

Statistical analysis
All statistical analyses were performed with the Graph-

Pad Prism Software version 5.0 (GraphPad Software,
USA). The data are reported as means±SE. The results
were analyzed using one-way ANOVA with the Tukey test
for post hoc comparisons. The level of significance was
set at a P-value of o0.05.

Results

Plasma glucose, lactate, and pyruvate levels in the
never exposed group

The NexExe and NexExh rats exhibited lower glucose
levels than the Nex-Control rats (Po0.05). Moreover, the
glucose levels of the NexExh rats were also reduced
compared with NexExe rats (Po0.05). The plasma lactate

Figure 1. Experimental design. Left side: Never exposed (Nex) protocol. Two Nex rats were placed in the water tank, and once the first
rat reached exhaustion (NexExh), the second rat was immediately removed from the water (NexExe). The control group (Nex-Control)
consisted of rats placed in the water tank and immediately removed. Right side: Pre-exposed (Pex) protocol. In the first week, rats were
submitted to 10-min daily exercise and in the second week, they swam for 15 min each day. On the last day, a pair of rats were left in the
water for 15 min to swim (PexExe) or until exhaustion (PexExh). Control rats (Pex-Control) were placed in the water tank and
immediately removed.
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levels of the NexExe and NexExh rats were 216.5% and
447.4% higher than the Nex-Control group (Po0.05) and
significantly higher in NexExh rats compared with NexExe
rats (Po0.05). The NexExe rats displayed elevated
pyruvate levels compared with the Nex-Control and
NexExh groups (Po0.05). While the pyruvate concentra-
tion in the NexExh group tended to be higher than in Nex-
Control rats, this result failed to reach a level of statistical
significance. The lactate:pyruvate ratio of the NexExh rats
was elevated compared with Nex-Control and NexExe
rats (Po0.05). On the other hand, the lactate:pyruvate
ratios of the Nex-Control and NexExe groups were similar.
(Figure 2).

Plasma glucose, lactate, and pyruvate levels in the
pre-exposed group

The PexExh rats had lower plasma glucose levels than
the PexExe and Pex-Control rats (Po0.05), and the
PexExe and Pex-Control rats presented similar levels.
The plasma lactate levels in the PexExe and PexExh
groups were 219.1% and 470.5% higher than the Pex-
Control rats, respectively (Po0.05) and significantly
higher in the PexExh rats compared with the PexExe
group (Po0.05). The pyruvate levels were higher in the
PexExe rats compared with Pex-Control and PexExh rats
(Po0.05), which were statistically equivalent. Further-
more, the lactate:pyruvate ratio of the PexExh rats was
higher (Po0.05) than the Pex-Control and PexExe rats.

The lactate:pyruvate ratio in the PexExe group was not
significantly different from that in Pex-Control animals.
(Figure 3).

Plasma non-enzymatic antioxidant capacity in the
never exposed group

The antioxidant capacities measured by the thiol
assay were 6.3% and 15.7% higher in the plasma of
NexExe and NexExh rats, respectively, compared with the
Nex-Control rats. However, only the NexExh group was
found to be significantly increased (Po0.05). Further-
more, the TEAC assay’s antioxidant capacity was 17.6%
and 30.7% higher in the plasma of the NexExe and
NexExh rats than the Nex-Control rats. Similar to the thiol
assay, only the NexExh group displayed significantly
increased antioxidant capacity. The FRAP assay detected
4.2% and 33.7% increases in the antioxidant capacity of
the plasma from NexExe and NexExh rats, respectively,
compared with the Nex-Control rats. Lastly, the antioxidant
capacities measured by the TRAP assay were 100% and
430% higher in the plasma of the NexExe and NexExh
rats than in the Nex-Control rats (Po0.05).

Overall, the thiol, TEAC, FRAP, and TRAP data
indicated that the antioxidant capacity of the NexExh
group was significantly greater than the Nex-Control group
(Po0.05). Additionally, the FRAP and TRAP assays
detected enhanced antioxidant capacity in NexExh rats
compared with NexExe rats (Po0.05). (Figure 4).

Figure 2. Plasma metabolites measurements in the never exposed (Nex) group. Effect of an acute strenuous swimming session on
plasma glucose, lactate, pyruvate concentrations, and the lactate:pyruvate ratio in overnight fasted rats. Two rats were placed in the
water tank. Once the first rat reached exhaustion (NexExh), the second rat was immediately removed from water (NexExe). The control
rats (Nex-Control) were placed in the water tank and immediately removed. Data are reported as means±SE (n=7 animals per group).
aPo0.05 compared with the Nex-Control group; bPo0.05 compared with the NexExe group (one-way ANOVA with the Tukey test for
post hoc comparisons).
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Plasma antioxidant capacity in the pre-exposed group
In the Pex group, the thiol assay indicated that the

antioxidant capacities of the PexExe and PexExh rats

were increased by 18% and 13%, respectively, compared
with the Pex-Control rats (Po0.05). The plasma TEAC
levels were 15.5% and 41.5% higher for the PexExe and

Figure 3. Plasma metabolite measurements in the pre-exposed (Pex) group. Effect of an acute strenuous swimming session on plasma
glucose, lactate, pyruvate concentrations, and the lactate:pyruvate ratio in overnight fasted rats. Two rats were placed in the water tank
on the last day of the pre-exposed protocol. The first rat swam for 15 min (PexExe) and the second rat swam until exhaustion (PexExh).
The control rats (Pex-Control) were placed in the water tank and immediately removed. Data reported as means±SE (n=5–6 animals
per group). aPo0.05 compared with the Pex-Control; bPo0.05 compared with the PexEx group (one-way ANOVA with the Tukey test for
post hoc comparisons).

Figure 4. Plasma antioxidant capacity measurements in the never exposed (Nex) group. Effect of an acute strenuous swimming session
on the plasma protein sulfhydryl group (thiol) content, Trolox equivalents antioxidant capacity (TEAC), ferric reducing ability of plasma
(FRAP), and total radical-trapping antioxidant parameter (TRAP) in overnight fasted rats. Two Nex rats were placed in the water tank.
Once the first rat reached exhaustion (NexExh), the second rat was immediately removed from water (NexExe). The control rats
(Nex-Control) were placed in the water tank and immediately removed. Data reported as means±SE (n=7 animals per group). aPo0.05
compared with the Nex-Control group; bPo0.05 compared with the NexExe group (one-way ANOVA with the Tukey test for post hoc
comparisons).
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PexExh groups compared with Pex-Control rats; however,
these differences failed to reach a level of statistical
significance. The FRAP levels of PexExe and PexExh rats
were 42% and 50% higher than the Pex-Control rats
(Po0.05). (Figure 5).

The TRAP assay detected antioxidant capacity
increases of 76% and 162% in the PexExe and PexExh
groups compared with Pex-Control rats (Po0.05). More-
over, the TRAP levels of the PexExh group were significantly
greater than that of the PexExe group (Figure 5).

Discussion

This study compared the rat plasma antioxidant
capacity after performing an acute strenuous swimming
test. A summary of the thiol, TEAC, FRAP, and TRAP
assay results is presented in Figure 6. The histograms
demonstrate that the TRAP and lactate levels were
elevated in the Nex and Pex exercise and exhaustion
groups compared with the Nex-Control and Pex-Control
groups, respectively. It is worth mentioning that since the
acute swimming-test protocols for the Nex and Pex groups
were performed on different days, it was impossible to
compare them. However, despite this limitation, there is a
general tendency for similar plasma TRAP and lactate
increases after acute swimming and exhaustion.

The plasma thiol levels represent the action of
antioxidant molecules such as albumin and other proteins
of low molecular weight (7,17). As expected, the plasma

thiol levels in the Nex and Pex groups increased after
exercise and exhaustion compared with the levels of the
respective control group. However, the plasma thiol level

Figure 5. Plasma antioxidant capacity measurements in the pre-exposed (Pex) group. Effect of a strenuous swimming session on
plasma protein sulfhydryl groups (thiol) content, Trolox equivalents antioxidant capacity (TEAC), ferric reducing ability of plasma (FRAP),
and total radical-trapping antioxidant parameter (TRAP) in overnight fasted rats. The Pex group trained for two weeks. Two rats were
placed in the water tank on the last day of the pre-exposed protocol. The first rat swam for 15 min (PexExe) and the second rat swam
until exhaustion (PexExh). The control rats (Pex-Control) were placed in the water tank and immediately removed. Data are reported as
means±SE (n=5–6 animals per group). aPo0.05 compared with the Pex-Control group; bPo0.05 compared with the PexExe group
(one-way ANOVA with the Tukey test for post hoc comparisons).

Figure 6. Summary of the antioxidant capacity experiments. A,
Never exposed (Nex) group. B, Pre-exposed (Pex) group.
Percent increase in thiol, TEAC, FRAP, TRAP, and lactate levels
after exercise (Exe rats: gray bars) and exhaustion (Exh rats:
white bars) compared with control groups (black bars). The
increase in plasma lactate (Control rats vs Exe or Exh rats) was
more pronounced than thiol, TEAC, FRAP, and TRAP levels in the
Nex or Pex groups, thus, suggesting a potential role for lactate
as an antioxidant after strenuous exercise and exhaustion.
Thiol: protein sulfhydryl group content; TEAC: trolox equivalents
antioxidant capacity; FRAP: ferric reducing ability of plasma;
TRAP: total radical-trapping antioxidant parameter.

Braz J Med Biol Res | doi: 10.1590/1414-431X2022e11891

Non-enzymatic antioxidant capacity during exercise 6/9

https://doi.org/10.1590/1414-431X2022e11891


increases were negligible compared with the plasma
TRAP levels in both groups of animals.

It was previously reported that the plasma TEAC
assay is suitable for measuring plasma non-enzymatic
antioxidant defenses since TEAC is mainly composed of
albumin and uric acid (22,23). In general, plasma TEAC
levels were similar in Nex and Pex groups following
exercise and exhaustion compared with the control
groups. Similar to the thiol content results, the plasma
TEAC increase was small compared with the increased
plasma TRAP levels.

The plasma FRAP assay measures all antioxidant
mechanisms that reduce the metal complex Fe3+-TPTZ
ion (19). The plasma FRAP levels were higher in NexExe
rats than in Nex-Control rats. Additionally, the plasma
FRAP levels were higher in PexExe and PexExh rats than
in Pex-Control rats. Like the plasma thiol and TEAC
levels, the degree of elevation of plasma FRAP levels was
small compared with plasma TRAP levels.

It was previously reported that the plasma TRAP
assay could measure antioxidant mechanisms (24). Our
results using Nex and Pex rats after exercise and
exhaustion demonstrate that the plasma TRAP assay is
the most robust method for assessing non-enzymatic
antioxidant capacity, at least when compared with the
thiol, FRAP, and TEAC assays. Additionally, this assay
provides a better representation of the global antioxidant
potential, assessing the synergistic contributions of urate,
plasma proteins, ascorbate, and tocopherol to plasma’s
non-enzymatic antioxidant capacity (24). A previous study
using the TRAP assay reported that the relative contribu-
tions of urate, plasma proteins, ascorbate, and tocopherol
were between 35–65%, 10–50%, 0–24%, and 5–10%,
respectively (25).

Additionally, our results demonstrates that a strenuous
swimming session increased plasma lactate concentra-
tions and the lactate:pyruvate ratio, an observation that
was consistent with previous studies (15,26). The
increased lactate:pyruvate ratio is indicative of changes
in the redox state (i.e., NADH:NAD+ ratio) after exercise
and exhaustion in the Nex and Pex groups. These
changes are in response to increased muscle glycolysis
and pyruvate-to-lactate conversion via lactate dehydro-
genase (27). To our knowledge, this is the first study to
identify a relationship between elevated plasma TRAP
levels and lactate concentrations after intense exer-
cise and exhaustion. In this sense, investigating the

contribution of plasma lactate to the antioxidant defenses
could provide valuable insights into the underlying
mechanisms.

For many years, lactate was considered a metabolic
residue (28,29). It is currently recognized for its role as a
liver glucose precursor (15), an angiogenesis signal (28),
an oxidative substrate in neurons (30), a memory
consolidation molecule (31), and an antioxidant in human
cells (32–34). Today, the well-established role of lactate as
an antioxidant justifies its use as a food preservative (35).
Despite the accumulating evidence, the role lactate plays
in the plasma non-enzymatic antioxidant defenses
remains unclear.

Similar to the results of our study, previous studies
have shown that serum lactate levels increase proportion-
ally with antioxidant capacity during short periods of high-
intensity exercise (8,33). Additionally, there are several
studies demonstrating lactate’s antioxidant activity. For
example, Anbar and Neta (36) first showed that lactate
works as a hydroxyl radical (OH) scavenger. Groussard
et al. (37) also reported that lactate could scavenge OH in
addition to superoxide anions (O2

–). The concentration-
dependent antioxidant effect of lactate and its substantial
increase during intense exercise and exhaustion reinforce
the possibility that it functions as an antioxidant. Lactate-
mediated OH scavenging was later expanded to pyruvate
by Herz et al. (38). According to the authors, lactate-
mediated OH reduction generates pyruvate, which scav-
enges O2

–, H2O2, and OH through its conversion into
acetate and CO2 (39,40). Therefore, lactate’s role as an
antioxidant must be considered since plasma lactate
concentrations increase after exercise and exhaustion.

In conclusion, our study revealed that the plasma
TRAP assay was more sensitive at assessing plasma
antioxidant capacity following acute strenuous exercise
and exhaustion than the thiol, TEAC, and FRAP assays. It
is plausible that lactate substantially contributed to the
non-enzymatic antioxidant defense system.
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