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Abstract

The vasodilatory pterygopalatine ganglion (PPG) innervation of the choroid is under the control of 

preganglionic input from the superior salivatory nucleus (SSN), the parasympathetic portion of the 

facial motor nucleus. We sought to confirm that choroidal SSN drives a choroid-wide vasodilation 

and determine if such control is important for retinal health. To the former end, we found, using 

transscleral laser Doppler flowmetry, that electrical activation of choroidal SSN significantly 

increased choroidal blood flow (ChBF), at a variety of choroidal sites that included more posterior 

as well as more anterior ones. We further found that the increases in ChBF were significantly 

reduced by inhibition of neuronal nitric oxide synthase (nNOS), thus implicating nitrergic PPG 

terminals in the SSN-elicited ChBF increases. To evaluate the role of parasympathetic control of 

ChBF in maintaining retinal health, some rats received unilateral lesions of SSN, and were 

evaluated functionally and histologically. In eyes ipsilateral to choroidal SSN destruction, we 

found that the flash-evoked scotopic electroretinogram a-wave and b-wave peak amplitudes were 

both significantly reduced by 10 weeks post lesion. Choroidal baroregulation was evaluated in 

some of these rats, and found to be impaired in the low systemic arterial blood pressure (ABP) 

range where vasodilation normally serves to maintain stable ChBF. In retina ipsilateral to SSN 

destruction, the abundance of Müller cell processes immunolabeled for glial fibrillary acidic 

protein (GFAP) and GFAP message were significantly upregulated. Our studies indicate that the 

SSN-PPG circuit mediates parasympathetic vasodilation of choroid, which appears to contribute to 
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ChBF baroregulation during low ABP. Our results further indicate that impairment in this adaptive 

mechanism results in retinal dysfunction and pathology within months of the ChBF disturbance, 

indicating its importance for retinal health.
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1. Introduction

The retina has two vascular supplies: the retinal vessels within the retina itself, and the 

choroidal vessels external to Bruch’s membrane and the retinal pigment epithelium (Alm, 

1992). The retinal vessels provide blood supply to the inner two-thirds of the retina, while 

the outer retina is avascular and nourished from the choroid (Alm, 1992). Flow through the 

choroid is, however, much more substantial than that to the inner retina, and accordingly, the 

choroid provides 65–85% of the oxygen to the retina, with variation among species (Alm, 

1992; Alm and Bill, 1973). Diminishing choroidal blood flow by occluding one or more the 

posterior ciliary arteries feeding choroid (Hayreh, 2004; Loeffler et al., 1994) or occluding a 

vortex vein (Collier, 1967) rapidly destroys the outer retina, and outer retinal hypoxia yields 

rapid RPE and photoreceptor dysfunction and/or loss (Braun and Linsenmeier, 1995; 

Linsenmeier et al., 1983; Linsenmeier and Steinberg, 1986; Yancey and Linsenmeier, 1988, 

1989). In light of this, the reductions in ChBF seen in aging and various retinal diseases, 

such as systemic hypertension, diabetic retinopathy and age-related macular degeneration 

(Fitzgerald et al., 2001; Grunwald et al, 1998a, 1998b, 2005; Ito et al., 2001; Metelitsina et 

al., 2008; Pournaras et al., 2006) are of interest, as they raise the possibility that these ChBF 

reductions contribute to the retinal declines associated with these conditions.

Although ChBF was once thought to respond passively to changes in perfusion pressure, 

more recent studies have shown that ChBF remains stable over a systemic blood pressure 

range of about 35% above and below basal (Kiel and Shepherd, 1992; Li et al., 2018; 

Lovasik et al., 2003; Reiner et al, 2003, 2011), with neural mechanisms apparently involved 

in the compensation (Kiel, 1999; Li et al, 2010, 2015, 2018, 2010; Reiner et al, 2010, 2018). 

When blood pressure is low, choroidal blood vessels dilate to maintain flow, and when blood 

pressure is high, choroidal blood vessels constrict, preventing overperfusion, tissue edema, 

and oxidative injury (Reiner et al., 2018). Neurogenic choroidal vasodilation is mediated by 

parasympathetic innervation of choroidal vessels, and neurogenic choroidal vasoconstriction 

is accomplished by sympathetic innervation (Reiner et al., 2018). Several features of the 

central and peripheral circuitry subserving parasympathetic contributions to choroidal 

baroregulation have been characterized. The parasympathetic pterygopalatine ganglion 

(PPG) innervates orbital vessels feeding the choroid and intrachoroidal vessels (Reiner et al, 

2012, 2018). The PPG input to choroid and to choroidal feeder vessels employs the 

vasodilators nitric oxide (NO) and vasoactive intestinal polypeptide (VIP), and as a result 

these vessels are densely coated with nerve fibers containing neuronal nitric oxide synthase 

(which synthesizes NO in neurons) and VIP (Reiner et al, 2012, 2018; Stone et al., 1987). 
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The preganglionic neurons regulating the PPG reside in the superior salivatory nucleus 

(SSN), the autonomic component of the facial motor complex in the hindbrain (Cuthbertson 

et al., 2003). In prior studies in rats, we found that a major input to choroidal SSN arose 

from the part of the nucleus of the solitary tract (NTS) of the medulla that receives 

baroreceptive input and is responsive to blood pressure signals (Li et al, 2010, 2015). In 

more recent studies, we found that activation of this part of NTS increases ChBF in the 

ipsilateral eye, and that the peripheral PPG terminals mediating this effect appear to use NO 

as a vasodilator (Li et al., 2016b). These results are consistent with the view that the NTS 

input to the choroidal part of SSN enables the adaptive parasympathetic regulation of ChBF 

during systemic hypotension. Only one study, however, has directly examined the influence 

of SSN on ChBF (Steinle et al., 2000), and that study suggested that SSN only influenced 

ChBF in the anterior superior sector of the eye. Moreover, that study did not examine the 

importance of SSN control of ChBF for retinal health. In the present study, we examined the 

regional extent of SSN influence on ChBF and the impact of impaired SSN control of ChBF 

on retinal health.

2. Materials and methods

2.1. Experimental overview

Adult male Sprague-Dawley (SD) rats (290–380 g; from Harlan, Indianapolis, IN) were used 

in the present studies. To confirm that SSN drives a choroid-wide nitric oxide (NO) - 

mediated vasodilation, we activated the choroidal part of SSN by electrical stimulation while 

monitoring ChBF from both anterior and posterior sites along the superior surface of the eye 

to assess if the effect on ChBF was pervasive, and evaluated the ability of neuronal nitric 

oxide synthase (NOS) inhibition to diminish the evoked vasodilation. To further assess the 

extent of PPG influence on the choroid, we examined the regional distribution of its input to 

choroid. An additional set of rats were used to examine the effect of unilateral choroidal 

SSN destruction on retinal function as evaluated by the flash-evoked scotopic ERG, and on 

retinal health as determined by immunolabeling of Müller cell processes for glial fibrillary 

acidic protein (GFAP), and qPCR assessment of retinal GFAP levels. Prior to being 

sacrificed, ChBF baroregulation was assessed in some of the rats used in ERG analysis. All 

experiments were in compliance with the ARVO statement on the Use of Animals in 

Ophthalmic and Vision Research, and with NIH and institutional guidelines.

2.2. Studies of effects of SSN stimulation on choroidal blood flow

2.2.1. Choroidal blood flow surgical preparation—Rats were anesthetized for 

surgery by intraperitoneal (ip) injection of 0.1 ml/100 g body weight of a ketamine/xylazine 

mixture (87/13 mg/kg), with supplemental doses (0.05–0.07 ml of ketamine/xylazine 

mixture) every 25–30 min. To prepare the surgical sites, the dorsum of the head and ventrum 

of the hind legs were shaved. To measure systemic arterial blood pressure (ABP), the 

femoral artery was cannulated with PE-50 polyethylene tubing pre-soaked with heparinized 

saline (40 units/ml). A Digi-Med Blood Pressure Analyzer™ (BPA-100, Micro-Med, Inc., 

Louisville, KY) was used to measure arterial blood pressure (ABP) via a pressure transducer 

connected to the femoral artery cannula. The femoral vein was cannulated for administration 

of Nω-propyl-l-arginine (NPA, 1–2 mg/kg, Tocris Bioscience), a selective nNOS inhibitor 
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(Cooper et al., 2000; Zhang et al., 1997), or Nω-nitro-L-arginine methyl ester (LNAME), an 

inhibitor of both nNOS and endothelial NOS (Zagvazdin et al, 1996a, 1996b). The rats were 

then positioned in a stereotaxic device, and a pulse oximeter clipped on the tail to measure 

systemic blood oxygen saturation. Body temperature was maintained at 37 °C with a 

Harvard heating blanket and rectal thermoprobe.

To prepare the eye for transscleral measurement of ChBF, fascia and the parts of the 

Harderian gland overlying the superior aspect of the right eye were removed. The tip of a 

laser Doppler probe connected to a LASERFLO BPM2 blood perfusion monitor 

(Vasamedics; Eden Prairie, MN or BPM 403A; TSI Incorporated; St. Paul, MN) was 

positioned 1–3 mm above the sclera with a micromanipulator. Measurements of ChBF were 

made from the vascular bed beneath the sclera at the three sites shown in Fig. 1: 1) just 

lateral to the superior rectus muscle at its insertion; 2) in the gap between the superior and 

medial rectus muscles, just anterior to the equator of the superior part of the eye; and 3) in 

the gap between the superior and medial rectus muscles, just posterior to the equator of the 

superior part of the eye. A small amount of Aquasonic ultrasound gel (Parker Laboratories, 

Inc.; Fairfield, NJ) or 33% glycerol – 0.1 M sodium phosphate buffer (PB) was used in the 

interface between the probe tip and sclera to mitigate tissue drying. For placement of a 

stimulating electrode, the skin over the skull was retracted and a hole drilled through bone 

overlying SSN. The coordinates for choroidal SSN from the rat brain atlas of (Paxinos and 

Watson, 2009) were: −10.5 mm behind Bregma, −2.2 mm lateral to Bregma, and −7.8 mm 

below the pial surface.

2.2.2. Choroidal blood flow measurement and choroidal SSN stimulation—As 

shown and discussed in our prior studies, laser Doppler flowmetry can be used to obtain 

reliable relative measures of ChBF, choroidal blood volume (ChBVol) and choroidal blood 

velocity (ChBVel) (Fitzgerald et al, 1990, 1996, 2001, 2005; Li et al, 2016b, 2018; Reiner et 

al., 2010; Zagvazdin et al., 1996a). Although the LASERFLO BPM2 nominally presents 

ChBF values in ml blood per min per 100 g tissue (ml/min/100g), ChBVol in 12,000 red 

blood cells per cubic millimeter of tissue (12,000 RBC/mm3), and ChBVel as 10 mm/s, 

because of uncertainties about how well choroidal tissue matches the assumptions of the 

algorithms used to derive these measures, ChBF is reported here as relative blood flow units, 

ChBVol as relative blood volume units, and ChBVel as relative blood velocity units, as in 

our prior studies. The output of our LASERFLO BPM2 was exported to a ML880 PowerLab 

16/30 data acquisition system (ADInstruments Inc., Colorado Springs, CO), and the 

digitized data were collected and analyzed using LabChart v7 Pro software (ADInstruments 

Inc.) installed on an iMac Apple computer. The data averaging window of the BPM2 was set 

at 0.3 s, with the sampling rate on PowerLab set at 200 samples/s.

Microstimulation consisted of a 7 s train of 100 Hz, 0.5 ms duration negative current pulses 

delivered by a S48 stimulator (Grass Instrument Company, Quincy, MA) and PSIU6 

stimulus isolation unit (Grass Instrument Company). Stimulation was performed with either 

an insulated, stainless steel electrode (5 MΩ; Catlog # 572000; A-M Systems Inc., Sequim, 

WA), or a glass micropipette. Micropipettes were pulled from glass tubing (World Precision 

Instrument, 1B150F-4) with a PE-2 microelectrode puller (Narashige), and micropipettes 

with a tip diameter of 50–100 μm used for stimulation. Micropipettes were filled with 
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artificial cerebral spinal fluid (ACSF) consisting of 126 mM NaCl, 26 mM NaHCO3, 3 mM 

KCl, 1.25 mM NaH2PO4, 2 mM MgCl2, 2 mM CaCl2, and 20 mM glucose; pH 7.3, 310 

mOsm, and a platinum wire was inserted. Current pulse amplitude for activating SSN was 5 

μA for metal electrodes, and a mean of 17.3 μA for glass electrodes. Data presented here for 

each rat represent an average of 3–7 SSN stimulation trials. In some rats, we additionally 

studied the effects of nNOS inhibition on the ChBF increases elicited by SSN stimulation. In 

these studies, we administered NPA (1–2 mg/kg, Tocris Bioscience) or LNAME (10 mg/kg, 

Tocris Bioscience) intravenously (iv), and determined the effect on baseline ChBF and SSN-

evoked increases in ChBF, ChBVol, ChBVel, and arterial blood pressure (ABP) over an 

additional 3–7 stimulation trials, and compared to SSN stimulation effects prior to 

inhibition. For any given rat, the stimulating current pulse amplitude used after NOS 

inhibition was the same as used before drug delivery.

2.2.3. Histological verification of stimulation sites—At the end of the ChBF 

recording session and while yet deeply anesthetized, rats were perfused transcardially with 

150–200 ml sodium phosphate buffered saline (PBS, 0.9% sodium chloride dissolved in 

0.01M PB), followed by 400–500 ml fixative of 4% paraformaldehyde prepared in 0.1 M 

sodium phosphate buffer (pH 7.4) with 0.1 M lysine and 0.01 M sodium periodate (the PLP 

fixative). Brains were removed and cryoprotected at 4 °C for at least 24 h in 20% sucrose - 

10% glycerol - 0.138% sodium azide in 0.1 M sodium phosphate buffer. Brains were then 

frozen with dry ice, and coronal sections cut with a sliding microtome at 40 μm and 

collected as 6 parallel series. We used four histological methods to confirm that electrode 

placement was within choroidal SSN: 1) analysis of the location of the electrode tip in 

choroidal SSN in cresyl violet-stained sections; 2) analysis of the location of the electrode 

tip in choroidal SSN in neuronal NOS (nNOS) immunostained sections; 3) analysis of the 

location of the electrode tip in choroidal SSN in choline acetyltransferase (ChAT) 

immunostained sections, and 4) analysis of the location of the electrode tip in choroidal SSN 

in cfos immunostained sections. Our immunolabeling and cresyl violet staining procedures 

have been described in detail in our previous publications (Deng et al., 2007; Li et al, 2010, 

2016b). In some cases, two-color DAB labeling for cfos and nNOS (Li et al, 2015, 2016b) 

was used as in our prior studies to detect stimulation-activated (cfos+) neurons of choroidal 

SSN (nNOS+). The sections were examined with an Olympus BH-2 microscope with 

standard transmitted light. Images were captured using a Spot Idea™ camera and a Spot 

imaging software (Diagnostic Instruments, Inc.). Only rats with confirmed choroidal SSN 

stimulation sites are used here in the presentation of SSN stimulation data (Fig. 1).

2.2.4. Statistical analysis of SSN stimulation data—We analyzed the effects of 

choroidal SSN stimulation on ChBF, ChBVol, ChBVel, and ABP. For the time blocks prior 

to stimulation, we calculated the mean for ChBF, ChBVol, ChBVel, and ABP, which served 

as the baseline level for these parameters against which to evaluate stimulation effects. For 

analysis of the response to choroidal SSN activation, we compared the response during the 7 

s of SSN stimulation to the response for that parameter in the 7 s prior to stimulation, using 

paired t-tests. For the nNOS inhibition studies, paired t-tests were used to compare choroidal 

SSN responses before nNOS inhibitor administration and after administration (during the 

time of drug efficacy). Regression analysis was used to evaluate the contributions of ABP, 
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ChBVol and ChBVel changes to choroidal SSN stimulation-evoked ChBF changes. Group 

results are plotted as mean ± SEM.

2.3. Studies of effects of choroidal SSN lesions

2.3.1. Choroidal SSN lesions—Unilateral electrolytic lesions of choroidal SSN were 

made in animals deeply anesthetized with ketamine/xylazine (87/13 mg/kg) by passing 1 

mA anodal current for 15 s through a metal electrode placed in SSN, using stereotaxic 

methods as described above for stimulating electrode placement in choroidal SSN. 

Following a subcutaneous injection of lidocaine into the scalp, the skin and fascia overlying 

the skull were retracted, and a hole drilled in the skull overlying the lesion site, using the 

same coordinates as for stimulation studies. Following the lesion, the skin was sutured with 

wound clips, and the rat returned to its home cage after recovery from anesthesia. Wound 

clips were removed at 10–14 d after surgery.

2.3.2. Studies of effects of choroidal SSN destruction on the 
electroretinogram—Prior to the lesion and at about 4 and 10 weeks post lesion, the 

electroretinogram (ERG) was recorded with the Espion E2 system from Diagnosys, with 

Espion V5 software (Version 5.0.52) running on Windows XP platform, as described 

previously (Li et al., 2018). Animals were dark adapted overnight, and anesthetized by ip 

injection of 0.1 ml/100g of a ketamine/xylazine mixture (87/13 mg/kg) prior to the ERG 

recording session. Each eye was dilated with 1% cyclopentolate hydrochloride Ophthalmic 

solution (NDC 17478-100-12 from Akorn). The dorsum of the head was shaved for 

placement of a reference electrode under the skin at the midpoint between orbits, and a 

ground electrode was inserted under the skin on the right hind foot. Reference and ground 

electrodes were disposable low-profile EEG needle electrodes (112-812-48 TP from 

Chalgren Enterprises, Inc. 380 Tomkins Ct. Gilroy, CA, 95020, USA). One drop of 

Methocel (2%, from OmniVision) was applied to the cornea of each eye when positioning 

gold ring electrodes (3 mm diameter Goldring; Roland Consult, Brandenburg, Germany), to 

promote conductivity and reduce impedance. A ColorDome Ganzfeld then was centered 

over the animal, and a series of seven light stimulus intensities were presented to the animal: 

0.0001, 0.001, 0.01, 0.1, 1, 10, 758 cd s per meter squared (cd·s/m2). The lower light 

intensities test rod function and the last light intensity activates rods and cones. After the 

ERG recording, the rats were allowed to recover from anesthesia on a warming pad, and 

returned to their home cage. For analysis, the amplitudes and latencies of the a-wave and b-

wave were measured for the averaged traces for each stimulus step with a custom Igor Pro 

(version 6.37) routine, and exported to Excel, with b-wave measured from baseline. One-

way ANOVA with posthoc comparisons, using the Bonferroni correction for multiple 

comparisons, was performed using IBM SPSS Statistics (version 22) to evaluate ERG 

performance over time post lesion in rats with unilateral choroidal SSN lesions and in rats 

with lesions that missed choroidal SSN. Note that no effects on latency were observed, so 

our presentation focuses on amplitude.

2.3.3. Studies of the effects of choroidal SSN destruction on ChBF 
baroregulation—For six rats in which choroidal SSN was targeted for electrolytic 

destruction prior to ERG analysis, we examined ChBF baroregulation, measuring ChBF as 
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described above. For these studies, continuous ABP and ChBF signals were sampled at a 

rate of 200 samples/s, and analyzed with LabChart 7 Pro software. After about 30 min of 

baseline recording, blood was withdrawn (5 ml) to evaluate ChBF during low ABP for 10–

15 min. Subsequently, LNAME in hepanized saline (50 mg/kg) was infused to assess ChBF 

baroregulation during high ABP, if needed, for an additional 30 min. For analysis, we 

selected 10 s blocks of ABP and ChBF for every minute of stable recording, and exported 

the values for each time block to Excel. To assess baroregulation, data for each rat were 

grouped into 5 mmHg bins, and all ABP values within a bin were averaged to calculate the 

mean ABP for that bin, as were the contemporaneous ChBF values for the samples in that 

same ABP bin range. Histological analysis revealed that 3 of the rats had choroidal SSN 

destruction and 3 did not. Accordingly, we could compare these two sets of rats to assess the 

impact of a choroidal SSN lesion on baroregulation during low systemic blood pressure.

2.3.4. Histology – perfusion and tissue harvest—Three-four months post surgery, 

rats with lesions targeting choroidal SSN used in the ERG studies or intended for 

immunohistochemical analysis of retina were deeply anesthetized with ketamine/xylazine 

(87/13 mg/kg), and perfused transcardially with 150–200 ml of 0.9% saline and 400–500 ml 

of paraformaldehyde prepared in 0.1 M sodium phosphate buffer (pH 7.4) with 0.1 M lysine 

and 0.01 M sodium periodate (PLP fixative). For the six rats used in assessing 

baroregulation, transcardial perfusion occurred immediately after the ChBF recording 

session. Eyes to be used for retinal immunolabeling were removed from the rats after 

perfusion, the cornea was incised with a sharp scalpel to create a flap, and PLP fixative was 

infused into the eye cup. The entire eye was then immersed in PLP for 2 h at 4 °C, the 

cornea and lens then removed, and the eye immersed in 20% sucrose prepared in 0.1 M 

sodium phosphate buffer (pH 7.4) with 0.02% sodium azide at 4 °C until cryosectioning for 

use in immunolabeling. Brains were evaluated for lesion accuracy using the same approach 

described above for assessing stimulation site accuracy.

2.3.5. Immunolabeling of retina—Eye cups were embedded for cryostat sectioning in 

OCT, frozen and sectioned across the horizontal meridian at 20 μm. The sections were 

collected onto pre-cleaned Superfrost®/Plus microscope slides as sectioned, dried on a slide 

warmer, and stored at −20 °C until processed for immunolabeling for retinal or choroidal 

markers, including glial fibrillary acidic protein (GFAP), VIP, VMAT2 (vesicular 

monoamine transporter 2), and nNOS (neuronal nitric oxide synthase). Labeling was 

visualized either by immunofluorescence or peroxidase anti-peroxidase (PAP) methods, as 

described in our prior studies (Kimble et al., 2006; Li et al, 2016b, 2018). Sections prepared 

by immunofluorescence were viewed and images captured using a Zeiss 710 confocal laser 

scanning microscope (CLSM). Sections prepared by the PAP method were analyzed and 

images captured using transmitted light microscopy. For analysis of GFAP immunolabeling 

in Müller cells as detected by the PAP method, retinal images were coded for blinded 

quantification of GFAP-immunolabeled retinal Müller cell processes, as described 

previously (Kimble et al., 2006). In brief, within a 200 μm window from two randomly 

sampled images from superior retina from each eye from each rat, each GFAP 

immunolabeled Müller cell process was scored on a 0–5 scale based on its penetrance into 

the retina from vitread to sclerad side and the total for all processed detected summed. The 
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score for each retina then reflected the abundance and penetrance of the GFAP 

immunolabeled Müller cell processes per 200 μm retinal length. Results for GFAP process 

scores were analyzed between SSN lesion rats and control rats (SSN misses and rats with no 

lesion) via unpaired t-tests.

2.3.6. qPCR of retina—To further assess the Müller cell response to choroidal SSN 

destruction, we used qPCR to measure GFAP expression in retina, using methods described 

in Honig et al. (2019). Control rats with either no lesion (n = 3) or a lesion that largely 

spared (94.0% intact) right choroidal SSN (n = 2), or rats with a lesion that largely destroyed 

(27.5% intact) right choroidal SSN (n = 2) were sacrificed, left and right retina separately 

dissected from each rat, and the tissue homogenized in TRIzol Reagent (Thermo Fisher 

Scientific, Waltham, MA). Chloroform was added to the homogenate, centrifuged, and the 

upper colorless phase transferred to a clean tube. Precipitation was with 100% isopropanol 

and linear acrylamide. Precipitate was washed with 75% ethanol and the final mRNA pellet 

was suspended in DEPC (diethylpyrocarbonate) treated water. For subsequent qPCR 

analysis, cDNA was generated using reverse transcription (RT) performed with the 

Transcriptor First Strand cDNA Synthesis Kit (Roche Applied Science, Mannheim, 

Germany), combining 100 ng of RNA with reaction buffer and enzyme mix, following 

manufacturer’s directions. Primers and probes for GFAP are shown in Table 1.

3. Results

3.1. Effects of choroidal SSN stimulation on ChBF

3.1.1. Sampling of ChBF effects of choroidal SSN stimulation at different 
choroidal sites—We sampled ChBF responses to choroidal SSN stimulation via a metal 

electrode at two sites just anterior to the equator of the eye (one temporal to the insertion of 

the superior rectus and one nasal to the insertion of superior rectus), and a third site posterior 

to the equator and nasal to the superior rectus (Fig. 1). SSN stimulation with metal 

electrodes yielded significant choroidal blood flow increases at all three sites. For example, 

for rats assessed at the site temporal to the superior rectus (site 1 in Fig. 1), electrical 

activation of SSN with trains of 5 μA negative current pulses yielded mean ChBF increases 

that were 136.1% above prestimulation baseline (p = 0.0162), with peak increases that were 

222.7% above baseline (p = 0.0121) (Fig. 2A). We found similar effects of SSN stimulation 

for rats assessed at the anterior nasal site (site 2 in Fig. 1). Electrical activation of SSN with 

trains of 5 μA negative current pulses yielded mean ChBF increases that were 165.4% above 

prestimulation baseline (p = 0.0454), with peak increases that were 330.2% above baseline 

(p = 0.0048) (Fig. 2B). Significant ChBF increases with 5 μA SSN stimulation were also 

observed for rats at the posterior nasal site (site 3 in Fig. 1), with mean increases being 

127.6% above pre-stimulation baseline (p = 0.0120) and the peak increase being 239.8% 

above baseline (p = 0.0110) (Fig. 2C). At none of these three sites did ABP increase 

significantly during SSN activation. Thus, increased perfusion pressure due to increased 

ABP was unlikely to be a driver of the ChBF increases with SSN stimulation.

We additionally examined the effect of electrical activation of choroidal SSN with negative 

current pulses (mean of 17.3 μA) via a glass pipette at the nasal anterior recording site, 
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which also yielded significant ChBF increases, although the increases were lesser than with 

metal electrodes, presumably due to the lesser spread of current with the finer tipped glass 

micropipettes (Fig. 2D). The mean ChBF increases for rats with stimulation with glass 

pipettes were, nonetheless, significantly elevated above baseline by 20.5% (p = 0.0097), and 

the peak increases were significantly elevated above baseline by 30.9% (p = 0.0094). Mean 

systemic ABP during SSN stimulation, by contrast to the choroidal effects, was only 1.05% 

above basal, but nonetheless significant by a paired t-test (p = 0.0090) (Fig. 2D). As the 

overall analysis below of the correlations between ChBF on one hand, and ChBVol, ChBVel, 

and ABP on the other shows, however, increased choroidal perfusion pressure due to 

increased ABP was unlikely to be a driver of the large ChBF increases with choroidal SSN 

stimulation.

3.1.2. Choroidal SSN stimulation – relative contributions of volume and 
velocity to choroidal blood flow increases—We also examined the effects of 

choroidal SSN stimulation at each of the three sites on ChBVol and ChBVel. For the rats 

assessed at the site temporal to the superior rectus (site 1 in Fig. 1), electrical activation of 

SSN yielded ChBF increases that were more velocity-driven (76.2% mean and 119.8% peak 

above baseline) than volume-driven (34.2% mean and peak 61.0% above baseline), with the 

mean and peak for the former significantly greater than baseline (mean: p = 0.0391; peak: p 

= 0.0365), but both only approaching significance for the latter (mean: p = 0.1213; peak: p = 

0.05859) (Fig. 2A). We found similar effects of SSN stimulation at the anterior nasal site 

(site 2 in Fig. 1). The increase was again more velocity-driven (mean 99.4% above baseline) 

than volume-driven (mean 36.5% above baseline), with the mean and peak for velocity 

significantly greater than baseline (mean: p = 0.0276; peak: p = 0.0391), but not for volume 

(mean: p = 0.2177; peak: p = 0.2279) (Fig. 2B). At the posterior nasal site (site 3 in Fig. 1), 

the increase as well was more velocity-driven (mean 114.1% above baseline, and peak 

180.8% above baseline) than volume-driven (mean 4.0% above baseline, and peak 20.7% 

above baseline), with ChBVel significantly greater than baseline for the mean increase (p = 

0.0476) but not ChBVol (p = 0.6206) (Fig. 2C). Peak velocity at this site also trended toward 

significantly different than baseline (p = 0.0600). Across the three sites, however, there was 

a clear tendency for ChBVol to also be increased by choroidal SSN stimulation, albeit less so 

than ChBVel. Pooling the data across sites (n = 12), mean and peak ChBVol were seen to be 

significantly increased during stimulation (mean: p = 0.0273; peak: p = 0.0063).

In the case of electrical activation of choroidal SSN via a glass micropipette, (Fig. 2D), the 

mean and peak increases in ChBF at the nasal anterior site were more equally driven by 

volume and velocity increases. Significant 10.7% and 22.0% increases were seen for mean 

and peak choroidal blood volume (p = 0.0126 and p = 0.0060), respectively, and significant 

9.8% and 15.1% increases were seen for mean and peak choroidal blood velocity (p = 

0.0310 and p = 0.0152), respectively. The slightly different results with stimulation with 

glass micropipettes may reflect a relatively lesser recruitment of choroidal SSN neurons 

responsible for orbital vasodilation with the lesser current spread with glass than metal 

electrodes.

We used regression analysis to further assess the contributions of ABP, ChBVol and ChBVel 

to the observed ChBF increases with activation of choroidal SSN across all three sites and 
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both stimulating electrode types. We found that both ChBVol and ChBVel were significantly 

correlated with the ChBF increase, considering both the mean increase and the peak 

increase, but the correlation was higher and slope of the regression line greater for ChBVel 

than ChBVol (Fig. 3). For example, the correlation of mean ChBF during SSN stimulation 

with ChBVel was r = 0.77653 but the correlation with ChBVol was only r = 0.52503. 

Moreover, the slope of the mean ChBF regression line for ChBVel was 0.7321, but it was 

only 0.1892 for ChBVol. Similarly, the correlation of peak ChBF during SSN stimulation 

with ChBVel was r = 0.8150 but the correlation with ChBVol was only r = 0.5596, and the 

slope of the peak ChBF regression line for ChBVel was 0.7670, but it was only 0.1926 for 

ChBVol. By contrast, across these cases the mean and peak ABP changed little during 

choroidal SSN stimulation and showed no significant positive correlation with ChBF during 

SSN stimulation. Moreover, the slope of the relationship of ChBF with ABP was flat for 

both mean and peak ChBF (Fig. 3). Thus, ChBVel increases (presumably reflecting intra-

orbital vessel vasodilation) were a greater contributor to ChBF increases during choroidal 

SSN stimulation than ChBVol increases (presumably reflecting intrachoroidal vasodilation), 

although both did contribute. Changes in ABP were, however, not significant contributors to 

the ChBF increase.

3.1.3. Choroidal SSN stimulation - choroidal blood flow dynamics—The 

relative ChBF, ChBVol, ChBVel and ABP changes prior to, during and after choroidal SSN 

stimulation were plotted for six of the rats with glass micropipette stimulation to further 

examine the hemodynamics of the effect of electrical stimulation of choroidal SSN on ChBF 

(Fig. 4). The ChBF increase reached its peak by about 5 s after current onset, declined 

slightly over the next 2 s of stimulation, and then rapidly declined and returned to baseline 

by about 6 s after stimulation offset. The increase in choroidal blood velocity (ChBVel) was 

coincident with the ChBF increase and peaked at about the same point after stimulation 

onset as the ChBF peak. ChBVol increased slightly more slowly initially than did ChBVel, 

and its peak was slightly later. Both ChBVol and ChBVel declined rapidly with stimulation 

offset, the latter more so. Choroidal SSN activation for these cases yielded a slight, gradual 

rise in ABP that did not begin until after about 3 s of stimulation, resulting in a peak ABP of 

13.7% above baseline at 6.9 s after onset of SSN stimulation. The ABP quickly returned to 

basal levels by about 5 s after stimulation offset (Fig. 4).

3.1.4. Effect of NOS inhibition on ChBF increase during choroidal SSN 
stimulation—To evaluate the NO-dependence of SSN-mediated ChBF increases, we 

examined the effects of NPA on the evoked increases in four rats at the anterior nasal site 

(two with metal electrode stimulation and two with glass micropipette stimulation) and the 

effects of LNAME at the anterior temporal site in one rat (Fig. 5A). Across these rats, we 

found that NOS inhibition had no significant effect on mean basal ABP (6.0% above basal, p 

= 0.1179), consistent with nNOS rather than eNOS inhibition for the four NPA rats. NOS 

inhibition did slightly but significantly reduce mean basal ChBF (18.4% below basal p = 

0.0221). The elevating effect of stimulation of choroidal SSN on mean and peak ChBF was 

also significantly diminished after NOS inhibition. For example, the mean ChBF increase 

with nNOS inhibition was 66.7% of that prior to NOS inhibition and no longer significantly 

different from baseline (p = 0.0759). Additionally, the mean ChBF during choroidal SSN 
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stimulation was significantly less after NOS inhibition than prior to inhibition (p = 0.0033). 

Similarly, the peak ChBF was only 63.1% of that prior to NOS inhibition, and the magnitude 

of the peak response was significantly less than prior to nNOS inhibition (p = 0.0104) (Fig. 

5B). The effect of nNOS inhibition on the evoked ChBF increase appears to have been 

largely driven by an effect on ChBVel, since the blunting effects of nNOS inhibition on the 

mean and peak response trended or were significant for ChBVel (mean: p = 0.0594; peak: p 

= 0. 0418), but were neither in the case of ChBVol (mean: p = 0.3508; peak: p = 0.6336).

3.2. Effects of choroidal SSN lesions

3.2.1. Effects of choroidal SSN lesion on scotopic ERG—We evaluated the 

effects of right choroidal SSN destruction on the scotopic ERG a-wave and b-waves over the 

10-week period after the lesion in 11 rats, with rats tested at multiple time points over this 

period. To assess changes in rats with choroidal SSN lesion over time, we compared to pre-

lesion values for 7 of these rats (not all were assessed pre-lesion) plus three more that 

received no lesion. To assess specificity of lesion effects, we also evaluated the scotopic 

ERG a-wave and b-waves over a 10-week period in 9 control rats in which the lesion did not 

include choroidal SSN, with rats again tested at multiple time points over this period. To 

assess changes over time for the SSN-miss rats, we compared to pre-lesion values for six of 

them (not all were assessed pre-lesion) plus the three more that received no lesion. The rats 

were sacrificed subsequent to ERG testing, and immunohistochemistry was carried out on 

the brain to assess choroidal SSN lesion accuracy, and thereby classify rats as SSN lesion 

cases (SSN-Lx) or SSN miss cases (SSN-miss). Immunolabeling for ChAT or nNOS, both of 

which are found in choroidal SSN neurons (Fig. 6), distinguished cases with choroidal SSN 

destruction from those in which the lesions missed choroidal SSN (Cuthbertson et al., 2003). 

The 11 cases classified as SSN-Lx averaged 83.7% loss of choroidal SSN, ranging from 

complete to 50% destruction. The 9 cases classified as SSN-miss included four cases that 

had electrode penetrations or lesions that were near choroidal SSN, yielding some slight loss 

of choroidal SSN neurons ranging from 5 to 10%. The penetrations in the remaining 5 miss 

cases were not near enough to SSN to yield any evident choroidal SSN neuron loss, and the 

overall mean loss for the SSN-miss cases was 2.8%. For both SSN-Lx and SSN-miss groups, 

we evaluated the change in scotopic ERG a-wave and b-wave peaks and latencies over time 

post lesion for both the left and right eyes, with assessments done pre-lesion, at about 4 

weeks post lesion, and again at about 10 weeks post lesion.

For the eyes ipsilateral to right SSN-Lx, the scotopic ERG a-wave and b-wave peaks both 

showed a reduced amplitude compared to their pre-lesion control comparison group right 

eyes. In the case of the a-wave, the peak amplitudes with the brighter intensities were greater 

in control eyes than at either post-lesion time point in the SSN-Lx right eyes, with the deficit 

growing worse from 4 to 10 weeks (Fig. 7A). This was most evident at the 758 cd·s/m2 

intensity, for which the a-wave peak in SSN-Lx right eyes was only 72.6% of control right 

eyes at about 4 weeks post lesion and 60.2% at about 10 weeks post lesion. Notably, the a-

wave was already significantly reduced for the brightest 3 light intensities by about 4 weeks 

post lesion (p = 0.0150 by ANOVA), with the deficit slightly greater at about 10 weeks post 

lesion (p = 0.0018 by ANOVA). By contrast, the a-wave peak amplitudes in the right eyes of 

rats with lesions that missed choroidal SSN (Fig. 7B) did not differ significantly from their 
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control comparison group right eyes at the 4-week time point (p = 0.4114), although they did 

show a slight but significant reduction at the 10-week post lesion time point (p = 0.0338). 

Thus, the a-wave decrement in the eyes ipsilateral to choroidal SSN destruction at 4 weeks 

post lesion is largely a specific effect of the SSN destruction. The slight a-wave decrement at 

10 weeks in the eyes ipsilateral to lesions that did not destroy choroidal SSN, however, 

either reflects some nonspecific lesion effect, or an effect on choroidal SSN due to its 

proximity to the lesion site in several of the choroidal SSN miss cases. In any case, the right 

eye a-wave deficit at 10 weeks relative to prelesion was greater in the rats with choroidal 

SSN destruction.

Right choroidal SSN destruction also impaired the b-wave in the eyes ipsilateral to the 

lesion, in this case with the abnormality being not significant until about 10 weeks post 

lesion (p = 0.0000006), and overall amplitudes reduced by 23.6% at that time (Fig. 7C). In 

the case of the b-wave, the peak amplitudes in the right eyes of right SSN-miss rats did not 

differ significantly from prelesion control values at either the 4-week (p = 0.4801) or 10-

week post lesion time points (p = 1.0000) (Fig. 7D). Thus, the b-wave decrement in the eyes 

ipsilateral to choroidal SSN destruction appears to be a specific effect of the choroidal SSN 

destruction. Note that the right eye b-wave to a-wave ratio for the two brightest light 

intensities did not differ significantly from control at 4 or 10 weeks in either SSN-Lx rats 

(4wk p = 0.5121; 10wk p = 0.1368), or SSN-miss rats (4wk p = 0. 0.6500; 10wk p = 0. 

0.2661), suggesting comparable effects of SSN destruction on a-wave and b-wave.

Somewhat surprisingly, the right SSN destruction also had an impact on the a-wave and b-

wave in the eye contralateral to the lesion, though less than for the right eye. In the case of 

the a-wave, the peak amplitudes for the brightest 3 light intensities for the left eye did not 

differ significantly from prelesion left eye values until 10 weeks post lesion (p = 0.0016) 

(Fig. 8A). The left eyes in rats with missed right choroidal SSN lesions, however, did not 

differ significantly from the prelesion control comparison group in their a-wave peak 

amplitudes at either the 4-week (p = 0.3092) or 10-week (p = 0.0578) time points (Fig. 8B). 

Similarly, the b-wave peak amplitude was also significantly reduced in the left eyes of rats at 

10 weeks after right choroidal SSN destruction, by about 27.4% compared to prelesion 

control left eye values (p = 0.000026) (Fig. 8C), and again no such b-wave amplitude 

reduction was seen for the left eyes in rats with missed right choroidal SSN lesions at either 

4 weeks (p = 0.7147) or 10 weeks (p = 0.5221) post lesion (Fig. 8D). The left eye b-wave to 

a-wave ratio for the two brightest light intensities also did not differ significantly from 

control at 4 or 10 weeks in either SSN-Lx rats (4wk p = 0.8410; 10wk p = 0.6491) or SSN-

miss rats (4wk p = 0.4936; 10wk p = 1.000). The reasons why the right choroidal SSN 

destruction might have had an impact on the left eye a-wave and b-wave are considered in 

the Discussion.

3.2.2. Effect of choroidal SSN lesion on choroidal baroregulation—The impact 

of variation in ABP on ChBF was assessed for right eyes of three rats with choroidal SSN-

Lx and right eyes of three rats in which the lesion missed SSN. To assess choroidal 

baroregulation, we plotted ChBF as a function of ABP, with both normalized to baseline for 

each animal, divided into progressive ABP bins of 5 mmHg, and calculated group means for 

each bin (Fig. 9), as in our prior studies of baroregulation (Li et al., 2018; Reiner et al, 2010, 
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2011). The slope of the relationship between ABP and ChBF over the low ABP range (i.e. 

<100% of basal ABP) approached 1 for the eyes ipsilateral to choroidal SSN destruction 

(slope = 0.6132), and ABP and ChBF were highly correlated (r = 0.716). Thus, choroidal 

SSN destruction impaired the ability of ChBF to compensate and thereby remain stable as 

ABP decreased, due apparently to a loss of centrally mediated parasympathetic vasodilation 

of the choroid (Fig. 9A). Nonetheless, for the eyes ipsilateral to choroidal SSN destruction, 

ChBF remained relatively flat at ABP greater than 100% of basal. By contrast, 

baroregulation during both low ABP and high ABP was normal in eyes ipsilateral to lesions 

that missed SSN, (Fig. 9B), with the slope of the ABP-ChBF relationship and the ABP-

ChBF correlation approaching zero in both cases.

3.2.3. Geographic extent of parasympathetic and sympathetic choroidal 
innervation and effect of choroidal SSN lesion—We examined choroidal innervation 

by parasympathetic and sympathetic fibers in normal rats and rats with choroidal SSN 

destruction, to evaluate the topographic distribution of the choroidal innervation and assess 

if it was altered by choroidal SSN destruction. Immunostaining of parasympathetic 

choroidal fibers for nNOS or VIP showed the parasympathetic innervation to be present 

throughout the geographic extent of the eye (Fig. 10A–D), and be not obviously altered by 

choroidal SSN destruction (Fig. 10E and F). Similarly, immunostaining of sympathetic 

choroidal fibers for VMAT2 (vesicular monoamine transporter 2) showed that they too were 

present throughout the geographic extent of the eye, and not obviously altered by choroidal 

SSN destruction (Fig. 10G and H).

3.2.4. Effect of choroidal SSN lesion on the abundance of GFAP+ müller cell 
processes—We sought to determine if impairment of adaptive control of ChBF by the 

choroidal SSN-PPG circuit was associated with retinal pathology, as reflected by increased 

GFAP immunolabeling of retinal Müller cells processes. Rats (n = 19) were sacrificed nine 

to twenty weeks after attempted destruction of choroidal SSN (mean = 12.8 weeks), in some 

cases after prior ERG assessment. Histological analysis of hindbrain sections for these rats 

revealed that twelve had successful destruction of choroidal SSN and seven did not. 

Immunolabeling revealed that in the rats with SSN-Lx, GFAP immunolabeling was 

increased in retinal Müller cell processes throughout the ipsilateral retina (Fig. 11), and in 

contralateral retina as well. The GFAP immunolabeled Müller cell processes in the eyes 

from SSN-Lx rats in many cases traversed the inner plexiform layer (IPL). By contrast, in 

control cases, which included four normal rats with no lesion attempt and the seven cases 

with lesions that missed choroidal SSN, GFAP immunolabeling was mainly limited to the 

nerve fiber layer and ganglion cell layer, and rarely extended much beyond the ganglion cell 

layer (Fig. 11). Using a scoring system that reflects both the abundance of GFAP 

immunolabeled processes and the extent of their penetration into the retina (Kimble et al., 

2006), we found that the GFAP immunolabeled Müller cell processes in SSN-Lx retinas 

were significantly increased (p < 0.0135) for both eyes compared to control (Fig. 12). The 

reasons why the right SSN destruction might have had an impact on left eye GFAP+ Müller 

cell processes, as it had for left eye ERG, are considered in the Discussion.
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3.2.5. Effect of choroidal SSN lesion on retinal GFAP expression—We also 

assessed GFAP expression after SSN-Lx by qPCR, comparing right and left retina in two 

rats that survived a mean of 11 days after SSN-Lx compared to right and left retina from 3 

control rats with no lesion and two rats with lesions that largely spared choroidal SSN. We 

found that GFAP was significantly increased 8-fold by SSN-Lx (p = 0.0110).

4. Discussion

Our studies indicate that the parasympathetic innervation of choroid by the SSN-PPG circuit 

mediates a choroid-wide increase in ChBF. In conjunction with our prior work on central 

SSN circuitry connectivity and function (Li et al, 2010, 2015, 2016a, 2016b; Reiner et al., 

2010) and the present work on the adverse effects of choroidal SSN destruction on ChBF 

baroregulation, our studies indicate that the parasympathetic regulation of choroid mediates 

a vasodilatory compensation during downward fluctuations in ABP that serves to maintain 

stable ChBF. Impairment of this autonomic control would, thus, be expected to cause 

significant episodic insufficiency of ChBF, compounded by the effects of reduced basal flow. 

Consistent with the chronic hypoxic and ischemic stress such choroidal underperfusion 

would be expected to cause (Feigl, 2009), we found that disruption of parasympathetic 

regulation of ChBF harms retina, as we found it to be associated with reductions in the 

scotopic ERG a-wave and b-wave peaks and Müller glial cell activation within months of the 

perturbation. These findings and their implications for age-related decline in 

parasympathetic control of ChBF, and other diseases and conditions exhibiting reduced 

ChBF, are discussed in more detail below.

4.1. Parasympathetic control of choroidal blood flow

The PPG profusely innervates choroidal and orbital blood vessels with fibers co-containing 

VIP and nNOS, with the postganglionic axons from the PPG entering the choroid directly on 

the choroidal feeder vessels and by joining the short ciliary nerves from the ciliary ganglion 

to the choroid (Reiner et al, 2012, 2018). Numerous studies indicate that VIP and NO 

derived from PPG terminals on orbital and choroidal blood vessels exert a vasodilatory 

influence on them (summarized in Reiner et al., 2018, 2012). The PPG in mammals receives 

its preganglionic parasympathetic input from SSN (Cuthbertson et al., 2003; Li et al., 2015; 

Ten Tusscher et al., 1990), with those preganglionic neurons controlling choroid slightly 

more rostral and medial than those controlling other PPG targets, such as the Meibomian 

glands (LeDoux et al., 2001) and the lacrimal gland (Tóth et al., 1999). Activation of 

preganglionic input to the PPG by facial nerve stimulation yields a ChBF increase, that 

appears to be mediated by both NO and VIP released from PPG terminals (Nilsson, 1996, 

2000; Nilsson et al, 1984, 1985; Stjernschantz and Bill, 1980). As the studies addressing 

these points used radiolabeled microspheres to measure ChBF, they could not provide 

information on the regional nature of ChBF control by the SSN input to the PPG.

Using transcleral laser Doppler flowmetry (LDF) to measure ChBF at anterior sites along 

the upper surface of the rat eye, Steinle et al. (2000) reported large increases with direct SSN 

stimulation, which could be significantly decreased by prior intravenous administration of 

the general NOS inhibitor LNAME or the nNOS-selective inhibitor TRIM (1-(2-
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Trifluoromethylphenyl)imidazole). Steinle et al. (2000), however, did not detect ChBF 

increases in posterior choroid with SSN stimulation, raising the possibility that PPG control 

of ChBF was limited in its regional extent. Our present work shows that SSN activation of 

PPG input to the orbit drives a ChBF increase at anterior and posterior choroidal sites. In 

light of this and in light of our evidence for PPG innervation of choroid throughout the 

regional extent of the eye, it is highly likely that the SSN-PPG circuit drives ChBF increases 

in all geographic sectors of the eye, and at least in part mediated by the vasodilatory action 

of NO. It may be that Steinle et al. (2000) did not detect ChBF increases in posterior choroid 

of rats with SSN stimulation because their approach of slitting the cornea to access the 

posterior retina eliminated intraocular pressure (IOP) and thereby compromised choroidal 

vasodilation in response to preganglionic activation. Note that studies in cats and rabbits 

have shown parasympathetic regulation of ChBF in the posterior pole of the eye in 

preparations in which IOP was maintained (Kiel, 1999; Mann et al., 1995; Riva et al., 1994).

In prior studies, we demonstrated excitatory input to choroidal SSN from several central 

brain areas that play a role in maintaining stable systemic ABP (Li et al, 2010, 2015), 

including the caudolateral part of the NTS, as well as the dorsal part of the paraventricular 

nucleus (PVN) of the hypothalamus, the raphe magnus (RaM), the B3 serotonergic cell 

group of the pons, the A5 noradrenergic group of the pons, and the rostral ventrolateral 

medulla (RVLM). Since the projection from NTS to choroidal SSN, in particular, appeared 

to provide a means by which ABP signals can modulate ChBF, in a prior study we 

confirmed that activation of baroreceptive NTS evoked ChBF increases in rat eye (recording 

from what is here called the anterior nasal site), driven by increases in both ChBVol 

presumably caused by choroidal vasodilation, and ChBVel presumably caused by orbital 

vessel dilation (Li et al., 2016b). The increases in ChBF with NTS stimulation were 

significantly reduced by intravenous administration of NPA, thus implicating intrachoroidal 

and orbital nitrergic PPG terminals in the NTS-elicited ChBF increases. Our present findings 

with choroidal SSN stimulation also indicate that ChBF is increased by both vasodilation of 

orbital and choroidal vessels, and partly mediated by NO. Our overall studies, thus, suggest 

a role of the input of baroresponsive NTS to choroidal SSN in the blood pressure-dependent 

regulation of ChBF. Our present studies showing that, like with nNOS inhibition (Reiner et 

al., 2010), choroidal SSN destruction impairs choroidal baroregulation during low systemic 

ABP directly supports this conclusion.

4.2. Parasympathetic control of choroidal blood flow and retinal health

Reflexive PPG-mediated choroidal vasodilation could be important for maintaining stable 

ChBF and thereby metabolic support of the retina during the routine, daily bouts of low 

ABP, such as might occur during inactivity, rest, or sleep, as well as for preventing retinal 

hypoxia and ischemia during extreme ABP-lowering events due to injury or blood loss (Bill, 

1985; Bill and Sperber, 1990). In the present study, we found that electrolytic destruction of 

the right choroidal part of SSN significantly diminished the right eye ERG a-wave and b-

wave amplitudes by 10 weeks after ipsilateral SSN destruction, with the deficit already 

evident for the a-wave by about 4 weeks post lesion. By contrast, animals with no lesion or 

lesions that missed right choroidal SSN (SSN-miss) showed no b-wave deficit, and only a 

lesser a-wave deficit (perhaps attributable to the proximity of some of the SSN misses to 
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choroidal SSN). Surprisingly, left eye a-wave and b-wave abnormalities were also seen in 

the SSN-Lx rats (but not SSN miss rats). In the immunohistochemical evaluation of the 

impact of the right SSN lesion on the retina, we found that retinal GFAP expression and 

GFAP immunolabeling of Müller cell processes traversing the IPL were significantly 

upregulated throughout the ipsilateral retina in SSN-Lx rats. Again, we observed that the left 

eye was also affected, with GFAP+ Müller cell processes significantly increased in the left 

retina as well. The contralateral effect of choroidal SSN destruction is somewhat surprising, 

since the SSN projection to the PPG is thought to be exclusively ipsilateral (Cuthbertson et 

al., 2003; Li et al, 2010, 2015; Tóth et al., 1999). In the course of the present studies 

involving evaluation of the accuracy of the stimulation sites in right choroidal SSN by cfos 

immunolabeling, we did, however, note that such stimulation invariably yielded a few cfos+ 

neurons in the left choroidal SSN. This suggestion of a projection from one choroidal SSN 

to the other was supported when we re-examined pathway tracing cases from our prior 

studies on choroidal SSN inputs (Li et al, 2010, 2015). In particular, in cases with BDA3k 

retrograde tracer injection into right SSN, we observed a few BDA3k+ perikarya in left 

choroidal SSN. Thus, lesions of right choroidal SSN may have damaged this contralateral 

projection and thereby impaired the functioning of the choroidal SSN-PPG circuit of the left 

eye. It is also possible that the astrocyte network linking the two eyes via the optic nerves 

and chiasm leads to a redistribution of metabolic resources between the eyes that leads both 

eyes to be affected by unilateral choroidal SSN destruction (Cooper et al., 2020). The more 

delayed nature of the a-wave ERG abnormalities for the left eye after right SSN destruction 

is consistent with a lesser or more protracted injury process, mediated indirectly by 

astrocytes for example, than for the right eye. Note that we also observed a contralateral 

effect of impairing parasympathetic control of choroidal blood flow in our studies of the 

effects of lesions of the medial part of the nucleus of Edinger-Westphal in pigeons (Kimble 

et al., 2006).

Our present results are reminiscent of our findings in mice lacking a nNOS allele (Reiner et 

al., 2018), which would be expected to result in diminished NO-mediated control of ChBF 

by the parasympathetic nervous system. Using transcleral laser Doppler flowmetry as in the 

present study, we found that basal ChBF was ~60% of WT in nNOS ± mice at 3 months of 

age, likely due to reduced NO production to maintain basal ChBF, but baroregulation at this 

age appeared to be largely intact (perhaps due to compensation by VIP or cholinergic 

mechanisms) (Dick et al., 2002; Meng et al., 1996). Visual acuity did not differ between 

wild-type (WT) and mutant mice at 3 months of age, but was only 60% of age-matched WT 

in nNOS ± mice at 200–500 days of age. Moreover, a significant decline in photoreceptor 

abundance was seen between 200 and 500 days of age in nNOS ± mice. These findings in 

mice, as well as those presented here for rats, indicate that parasympathetic choroidal 

vasodilation appears important for long-term outer retinal health, and NO-mediated 

vasodilation is an important contributor to this. The loss of the parasympathetic control 

appears to cause both chronic reduced basal flow at basal ABP and yet more profound 

vascular insufficiency during systemic hypotensive episodes (Reiner et al., 2010). It is likely 

the diminished oxygen tension resulting from the choroidal underperfusion causes ischemic 

stress and vascular insufficiency in outer retina that sets in motion oxidative and 
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inflammatory processes that in the long-term compromise retinal health and function (Feigl, 

2009; Osborne et al., 2004).

4.3. Implications of current findings

As reviewed in our prior papers (Reiner et al, 2012, 2018), many diseases affecting the retina 

have impaired ChBF and/or diminished choroidal innervation as concomitants, including 

age-related macular degeneration (AMD), chronic hypertension, insulin-dependent diabetes, 

glaucoma, ischemic outer retinal disease, and central serous chorioretinopathy. Additionally, 

impaired ChBF regulation and diminished sympathetic and parasympathetic choroidal 

innervation is observed in aging (Reiner et al., 2012, 2018). Thus, the available data are 

consistent with the view that disturbances in maintenance of basal neurogenic choroidal tone 

and/or adaptive neural control of ChBF could be contributing factors to the retinal declines 

seen in humans and other species in hypertension, diabetes, glaucoma, ischemic retinal 

disease, and central serous chorioretinopathy, and with aging. Clearly other mechanisms also 

contribute to retinal damage in these conditions, such as edema, retinal detachment and/or 

neovascularization (Frank, 1988; Tso and Jampol, 1990; Tso, 1988). It is also possible that 

in some cases the altered ChBF control is secondary to the disease. Moreover, loss and 

narrowing of submacular choroidal vessels, as seen in normal aged eyes, may also contribute 

to ChBF abnormalities (Grunwald et al., 1998a; Ramrattan et al., 1994; Spraul et al., 1996). 

Nonetheless, the possibility that impaired neurogenic regulation of ChBF directly promotes 

degeneration in these diseases and in aging needs to be considered.

Much of the attention on disease-related ChBF impairments has focused on reductions in 

ChBF, as would occur with impaired parasympathetic control. Nonetheless, sympathetic 

control of choroid is also impaired with aging (Nuzzi et al., 1996; Smith et al., 2007), and 

defects in choroidal baroregulation during high systemic blood pressure occur in aging 

(Dallinger et al., 1998; Reiner et al., 2011), and in wet AMD (Pournaras et al., 2006). Recent 

studies by the Schmetterer group (Told et al., 2013) have shown that at least some genetic 

risk factors for AMD, such as the Y402H complement factor H (CFH) polymorphism, may 

themselves compromise autonomic sympathetic ChBF control early in life. The observation 

that CFH-deficient mice show progressive choroidal pathology further underscores a 

possible direct effect of pro-AMD polymorphisms on neurogenic control of ChBF (Von 

Leithner et al., 2009). Consistent with the premise that impaired autonomic regulation of 

ChBF early in life could contribute to AMD pathogenesis, we and others have shown an 

adverse effect of sympathetic denervation of the rat choroid on the health and functioning of 

the retina (Dieguez et al., 2018, 2019, 2020; Li et al., 2018). As we have shown here, 

impaired parasympathetic control of ChBF is also harmful to the health of the retina, with 

abnormalities evident within months of the ChBF disruption. Underscoring the possible 

contribution of defects in parasympathetic hypotensive baroregulation to AMD, Bhutto et al. 

(2010) have reported deficiency in choroidal nNOS innervation in AMD patients. Thus, 

chronic impairment of both sympathetic and/or parasympathetic regulation of ChBF 

beginning in early adulthood, driven by genetic AMD risk factors, may contribute to AMD 

progression.
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5. Conclusions

Our study using electrical stimulation of choroidal SSN indicates that activation of 

preganglionic parasympathetic input increases ChBF at diverse sites along the superior 

aspect of the eye. Our immunohistochemical evidence showing parasympathetic fibers 

distributed throughout the regional extent of the choroid indicates that choroidal SSN is 

likely to drive vasodilation throughout the regional extent of the choroid. The 

parasympathetic influence on ChBF is partially mediated by nitrergic postganglionic 

terminals. Our study of the effects of lesions of choroidal SSN indicates that choroidal 

baroregulation is impaired by disruption of the parasympathetic input to the choroid. Such 

disturbance in the adaptive parasympathetic regulation of ChBF leads to functional 

disruption and morphological damage in the retina.
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Fig. 1. 
Panels A–C show schematics of the three ChBF recording sites for the right eye (RE), the 

anterior temporal site (1), the anterior nasal site (2), and the posterior nasal site (3), as seen 

in a dorsal view (A), lateral view (B), and medial view (C). Panels D–O show images of 

choroidal SSN just lateral to the facial motor nuclear complex, at a level corresponding to 

Paxinos and Watson (2009) −10.5 mm Bregma, in a ChAT-immunostained section at a low 

(D) and a high magnification (E), the stimulation site in choroidal SSN in rat RChBF52 as 

indicated by cfos+ neurons at the stimulation site at a high (F) and a low magnification (G), 

choroidal SSN just lateral to the facial motor nuclear complex in a nNOS-immunostained 

section at a low (H) and a high magnification (I), the stimulation site in choroidal SSN in rat 

RChBF53 as indicated by cfos+ neurons at the stimulation site (note electrode track at upper 

edge of the field of cfos+ neurons) at a high (J) and a low magnification (K), the level of the 

stimulation site in rostral choroidal SSN in rat RChBF29 in a ChAT-immunolabeled section 

at low magnification (L), the stimulation site in rostral choroidal SSN in rat RChBF29 at 

higher magnification as indicated by cfos in nNOS+ neurons of choroidal SSN (M), a higher 

magnification view of two cfos+/nNOS+ choroidal SSN neurons in RChBF29 (N), and the 

stimulation site in rostral choroidal SSN in rat RChBF29 as indicated by cfos in nNOS+ 

neurons of choroidal SSN at the same low magnification as shown in panel L (O). The ChAT 
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and nNOS immunolabeling was detected with a brown DAB reaction product, while cfos 

was detected with a black nickel-enhanced DAB reaction product. The scale bar in M 

pertains to E, F, I, and J as well, while that in L pertains to D, G, H, K and O as well. 

Abbreviations: ChAT – choline acetyltransferase; cSSN – choroidal subdivision of SSN; 

IHC – immunohistochemistry; IR – inferior rectus muscle; LR – lateral rectus muscle; MR – 

medial rectus muscle; nNOS – neuronal nitric oxide synthase; RE – right eye; SO – superior 

oblique muscle; SR – superior rectus muscle.
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Fig. 2. 
Effect of choroidal SSN stimulation on ChBF, ChBVol, ChBVel, and ABP responses with 

metal electrodes at the anterior temporal (A, n = 5), anterior nasal (B, n = 2) and posterior 

nasal (C, n = 5) recording sites, and with glass micropipette electrodes at the anterior nasal 

site (D, n = 7). Stimulation yielded significant increases in mean and peak ChBF and 

ChBVel at all sites with metal electrodes, and ChBF, ChBVol, and ChBVel were all 

significantly increased at the anterior nasal site with glass micropipette electrodes. Asterisks 

indicate significantly different from baseline, and pound symbol indicates a trend toward 

significance.
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Fig. 3. 
Correlation of mean (A) and peak (B) ChBF with mean and peak ChBVol (blue regression 

line), ChBVel (red regression line), and ABP (grey regression line) across all animals and all 

recording sites (n = 19). The formula boxes show the slope and y-intercept for the regression 

lines, and the r2 values for the regressions. Note that ChBVel is highly correlated with ChBF, 

ChBVol is less correlated with ChBF, and ABP is not correlated with ChBF.
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Fig. 4. 
Graph showing the time course of the mean ChBF, ChBVol, ChBVel and ABP responses to 

choroidal SSN stimulation, for six of the rats with glass micropipette stimulation. The blue 

bar marks the stimulation period. Each data point is the mean for a 250 ms interval, and 

ChBF, ChBVol, ChBVel and ABP responses are all expressed as percent of basal. The rapid 

ChBF rise is driven by rapid increases in both choroidal blood velocity and volume, with the 

ChBVel rise being somewhat earlier than the ChBVol rise, consistent with our overall 

analysis showing a somewhat greater role of blood flow velocity increases in the ChBF 

increase.
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Fig. 5. 
Histograms showing the mean (A) and peak (B) ChBF, ChBVol and ChBVel responses to 

choroidal SSN stimulation, expressed as a percent of basal ChBF, ChBVol and ChBVel 

responses, prior to NOS inhibition and after NOS inhibition (n = 5). Note that SSN 

stimulation prior to NOS inhibition yielded significant ChBF, ChBVol and ChBVel 

increases, and that NOS inhibition attenuated the ChBF, ChBVol and ChBVel increases. 

Asterisks indicate significantly less than prior to NOS inhibition, pound symbol indicates a 

trend toward significance.
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Fig. 6. 
Images showing right choroidal SSN in several rats, three to four months after an electrolytic 

lesion. Sections were immunolabeled for ChAT or nNOS, both of which are found in 

choroidal SSN neurons, to assess lesion accuracy. Successful (100%) destruction of right 

choroidal SSN is shown for rat RLS13 immunolabeled for ChAT (B) and nNOS (D) 

compared to choroidal SSN of the left side of its brain, and for right choroidal SSN for 

RLS36 immunolabeled for nNOS (F), compared to the left side of its brain (E). Left side 

images are flipped horizontally for ease of comparison to the right side. Abbreviations: 

ChAT – choline acetyltransferase; cSSN – choroidal subdivision of SSN; Lx – lesion; nNOS 

– neuronal nitric oxide synthase.
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Fig. 7. 
Graphs showing the mean flash-evoked scotopic a-wave peak amplitudes (A, B) and b-wave 

(C, D) peak amplitudes for the right eye in response to a series of light flashes, prelesion and 

at two different time points post lesion, for rats with lesions that destroyed right choroidal 

SSN (A, C) compared to rats with lesions that missed right choroidal SSN (B, D). 

Amplitudes are expressed as a percent of the pre-lesion response to the brightest light flash 

to facilitate comparisons between rats with SSN destruction and rats without. Panel A. At 4 

and 10 weeks post-lesion, a-wave peak was significantly reduced for the right eye in right 

SSN-Lx rats (n = 11) compared to prelesion (n = 10) for the three brightest light intensities 

(asterisks). Panel B. The a-wave peak of the right eye for the three brightest light intensities 

was not significantly reduced in right SSN-miss rats (n = 9) compared to prelesion (n = 9) at 

4 weeks post lesion attempt, but it was at ten weeks (asterisk). Panel C. At 10 weeks post 

lesion, the b-wave peak was significantly reduced for the right eye in right SSN-Lx rats (n = 

11) compared to prelesion (n = 10) for the five brightest light intensities (asterisk). Panel D. 
The b-wave peak was not significantly reduced for the right eye in right SSN-miss rats (n = 

9) compared to prelesion (n = 9) for the five brightest light intensities at either 4 or 10 weeks 

post lesion attempt.
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Fig. 8. 
Graphs showing the mean flash-evoked scotopic a-wave (A, B) and b-wave (C, D) peak 

amplitudes for the left eye in response to a series of light flashes, prelesion and at two 

different time points post lesion, for rats with lesions that destroyed right choroidal SSN (A, 

C) compared to rats with lesions that missed right choroidal SSN (B, D). Amplitudes are 

expressed as a percent of the prelesion response to the brightest light flash to facilitate 

comparisons between rats with SSN destruction and rats without. Panel A. At 10 weeks post 

lesion, but not 4 weeks, the a-wave peak was significantly reduced for the left eye in right 

SSN-Lx rats (n = 11) compared to pre-lesion (n = 10) for the 3 brightest light intensities 

(asterisk). Panel B. At neither 4 nor 10 weeks post SSN-miss was the a-wave peak 

significantly reduced for the left eye in right SSN-miss rats (n = 9) compared to prelesion (n 

= 9) for the three brightest light intensities. Panel C. At 10 weeks but not 4 weeks post 

lesion, the b-wave peak was significantly reduced for the left eye in right SSN-Lx rats (n = 

11) compared to prelesion (n = 10) for the five brightest light intensities (asterisk). Panel D. 
At neither 4 nor 10 weeks post SSN-miss was the b-wave peak significantly reduced for the 

left eye in right SSN-miss rats (n = 9) compared to prelesion (n = 9) for the five brightest 

light intensities.
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Fig. 9. 
The graph shows ChBF plotted as a function of ABP for rat eyes ipsilateral to right 

choroidal SSN destruction (A, n = 3) compared to rats with lesions that missed right 

choroidal SSN (B, n = 3), with both ChBF and ABP expressed as a percent of basal. Mean 

ChBF performance is plotted per 5 mmHg ABP bin over a range of 40% below and 60% 

above basal ABP. The blue line shows ChBF as it would be if it linearly followed ABP. The 

formula boxes show the slope and y-intercept for the regression lines, and the r2 value for 

the regressions. Panel A. The graph shows ChBF plotted as a function of ABP, in eyes 

ipsilateral to SSN-Lx. Note that ChBF during ABP <100% of basal changed nearly linearly 

with ABP. The magenta box shows that the slope of the ABP-ChBF relationship during low 

ABP approached 1, and their correlation was 0.716. ChBF remained relatively flat, however, 

at ABP greater than 100% of basal, the green box showing a flat slope and low correlation of 

the ABP-ChBF relationship. Panel B. The graph shows ChBF plotted as a function of ABP, 

in eyes ipsilateral to lesions that missed SSN. Note that ChBF during ABP <100% of basal 

changed little as ABP changed. The magenta box shows that the slope of the ABP-ChBF 

relationship during low ABP approached 0, and their correlation was also nearly 0. ChBF 

remained relatively flat also at ABP greater than 100% of basal, the green box showing a flat 

slope and low correlation of the ABP-ChBF relationship.
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Fig. 10. 
Images showing that VIP+ parasympathetic innervation is evident throughout choroid, as 

evidenced by the abundance of vascular innervation in the superior (A), inferior (B), 

temporal (C) and nasal (D) sectors of the eye. Moreover, neither the parasympathetic 

innervation nor sympathetic innervation is obviously affected by lesions of choroidal SSN, 

as evidenced by similar immunolabeling for VIP for equatorial temporal choroid ipsilateral 

to destruction of choroidal SSN (E) compared to contralateral to the lesion (F), and similar 

immunolabeling for VMAT2 in equatorial temporal choroid ipsilateral to destruction of 

choroidal SSN (G) compared to contralateral to the lesion (H).
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Fig. 11. 
Images showing the effects of destruction of choroidal SSN on GFAP immunolabeling of 

retinal Müller cell processes in the ipsilateral eye ~3 months post lesion. Images A and B 

show retinal layer organization, while images D and F show retina ipsilateral to a missed 

SSN lesion (D) or after no lesion (F), and images C, E, and G show retina ipsilateral to 

choroidal SSN destruction (cSSN-Lx). Note that in cSSN-Lx rats, intense GFAP 

immunolabeling was seen in Müller cell processes in the IPL of the ipsilateral eye (C, E, and 

G), but not in control retinas (D, F). GFAP upregulation occurred throughout the 

topographic extent of the retina (images show superior retina). Abbreviations: GCL – 

ganglion cell layer; INL – inner nuclear layer; IPL – inner plexiform layer; IS – inner 

segments; ONL – outer nuclear layer; OPL – outer plexiform layer; OS – outer segments; 

NFL – nerve fiber layer.
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Fig. 12. 
In rats with unilateral right destruction of choroidal SSN (n = 12), intense GFAP 

immunolabeling was seen in Müller cell processes in IPL in both eyes, but not in control 

retinas, which included SSN-miss cases and normal control rats (n = 11). Using a scoring 

system for the GFAP immunolabeling of Müller cell processes (Kimble et al., 2006), 

labeling in SSN-Lx retinas at a mean postlesion survival of 13.5 weeks was significantly 

elevated (asterisk) above that in control retinas with a mean post-lesion survival of 11.5 

weeks for both eyes. Regression analysis showed the GFAP score was uncorrelated with 

survival across SSN-Lx and SSN-miss cases.
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Table 1

Primers and Probes for TaqMan qPCR.

Target Primer 1 Primer 2 Probe #

GFAP tttctccaacctccagatcc tcttgaggtggccttctgac 64
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