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ABSTRACT
Kawasaki disease (KD) is a systemic vasculitis of unknown etiology, which
tends to involve coronary arteries and can lead to acquired heart disease in
children. The immuno-inflammatory response and vascular endothelial dys-
function are important causes of coronary artery disease in patients with
KD. Multisystem inflammatory syndrome in children (MIS-C) is a rare
inflammatory disease in children identified in recent years, which is caused
by severe acute respiratory syndrome coronavirus 2 infection; this dis-
ease overlaps with KD. This review examines research progress concerning
the immuno-inflammatory response and vascular endothelial dysfunction
associated with KD, as well as differences between KD and MIS-C.
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INTRODUCTION

Kawasaki disease (KD) is a systemic vasculitis of unknown
etiology that can lead to coronary artery disease (CAD),
myocarditis, and myocardial infarction. It is the main cause
of acquired cardiovascular disease in children. Although
no specific connections have been identified between KD
and specific pathogens or pathogen-related structural sub-
stances, KD is presumably caused by an infection-related
abnormal inflammatory response in genetically susceptible
individuals.1,2 Infection causes amplification of immune
and inflammatory responses in vivo, which result in sys-
temic vascular injury.3 The immuno-inflammatory response
and vascular endothelial dysfunction are important causes
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of CAD in patients with KD4; they are also risk factors for
advanced atherosclerosis in such patients.5

Multisystem inflammatory syndrome in children (MIS-C)
is a newly discovered syndrome that involves an intense
inflammatory response. It occurs approximately 3–4 weeks
after severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection in children and adolescents. As
of March 28, 2022, the Centers for Disease Control and
Prevention reported a total of 7880 MIS-C cases in the
United States; 66 resulted in death.6 Although MIS-C is
clearly caused by SARS-CoV-2 infection, its pathogenesis
is unknown. Antibody-dependent enhancement of coron-
avirus and superantigenic behavior of SARS-CoV-2 are
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reportedly involved in MIS-C pathogenesis.7 Rare inher-
ited immunity disorders have been suggested as the basis
of MIS-C pathogenesis.8 Because many patients with MIS-
C have KD-like clinical manifestations, the diseases were
initially presumed to have a close relationship. However,
MIS-C and KD have since been clearly distinguished,
although they have many similarities (e.g., immune sys-
tem activation and vascular endothelial inflammation) and
share aspects of clinical manifestations, laboratory tests,
and treatment.

This review focus on research advances in understanding
KD-related immuno-inflammatory response and vascu-
lar endothelial dysfunction, as well as similarities and
differences between KD and MIS-C.

IMMUNO-INFLAMMATORY RESPONSE

In patients with KD, the innate immune response is acti-
vated and the acquired immune system exhibits abnormal
function. The rate of KD recurrence is 1%–3%; recurrence
is most common within 12 months after the initial onset of
the disease.9 Moreover, patients with recurrent disease have
an increased risk of coronary artery abnormalities, sug-
gesting that innate immune memory enhances the immune
response to heterologous reinfection signals or endogenous
risk signals.3 Immuno-inflammatory mechanism in KD is
shown in Figure 1.

Pathogen-associated molecular patterns

Pathogen-associated molecular patterns constitute
pathogens and molecular substances on pathogens, both of
which can directly induce damage to organs, tissues, and
cells. Small outbreaks of KD have occurred in a manner
consistent with the spread of infectious diseases.10 The
clinical manifestations of some infectious diseases are sim-
ilar to KD; for example, group A β-hemolytic streptococcal
infection can cause scarlet fever, as well as strawberry
tongue, cervical adenopathy, rash, and convalescent skin
desquamation.11 The KD-associated pathogen may be a
ubiquitous source of infection, presumably a single virus
or group of closely related viruses, which causes KD only
in a small number of genetically susceptible children.12

Other candidate causative factors include water-soluble
components of Candida albicans, cell wall components
of Lactobacillus casei, or fk565 in Streptomyces oli-
vaceus; these components all act as “pathogen-associated
molecular patterns”. Notably, the immuno-inflammatory
response and medium-sized arterial dilatation that these
components induce in mice are similar to the manifesta-
tions in patients with KD,3 which supports a relationship
between “pathogen-associated molecular patterns” and KD
pathogenesis.

FIGURE 1 Immuno-inflammatory mechanism in Kawasaki disease. The
engagement of PAMPs induces the immuno-inflammatory (e.g., lympho-
cyte activation, neutrophil extracellular traps, and macrophage activation),
which eventually cause cell death in order to promote host-defense against
PAMPs. Importantly, cell death products known as DAMPs form a pos-
itive feedback loop that stimulates immuno-inflammatory responses and
cell death. PAMPs, pathogen-associated molecular patterns; DAMPs,
damage-associated molecular patterns.
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Damage-associated molecular patterns

In the classic immunological concept, “risk theory”,
pathogens, toxins, and mechanical injury are presumed
to cause stress- or injury-damaged cells to release or
activate endogenous “danger signals”; this contributes to
the further spread of an inflammatory response, which
includes antigen-presenting cell-mediated activation of the
adaptive immune response.13 In contrast to the com-
ponents released by healthy cells or cells undergoing
normal physiological death, the components released by
necrotic cells may serve as danger signals.14 The “risk
theory” can be used to explain the amplified inflamma-
tory and immune response in the early stage of KD.
Some exogenous substances or physical injury can cause
damage to the body’s cells; damaged cells then release
endogenous signal molecules, thereby activating a series of
immuno-inflammatory responses throughout the body.

High mobility group protein-1 (HMGB1) is an endogenous
damage-associated molecular pattern protein; it can activate
the natural immune system, promote the host inflammatory
response, and participate in the onset of CAD in patients
with KD.15 Importantly, the release of interleukin (IL)-1α
and HMGB1 may mediate immunoglobulin resistance in
patients with KD.16 Pentraxin 3 is a soluble recognition
molecule that is rapidly produced in response to inflam-
mation and pathogenic microorganisms; it is important in
the innate immune response.17 Neutrophil-derived Pen-
traxin 3 may be related to vascular dysfunction in KD.18

Additionally, S100 proteins may contribute to the onset of
CAD in children with KD.19 The combined detection of
neuron-specific enolase and S100 levels in cerebrospinal
fluid can be used in the differential diagnosis of KD
when alternatives include aseptic meningitis and purulent
meningitis.20

Lymphocyte activation

Activated lymphocytes are key drivers of vascular inflam-
mation in KD. Histopathological studies of vasculitis
lesions in patients with KD have demonstrated infiltra-
tion by CD8+ T cells, CD3+ T cells, granzyme B cells,
TIA-1 cells, and cytotoxic T cells.21 Analysis of infiltrat-
ing immune cells revealed that, compared with samples
from healthy controls, the numbers of effector memory
CD4+ T cells, monocytes, and neutrophils were increased
in samples from patients with KD, while the numbers
of naive B cells, CD8+ T cells, and natural killer cells
were decreased.21 Sun et al.22 found that, compared with
controls, patients with KD had stronger Th1, Th17, and
Th22 responses, along with a weaker Treg response. In
the same study, IL-35 stimulation suppressed Th1, Th17,
and Th22 responses; it enhanced the Treg response and
CD8+ T cell-induced cytotoxicity while inhibiting CD8+

T cell-induced target cell death. These effects were medi-
ated by the decreased expression of interferon (IFN)-γ and
secretion of perforin/granzyme B, as well as the increased
expression of PD-1, CTLA-4, and LAG-3.22 The findings
suggested that IL-35 has a key immunosuppressive role in
T-cell function; it may help to protect against KD-related
inflammation.22 Furthermore, a subset of CD8+ T cells
expressing CXC-chemokine receptor 5—termed follicular
cytotoxic T cells—have recently been reported in associ-
ation with coronary artery aneurysm formation in patients
with KD.23

Neutrophil extracellular traps

Neutrophil extracellular traps constitute a secondary bac-
tericidal mechanism in neutrophils. They are produced in
large numbers at sites of inflammation, where they provide
high local concentrations of antibacterial molecules that
trap and kill various pathogens, rapidly control bacterial
infections, and generally support immune and antibac-
terial activity.24 Neutrophil extracellular traps reportedly
promote pro-inflammatory cytokine production, NF-κB
activation, vascular endothelial growth factor and hypoxia-
inducible factor-1α upregulation, and PI3K/Akt activa-
tion; their effects in KD include vascular injury, medi-
ated by altered biological responses in peripheral blood
monocytes.25

Macrophage activation

Macrophage activation plays an important role in the
pathologies of acute vasculitis and (in later stages of KD)
chronic vasculitis.21,26,27 In acute KD-related vasculitis,
activated macrophages are mainly M2 type; in chronic
KD-related vasculitis (complicated by CAD), activated
macrophages are mainly M1 type.28,29 Dectin-2 (secreted
by cardiac resident macrophages) has been shown to pro-
mote aortic root inflammation and coronary arteritis in
KD model mice by inducing caspase-1 activation and
IL-1 β production in bone marrow prototype dendritic
cells.30 KCa3.1 is a calcium-activated potassium chan-
nel that has been reported to reduce inflammation in KD
by blocking macrophage-activated inflammatory signaling
pathways (e.g., NF-κB and STAT3), thereby alleviating
KD-related coronary artery endothelial cell injury.31

VASCULAR ENDOTHELIAL CELL
DYSFUNCTION

The strong immuno-inflammatory response in acute KD
and persistent low-grade inflammation in chronic KD cause
substantial and persistent damage to vascular endothelial
cells (VECs).32 The production of pro-inflammatory medi-
ators (e.g., IL-1, IL-6, tumor necrosis factor, and vascular
endothelial growth factor [VEGF]) promotes inflammation
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and tissue destruction, which are important causes of coro-
nary artery endothelial injury in patients with KD.33 The
number of early fever days in patients with KD is positively
correlated with the risk of VEC dysfunction.34 CAD is not a
determinant of endothelial dysfunction in patients with KD
or with a history of KD. In acute KD, endothelial dysfunc-
tion may be present despite the absence of obvious coronary
abnormalities.35

Oxidative stress

Oxidative stress (OS) is reportedly involved in various
cardiovascular disease-related pathophysiological events,
such as endothelial dysfunction, vascular inflammation, and
atherosclerosis. In active sites of inflammation, inflam-
matory cells, VECs, and vascular smooth muscle cells
can release reactive oxygen species, enzymes, and chem-
ical mediators, all of which contribute to OS. OS-related
molecules (e.g., ox-phospholipids, oxidized low-density
lipoprotein, and peroxynitrite) are also involved in regu-
lating NF-kB activation, inflammation, thrombosis, angio-
genesis, and endothelial function, and immune tolerance.
Ox-phospholipids have been shown to participate in
KD-related coronary artery injury by enhancing the expres-
sion of E-selectin, an endothelial adhesion molecule.36

The concentration of oxidized low-density lipoprotein
may be a predictor of coronary artery injury in acute
KD.37

Changes in VEC permeability

Changes in vascular endothelial permeability are impor-
tant in the pathogenesis of KD-related vasculitis; such
changes contribute to increased vascular leakage while pro-
moting the infiltration of inflammatory cells and secretion
of inflammatory factors. Huang et al.38 found that VECs
from patients with KD exhibit high expression of neu-
rocapillary protein-1and VEGF receptor 2, which interact
with angiopoietin-like protein-4 and VEGF respectively to
enhance endothelial permeability.

VEC death

Abnormal programmed death in VECs is an important
research focus in terms of KD-related vascular endothe-
lial injury. In an in vitro model of KD, miR-186 and bone
marrow-derived miR-223 were able to induce VEC apopto-
sis. MiR-186 activated the MAPK pathway by inhibiting
SMAD6 gene expression, while miR-223 regulated the
expression of insulin-like growth factor-1 receptor.39,40

Pyroptosis (also known as cell inflammatory necrosis) is
a mechanism of programmed cell death. VEC pyropto-
sis (mediated by the HMGB1/RAGE/cathepsin B/NLRP3
inflammasome pathway) is reportedly involved in the onset
of KD-related CAD.41

Endothelial adhesion and infiltration

Endothelial adhesion and infiltration are important aspects
of vascular endothelial injury. S100A12 is a neutrophil-
derived RAGE and TLR-4 receptor agonist; it can stim-
ulate VECs to express inflammatory factors and adhesion
molecules with the help of monocyte secretion of IL-1β.42

Additionally, miR-182-5p overexpression can significantly
enhance neutrophil infiltration around human coronary
artery endothelial cells. S100A12 and miR-182-5p are
potential therapeutic targets for KD treatment.43,44 Platelet
endothelial cell adhesion molecule-1 (PECAM-1) is a
key factor in platelet adhesion and aggregation; abnormal
expression of the PECAM-1 gene can induce atherosclero-
sis, inflammation, and other diseases. Lu et al.45 reported
that the Leu-Ser-Arg haplotype of PECAM-1 was associ-
ated with an increased risk of CAD in patients with chronic
KD.

Endothelial glycocalyx disorder

The vascular endothelial glycocalyx is a type of omen-
tal glycoprotein that covers almost all of the vascular
endothelium and has an important role in the vascu-
lar pathophysiological activity. There is some evidence
that acute KD-related vasculitis can lead to changes in
endothelial glycocalyx and endothelial dysfunction46,47;
long-term endothelial glycocalyx dysfunction can also
cause atherosclerosis.46

Assessment of endothelial function

Because KD-related vasculitis is systemic, endothelial dys-
function is expected to be systemic in affected patients.
Additionally, in patients with KD who experience coro-
nary artery aneurysms, intima-media thickness of the
carotid artery is increased and arteriosclerosis is present;
these manifestations are associated with increased risks of
adverse cardiovascular events (e.g., atherosclerosis, coro-
nary artery embolism, myocardial ischemia, and sudden
cardiac death) in the late stage of KD.48,49

Many clinical methods are available to assess endothelial
function, such as invasive detection, cuff compression, and
Endo-PAT. Endo-PAT is the only FDA-certified device for
the non-invasive detection of vascular endothelial function;
it is suitable for evaluating endothelial function in patients
with KD.

In summary, OS, altered vascular endothelial permeabil-
ity, pathological death of endothelial cells, adhesion and
infiltration of the vascular endothelium, and imbalance
of the endothelial glycocalyx are all involved in KD-
related vascular endothelial injury, which may eventually
lead to endothelial dysfunction. Additionally, endothelial
dysfunction may be chronic in patients with KD, thus
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FIGURE 2 Vascular endothelial cell dysfunction pathologies in Kawasaki disease. HMGB1 interacts with its receptor RAGE and causes the production
of the NLRP3 inflammasome, which is followed by caspase 1-dependent cell pyroptosis. The combination of sNrp1 and ANGPTL4, and the interaction
of VEGF and VEGFR2, lead to the high permeability of the cell membrane. With the help of IL1β, the interaction of S100A12 and its receptors (e.g.,
RAGE and TLR4), causes cell adhesion and infiltration. The interaction of bone marrow-derived miR-223 and IGF1R induces cell apoptosis by activating
Bcl gene expression. What’s more, both the inhibition of SMAD6 gene expression by miR-186 and OS, induces cell apoptosis and inflammation, via the
activation of the MAPK pathway and the NF-κB pathway respectively. Besides, the disorder of glycocalyx also accelerates the progression of vascular
endothelial cell dysfunction in Kawasaki disease. HMGB1, high mobility group protein-1; RAGE, receptor of advanced glycation end-products; sNrp1,
neurocapillary protein-1; ANGPTL4, angiopoietin-like protein 4; VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor
receptor 2; TLR4, toll-like receptor 4; IL, interleukin; IGF1R, insulin-like growth factor 1 receptor; MAPK, mitogen-activated protein kinase; OS,
oxidative stress; NF-κB, nuclear factor kappa-B.

increasing their risks of other age-related vascular diseases.
Therefore, endothelial function assessment and long-term
follow-up monitoring are needed in patients with KD. VEC
dysfunction pathologies in KD are shown in Figure 2.

COMPARISONS BETWEEN KD AND
MIS-C

MIS-C is a rare inflammatory disease in children; it is
caused by SARS-CoV-2 infection and is characterized
by multisystem inflammation, fever, gastrointestinal symp-
toms, hypotension, and cardiac complications. Because
MIS-C and KD overlap in many respects, there has
been considerable controversy concerning the relation-
ship between the two diseases. First, in terms of clinical
manifestations, patients with MIS-C may have prolonged
fever, rash, strawberry tongue, systemic vasculitis, and
coronary aneurysm formation; these are similar to symp-
toms in patients with KD. However, patients with MIS-C

have a shorter duration of fever and are more likely to
develop myalgia, gastrointestinal symptoms (e.g., abdomi-
nal pain and diarrhea), nervous system damage, and signs of
shock.50,51 Additionally, patients with MIS-C have greater
risks of ventricular dysfunction and decreased cardiac
output.52 Second, similar to patients with KD, patients
with MIS-C have significantly increased levels of inflam-
matory markers (e.g., white blood cell count, erythrocyte
sedimentation rate, C-reactive protein, and procalcitonin),
along with coagulation abnormalities (e.g., prolonged pro-
thrombin time and elevated d-dimer level), liver function
abnormalities, and other laboratory findings indicative of
disease. Compared to patients with KD, patients with MIS-
C had lower lymphocyte and platelet counts, as well as
higher levels of ferritin, BNP, and pro-BNP.52–54 More-
over, lymphocytopenia may be independently predictive
of MIS-C and enable differentiation from KD.53 Third,
intravenous immunoglobulin and glucocorticoids can be
administered for anti-inflammation in both MIS-C and KD
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patients and biological agents also can be used in both
refractory cases. However, patients with MIS-C are more
likely to require intensive care unit admission and respi-
ratory support, compared to patients with KD.55 Here, we
highlight the similarities and differences between MIS-C
and KD in terms of the immuno-inflammatory response and
endothelial dysfunction.

Both MIS-C and KD are characterized by cytokine storms,
but the inflammatory response in MIS-C is more extensive
and exhibits greater severity.56 Although increased levels
of canonical and noncanonical inflammasome-related
mRNAs were detected in whole blood from patients with
MIS-C and patients with KD, activation of the caspase-
4/5-dependent noncanonical inflammasome was unique
to patients with MIS-C.57 Moreover, the activation of
atypical inflammatory bodies in neutrophils may contribute
to greater inflammation intensity in patients with MIS-C.57

In one study of patients with MIS-C, high-dimensional
cytokine analysis revealed increased expression of inflam-
mation signals (IL-18 and IL-6), lymphocyte and myeloid
chemotaxis activators (CCL3, CCL4, and CDCP1), and
mucosal immune dysregulation markers (IL-17A, CCL20,
and CCL28).58 Additionally, the upregulation of ICAM1
and FcR1 in neutrophils and non-classical monocytes
suggested that myeloid function was activated in patients
with MIS-C.58 Cytokine storms in MIS-C also involve
macrophage activation syndrome.59 Patients with MIS-C
reportedly exhibited prominent type II IFN-dependent and
NF-κB-dependent signatures, matrisome activation, and
increased levels of circulating spike protein; these findings
were not associated with SARS-CoV-2 PCR status at
admission.60 Compared to patients with KD, patients with
MIS-C have higher INF-γ levels, lower initial CD4+ T cell
numbers, and greater proportions of activated memory T
cells.55 Additionally, an elevated CXCL9 level may help to
distinguish patients with MIS-C from patients with KD.61

Another pathophysiological feature similar to KD is the
presence of strong innate and acquired immune responses
in patients with MIS-C.55 The transient expansion of
the TRBV11-2 T-cell clonotypes in MIS-C is potentially
related to inflammation and T-cell activation character-
istics; patients with MIS-C exhibited a higher B-cell
mutational load compared to children with coronavirus
disease 2019 or healthy children.60 During autopsy analysis
of a previously healthy patient who died of MIS-C, SARS-
CoV-2 spike protein was found in intestinal cells, indicating
that SARS-CoV-2 in the intestine may contribute to the
MIS-C-related immune response.62 Activation of type 1
dendritic cells and imbalance of NK cells, coordinated by
complex cytokine signaling, have been suggested as key
pathophysiological features of MIS-C; these may promote
antigenic cross-talk and macrophage activation syndrome,
respectively.63 Most autoreactive peptides in patients with

MIS-C are characterized by enrichment in central organs,
which differs from such peptides in patients with KD.58

In summary, both MIS-C and KD are characterized by
cytokine storms that have extensive effects on the acti-
vation of myeloid cells and lymphoid cells; these effects
promote the onset and maintenance of immune-related
inflammation during the course of the disease. However,
differences in the secretion levels of some factors (CXCL9
and caspase-4/5-dependent inflammasome) may help to
distinguish the two diseases. Additionally, both MIS-C
and KD are characterized by immune dysfunction, such as
the activation of T, B, dendritic, and NK cells, as well as
increased numbers of CD4+ memory T cells and increased
production of autoreactive antibodies. However, while the
immune response in KD mostly causes mild or moderate
vascular injury, the immune response in MIS-C more
often causes multisystem organ injury to the heart, lung,
gastrointestinal tract, and other critical tissues.

Endothelial dysfunction has been reported to occur in
patients MIS-C, although the extent of such dysfunction
is limited. Furthermore, the evidence of increased local
tissue exudation and thrombosis in patients with MIS-C,7

indicates that such patients may have concurrent vascular
endothelial dysfunction. SARS-CoV-2 invades the vas-
cular endothelium directly or indirectly (i.e., through a
viral component); it may also induce vascular endothelial
inflammation through endothelial angiotensin-converting
enzyme 2 receptors, eventually leading to vascular endothe-
lial dysfunction.64 Moreover, children with MIS-C exhibit
signs of endothelial glycocalyx injury with elevated levels
of syndecan-1 and heparan sulfate, which may participate
in MIS-C-related endothelial dysfunction.65 Additionally,
OS may be involved in the onset of vascular endothelial
inflammation and endothelial dysfunction in patients with
MIS-C.66 The latter two mechanisms are similar to KD.

CONCLUSION

KD has been studied for more than 50 years. The disease
is currently presumed to result from one or more of the fol-
lowing: excessive activation of the immuno-inflammatory
response, endothelial cell dysfunction, respiratory infec-
tion, increased intestinal permeability, and genetic suscep-
tibility. However, the specific etiology and pathogenesis
have not been elucidated. Furthermore, there remain con-
troversies concerning whether CAD is self-limiting and
whether endothelial dysfunction leads to cardiovascular
complications in patients with KD. For all patients with
KD, long-term and standardized follow-up approaches
are needed to assess vascular endothelial function and
evaluate the complications of coronary artery dilatation.
There is also a need to achieve accurate prognostic pre-
diction and individualized interventions for patients with
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concurrent cardiovascular disease during the later stages
of KD. Finally, additional studies are needed to charac-
terize the pathophysiological mechanisms of MIS-C and
KD.
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