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ABSTRACT: Standard low resolution coarse-grained modeling
techniques have difficulty capturing multiple configurations of
protein systems. Here, we present a method for creating accurate
coarse-grained (CG) models with multiple configurations using a
linear combination of functions or “states”. Individual CG models
are created to capture the individual states, and the approximate
coupling between the two states is determined from an all-atom
potential of mean force. We show that the resulting multi-
configuration coarse-graining (MCCG) method accurately
captures the transition state as well as the free energy between the two states. We have tested this method on the folding
of dodecaalanine, as well as the amphipathic helix of endophilin.

■ INTRODUCTION

Biomolecular systems are inherently multiscale, involving the
interplay of many length and time scales working in concert. As a
result, the theoretical methods used to understand these systems
must be able to take into account this multiscale nature.
Although molecular dynamics (MD) simulations can be used to
successfully probe biomolecular processes and interactions in
ways that can complement experimental results,1 standard MD
methods are limited to length and time scales that may be unable
to accurately characterize many biomolecular phenomena.
These systems require the use of multiscale MD methods,2−4

where low resolution, or coarse-grained (CG), models of
biological molecules are developed to reduce the computational
cost of such simulations, all while attempting to maintain the
fundamental physics and chemistry underlying the biomolecular
processes.4,5 The use of low-resolution CG models can be used
to probe important processes such as protein−protein
interactions,6−8 membrane remodeling by proteins,9−16 and
large-scale protein conformational changes.17

Current CG models are often unable to accurately reproduce
large conformational changes in proteins2,3 and are thus typically
best suited to model a single protein conformation. However,
even CG models that may be able to capture multiple protein
conformations are still unable to reproduce the free energy
difference between the two states and the transition barrier.18,19

This has been seen for CGmodels that were parametrized with a
top-down approach, incorporating information from experi-
ment, or a bottom-up approach, where high frequency motions
in higher resolution all-atom (AA) simulations are integrated
out to generate smoother, but less detailed interaction
potentials. The popular MARTINI protein force field,20,21 a
top-down CGmodel, requires an elastic network on the peptide
backbone to maintain secondary structure and is therefore
restrained to the native state.3,22 Top-down models, including

OPEP23 and MARTINI, in general are not guaranteed to
generate the correct kinetics or sample the correct distribution
of states. Bottom-up CG approaches, including relative entropy
minimization24 (REM) and multiscale coarse-graining25−27

(MS-CG), can at best capture portions of multiple conforma-
tions but less accurately capture the free energy difference
between the states and the transition barrier.28−30 This
limitation of MS-CG and REM is not inherent to the methods
themselves but instead to the practical considerations when
building the models, including limiting the models to pair
interactions and not having unique interactions between all CG
sites. This deficiency of current CG modeling techniques
impedes the study of complex, multiscale biophysical phenom-
ena, including, for example, actin polymerization, where the
ATP hydrolysis within actin as well as actin conformational
change drive polymerization and depolymerization,31 or
molecular motors such as myosin where ATP hydrolysis and
other effects drive large scale conformational change.
Much of the previous work on multiconfiguration CG

modeling has been focused on developing fine-grained, Cα
elastic network models (ENMs) of proteins that can switch
between two or more equilibrium states.32−36 These methods
treat the individual equilibrium configurations as discrete states
and use a two-state-like mixing approach to couple the discrete
states while also providing the smooth saddle point between the
states. The benefit of such an approach is that the CGmodel can
sample configurations, or states, corresponding to very different
protein structures, but switching between structures in these
simulations is not parametrized in a multiscale manner that
accurately reproduces key features in the potential of mean force
(PMF) for the conformational transition, such as the transition
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barrier and the free energy difference between the conforma-
tional states. A recent study by Bereau and Rudzinski37 similarly
separates the system into distinct conformational basins and
uses a surface hopping-like scheme to switch between the states
describing those basins. However, constraints need to be placed
on the system to reproduce the correct probability distribution
of states and the algorithm also does not conserve energy on an
overall continuous CG potential.
In this work, we introduce a new multiconfiguration coarse-

graining (MCCG) method that can both switch between CG
models that describe different parts of the molecular conforma-
tional during the course of a MD simulation and directly take
into account key features of the AAPMF to couple the individual
CG models. (Hence the term “multiconfigurational” is used for
the method.) This multiscale approach results in CG
simulations that can reproduce the transition barrier and the
free energy difference between the states of the AA PMF but
with much fewer degrees of freedom than the AA simulation. In
theMCCGmethod presented here, a two-state mixing approach
is used, where the diagonal elements of a two state Hamiltonian-
like matrix represent the free energy surface for each of the
independently developed CGmodels. MCCG thus at the outset
takes advantage of the strength of CG models to accurately
reproduce protein conformations in individual free energy
basins. Each of these states can represent the system in a
different basin, e.g., folded or unfolded, open or closed, in
membrane or in solution. Importantly, off-diagonal elements in
the 2 × 2 quantum-like matrix represent the thermodynamic
coupling between the CG states. However, that coupling is
assumed to be only a function of a few key CG collective
variables (CVs) that can well describe the transition between
states. In turn, this coupling can be directly calculated from the
AA PMF in a way that incorporates the differences between the
CG potential energy surfaces and the full AA PMF. The MCCG
methodology thus results in a multiconfigurational CG
simulation on a continuous CG free energy surface that can
reproduce the features of the AA PMF, including the saddle
point barrier, in terms of CG CVs that describe the transition
between the CG structural states. The resulting model can also
reasonably reproduce PMFs along other CVs that were not a
part of the original model development, with some caveats.

■ THEORY AND METHODS
Theory.We demonstrate here a method to build CGmodels

that can accurately reproduce an AA PMF for conformational
change. Our strategy is as follows: a combined effective free
energy surface in the CG variables is defined using a two-state
Hamiltonian-like matrix, whose state elements encompass two
different configurations of a protein, as well as a coupling term
between those two states. The combined energy surface is then
obtained by diagonalizing this Hamiltonian, and the coupling
term between the two configurations is next defined in terms of a
projection on one or more collective variables of the AA PMF.
To develop such CG models that can describe multiple

conformational basins and transitions between them in terms of
the many-dimensional CG coordinates RN, we first treat the
individual structures as discrete “states” with separate CG force
fields and hence diabatic-like energy surfaces, labeled V11(R

N)
and V22(R

N). Here, we are limiting ourselves to the case where
only two CG structural models (states) are considered, but in
principle, more than two can be treated (albeit with added
complication). Although our system is not a quantum
mechanical system (it is purely a linear combination of CG

energy surfaces), treating the individual CG structures as
discrete thermodynamic states within an effective quantum-like
two-state coupling picture allows us to conveniently describe the
system using a 2 × 2 matrix Hamiltonian, as in the case of
electron transfer38
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where V11(R
N) and V22(R

N) are the CG energy surfaces of the
discrete (diabatic) thermodynamic CG states, and V12(R

N) is a
coupling between the two CG states. In the MCCG model, the
V11(R

N) and V22(R
N) terms are determined by the CG effective

force fields describing the individual “states”, i.e., particular
conformational basin regions in the overall energy landscape of
the CG variables. By using the following characteristic equation,
the CG energy surface, E, can be created that includes a smooth
saddle point between the free energy surfaces of the individual
CG models:

=Hc cE (2)

We note that this approach is similar in spirit to the Empirical
Valence Bond (EVB) approach39 but that these present
equations are defined at the CG, rather than AA, level as in EVB.
If there is a nontrivial solution to the characteristic equation

above, then the secular equation can be solved for the lowest
energy eigenvalue for every value of the CG coordinate RN:
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resulting in the following standard 2 × 2 quantum-like
expression for the coupled energy surface in the CG variables:
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We note that previously developed multistate CG ENM
methods have either treated the off-diagonal coupling term,
V12(R

N), as a constant32,33,36 or have used a second-order
expansion around the saddle point to approximate the
coupling.34,40

A key goal in this work is to develop a method for determining
V12(R

N) using information obtained fromAA simulations, which
allows the CG system to reproduce one or more AA PMFs in
certain collective variables (CVs) related to the conformational
transition. To this end, we can first solve the solution in eq 3 for
the off-diagonal coupling term, V12(R

N), in terms of both the
individual states and the total coupled potential energy surface:

= [ − ][ − ]R R R R RV V E V E( ) ( ) ( ) ( ) ( )N N N N N
12

2
11 22 (5)

Again, we stress that we are simply using a linear combination
function to describe the overall coarse-grained (CG) system
much like a two-state Hamiltonian matrix in the theory of
electron transfer or the empirical valence bond method.
Therefore, the lowest eigenvalue of eq 1 E(RN) should be
thought of as the “correct” overall energy surface for the CG
variables that includes the proper transitions between
conformations. Given this, eq 3 should then be considered as
the definition of V12(R

N).
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It must be stressed here that the most general form of the
coupling element above, V12(R

N), is exceptionally difficult to
know. In a bottom-up CG model, if one has perfect sampling as
well as a complete physically accurate basis set to represent the
CG interactions, then one will simply have E(RN) and there is no
need for the MCCG approach at all. However, this is rarely if
ever going to be the case. It is more likely the case that any CG
approach (bottom-up or top-down or something in-between)
will provide reasonable models for the conformational basins in
the CG energy landscape, and onemay even obtain thesemodels
by using different CG methodologies in each basin. As such, in
order to then derive an approximate expression for V12(R

N) in
which we can more easily calculate the relevant terms, we make
two assumptions. First, we make the assumption that the CG
energy function in the CG variables can approximate the true
many-body AA PMF projected onto the CG variables. Here, we
will thus treat the AA PMF projected onto the CG variables as
the “true” system PMF, but we note that this function may also
be estimated using force-pulling experiments or constructed
“top-down” in some ad hoc (or other) manner of modeling. In
other words, it should not be misunderstood here that only an
AA PMF can be used in the approach about to be presented.
Second, and most importantly, we assume that we can describe
the process of transitioning from energy basin V11(R

N) to
V22(R

N) with a single, or small collection of, collective variables
(CVs) defined here as Q. These collective variables are a low
dimensional projection defined from the full set of CG variables,
RN.
Therefore, with these key assumptions stated above in hand,

the off-diagonal coupling can be rewritten in terms of the
reduced dimensional PMFs of the CG diabatic states in terms of
the CVs, defined as F11(Q) and F22(Q), as well as the AA PMF
similarly projected onto the CVs, such that

≈ ≡ [ − ]

× [ − ]
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For FAA(Q), we also define that there is a function that maps the
AA coordinates onto the CG CV, Q. Using only the collective
variables also simplifies the calculation of the AA PMF, which
can only be tractably calculated for a small collection of variables.
By including the off-diagonal coupling between states in a way
that is determined directly from the AA PMF, the free energy
surface of the MCCG model can reproduce the AA PMF in
terms of CG CVs.
We note that, if the components of the coupling term are

calculated perfectly, the MCCG PMF will then match the AA
PMF for the chosen CVs when the MCCG simulation is run for
the full set of CG variables RN. However, entropic and other
contributions from the AA system may not have been fully
accounted for in the CG potential energy terms nor in its
projection along the CVs, Q. To account for this at least in part,
V12(Q) may be iteratively updated to achieve better agreement
between the AA and CG PMFs along the CVs, Q. The coupling
term V12(Q) is iteratively updated to improve the resulting
MCCG PMF by adding the difference between the fine-grained
(e.g., AA) PMF FAA(Q) and the MCCG PMF iteration
FMCCG
i (Q) to the coupling term:

α= + −+ Q Q Q QV V F F( ) ( ) ( ( ) ( ))i i
MCCG
i

AA12
1

12 (7)

where α is a tuning parameter to ensure convergence. Successive
updates to the off-diagonal coupling term will then drive the
MCCG PMF to approach the AA PMF along Q.

Simulation Details. AA Simulations. All-atom (AA)
simulations were performed with the GROMACS (version 5)
simulation suite41 using the CHARMM36 force field.42

Simulations were integrated with a 2 fs time step. Nonbonded
van der Waals interactions were switched to zero between 1.0
and 1.2 nm. Electrostatic interactions were evaluated using
Particle Mesh Ewald.43 Bonds to hydrogen were constrained
using the LINCS algorithm.44 Temperature was maintained at
310 K using the stochastic velocity rescaling thermostat45 with a
coupling time constant of 0.1 ps. The pressure was maintained
isotropically in constant pressure simulations using the
Parrinello−Rahman barostat46 at a pressure of 1.0 bar, a
compressibility of 4.5× 10−5, and a coupling time constant of 2.0
ps. Coordinates were saved every 1 ps.

AA System Initialization and Equilibration. The endophilin
amphipathic helix H0 (Sequence: MSVAGLKKQFHKATQK-
VSEKVG) and the capped alanine 12-mer were each initialized
in a linear configuration using theMolefacture plugin in VMD.47

H0 and dodecaalanine were solvated using VMD in a TIP3P
water box with a side length of 6.0 and 4.8 nm, respectively, and
ionized with 150mMNaCl. The two peptides were then energy-
minimized using the steepest descent algorithm to a maximum
force of 1000 kJ mol−1 nm−1; the systems converged within 500
steps. The peptides were then equilibrated for 1 ns in the
isothermal−isobaric ensemble (NPT).

AA Production Simulations. Dodecaalanine (ALA-AA) was
simulated for 1 μs in the canonical ensemble (constant NVT) to
adequately sample the folding/unfolding process. Free energy
surfaces and CG models were obtained from the single, 1 μs
simulation. H0 was simulated (H0-AA) using temperature
replica-exchange molecular dynamics48 (T-REMD) with 72
temperature windows exponentially distributed from 310 to 565
K. Each temperature replica was first equilibrated at the
respective temperature for 100 ps. Each temperature replica
was then simulated for 100 ns, with exchanges occurring every
100 steps. The average exchange probability across all replicas
was 25%. Free energy surfaces and CG models were obtained
from the lowest temperature replica.

CG Simulations. Coarse-grained (CG) simulations were
carried out using the LAMMPS simulation package.49

Simulations were integrated with a 5.0 fs time step. Temperature
was maintained using the Langevin thermostat50 with a damping
coefficient of 500 fs. Coordinates were saved every 200 time
steps. MCCG simulations were performed using a newly
designed plugin for the LAMMPS simulation package
(https://github.com/mocohen/USER-MCCG), which interfa-
ces with the PLUMED2 plugin.51 MCCG simulation parameters
were the same as the CG simulations.

CG Models. Dodecaalanine. Four solvent free CG models
of dodecaalanine were constructed from the 1 μs AA simulation.
Each alanine residue was represented by a single bead
corresponding to the α carbon, for a total of 12 CG beads for
the whole peptide. Two methods for creating CG models were
used: heterogeneous elastic networks52 (HENM) and Boltz-
mann Inversion (BI). HENM models of polyalanine were
created using the full trajectory (ALA-HENM) as well as for the
folded configurations (ALA-HENM-F). HENM models were
constructed using a cutoff of 1.5 nm. BI models of polyalanine
were created using the full trajectory (ALA-BI) as well as for only
the unfolded configurations (ALA-BI-U), configurations with a
helicity (Qhel) less than 0.2. Each bead in the BI model was
treated equivalently; models were constructed with a single
bond, angle, dihedral, and nonbonded interaction. Each CG
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model of dodecaalanine was simulated for 4 billion time steps to
obtain the free energy surfaces.
H0. Two solvent free CG models of H0 were constructed

from the lowest temperature replica of the AA T-REMD
simulation. Each residue was represented by a single bead
corresponding to the Cα carbon for a total of 22 CG beads for
the whole peptide. An HENM model of H0 was constructed
using only the folded configurations (H0-HENM-F). The
HENM model was constructed using a cutoff of 1.5 nm. A BI
model of H0 was created using only the unfolded configurations
(H0-BI-U). Each bead in the BI model was treated equivalently;
models were constructed with a single bonded, angular, dihedral,
and nonbonded interaction. Each CG model of H0 was
simulated for 4 billion time steps to obtain the free energy
surfaces.
MCCG Models. MCCG models were constructed for

dodecaalanine (ALA-MCCG) and H0 (H0-MCCG) using the
folded HENM and unfolded BI CG models for the two states.
For the iterative procedure, α was set to be 1.

■ RESULTS AND DISCUSSION
In this section, we demonstrate the ability of a coupled two-state
MCCG system to capture the folding and unfolding of two
different peptides: an alanine 12-mer and endophilin H0.
Dodecaalanine. Dodecaalanine was chosen to test our

MCCG model because it has been used in previous studies that
attempted to capture the folding and unfolding process of
peptides.29,30We first simulated dodecaalanine for 1 μs using AA
MD. This fine-grained simulation sampled folded, partially
folded, globular, and extended configurations. The free energy
surface (Figure 1) along the helicity (Qhel) and radius of gyration

(Rg) CVs shows a large free energy minimum in the unfolded
configuration (Qhel < 0.2) as well as a few small free energy
minima in the helical configurations (Qhel > 0.8). These two CVs
have been previously30 used to characterize the different
conformations explored by dodecaalanine.
We chose a Cα mapping scheme, one CG site per residue at

the Cα position, for each CG state model. A Cα CG mapping is
able to characterize the difference between an unfolded and
folded helix.53 Using the Cα CG mapping, we developed two
simple CG models to capture the folding and unfolding of the
peptide using the AA trajectories. Both the Boltzmann Inversion
(ALA-BI) and Heterogeneous Elastic Network (ALA-HENM)
models developed from the AA trajectory of dodecaalanine
failed to capture this transition, as seen in the 2D PMF (Figure

2). ALA-BI reproduces only portions of the folded configuration
and is quite sticky; it stabilizes structures with small radius of
gyration (Rg < 0.4), configurations that are not sampled in the
AA simulation. ALA-HENM samples the unfolded configu-
ration as well as a large number of high-energy states that are not
sampled in the AA simulation. Previous studies by Carmichael
and Shell,29 as well as Rudzinski and Noid,30 have also
demonstrated the inability of more complicated CG methods
to accurately capture both the folded and unfolded config-
urations of alanine polymers using the REM, iterative
generalized Yvon-Born-Green,54,55 and MS-CG techniques.
We next parametrized separate CG models to model the

folded and unfolded configurations. A BI CG model para-
metrized solely from AA coordinates of the unfolded
configuration (ALA-BI-U) reproduced the unfolded portion of
the 2D PMF, and a heterogeneous Elastic Network CG model
parametrized solely from AA coordinates of the folded
configuration (ALA-HENM-F) reproduced the folded portion
of the 2D PMF (Figure 2). While these simple CG models
reproduce the general shape of the unfolded and folded areas of
the PMF, they do not contain some of the local minima observed
in the AA PMF. This is to be expected, as CG models generally
smooth out the PMF.However, more features could be captured
in the individual CGmodels for the folded and unfolded states if
more sophisticated CG modeling techniques, such as MS-CG
and REM, are used to build the diabatic states.
Using these CG models as the diabatic states and the AA and

CG 2D PMFs to calculate the coupling, we constructed an
MCCG model of dodecalanine (ALA-MCCG). The coupling
term V12(Q) was mostly localized to the transition region
between the two states (Figure 3). Due to the large transition
region, the coupling is required to operate over a reasonably
large portion of conformational space. The resulting 2D PMF
from the MCCG simulations of ALA-MCCG show sampling in
both the folded and unfolded configurations, with transitions
between the two states (Figure 3).
However, while the MCCG model was able to describe the

two-state behavior of dodecaalanine, it was not able to accurately
reproduce the barrier height nor the free energy difference
between the two configurations. The high PMF barrier, 25 kJ/
mol, in the MCCG model versus 15 kJ/mol in the AA model
suggested that the coupling in the transition region is too low.
We therefore refined the MCCG model by using the iterative
procedure described in eq 7. Since the MCCG PMF and AA
PMF are most different in the transition region, this slowly
increases the coupling in the transition region, allowing the
MCCG PMF barrier to reproduce the AA PMF barrier. As seen
in Figure 4, the iterative MCCG procedure reduces the free
energy barrier to 20 kJ/mol by the third iteration and 17 kJ/mol
(within an order of kbT) by the seventh iteration. Additionally,
the PMF well depths, at 0 kJ/mol for both states in the AA PMF,
are matched by the seventh iteration. It should again be noted
that the AA PMF contains at least 10 local minima, which are
smoothed out in the CG PMF. While MCCG substantially
improves the transition region, it should not be expected to
improve all other aspects of the CGmodel, especially features in
the diabatic wells. The primary motions of the system are driven
by the diabatic potentials; it is only in the transition region that
the coupling term has its largest effect. Nevertheless, even with
the diabatic states derived from simple CG models, MCCG can
more accurately reproduce the overall AA PMF along the chosen
CVs compared to more sophisticated (and as of yet unknown)
CG modeling techniques.

Figure 1. 2D potential of mean force for the AA dodecaalanine (ALA-
AA) systemwithmapped coordinates as a function of helicity (Qhel) and
radius of gyration (Rg). The folded state is denoted in the red square (F)
and the unfolded state (U), in purple.
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We further analyzed the MCCG trajectories to determine
whether ALA-MCCG can accurately capture additional CVs
that were not included in the development of the coupling term
(Figure 5). For each additional CV, MCCG produces a PMF
that is a combination of the ALA-HENM-F and ALA-BI-U
models. The two collective variables most correlated with the
coupled CVs, Rg

22 (the second component of the gyration tensor,
which describes the width of the polymer) and RMSD, improve
the most compared with the 1D AA PMFs. However, end-to-
end distance, which is least correlated with the coupled CVs, is
worse at reproducing the reference AA PMF. This demonstrates
the importance of choosing good (or possibly additional) CVs
for the MCCG coupling term. CVs not as correlated with the
coupled CVs (or anticorrelated) may potentially be adversely
affected by the MCCG procedure. By reducing the many-body
PMF to a PMF dependent only upon a few CVs, some
information is inevitably lost. Choosing CVs that can best
represent the many-body PMF in the full set of CG variables RN

will produce the best MCCG models, but there is obviously a
limit on howmany CVs can be chosen in terms of one’s ability to
calculate the AA multidimensional reduced PMFs as a function
of them (here, we have used 2D PMFs). Thus, when building
MCCG models, it is important to check whether other PMF
properties not correlated with the coupled CVs are affected.

Endophilin H0. The folding process of endophilin H0, a 22-
residue amphipathic helix that targets curved membranes, has
been previously studied by Cui et al.56 The folding process was
characterized using the α−β similarity and the number of
backbone hydrogen bonds CVs. These CVs can only be
described using atomistic detail. Here, we chose to characterize
the folding process using the root mean squared deviation
(RMSD) from the idealized folded configuration and the second
component of the gyration tensor57 (Rg

22) of the Cα coordinates
(Figure 6a). These CVs adequately separate the two states and
contain a distinct transition region. The folded configuration of

Figure 2. 2D potentials of the mean force of dodecalalanine as a function of helicity (Qhel) and radius of gyration (Rg) for the four CG models: (A)
Boltzmann inversion (ALA-BI); (B) heterogeneous elastic network model (ALA-HENM); Boltzmann inversion for the unfolded configurations
(ALA-BI-U); (D) heterogeneous elastic network model for the folded configurations (ALA-HENM-F). ALA-BI and ALA-HENM both cannot
reproduce the AAmapped PMF and do not sample portions of the AAmapped PMFwell. ALA-BI-U reproduces the unfolded portion of the AA PMF,
and ALA-HENM reproduces the folded portion of the AA PMF.

Figure 3. (Top) Tabulated coupling term (V12(Q)), used for the
dodecaalanine MCCGmodel, as a function of helicity (Qhel) and radius
of gyration (Rg). (Bottom) Resulting MCCG PMF for dodecaalanine
(ALA-MCCG). ALA-MCCG reproduces two-state behavior but does
not reproduce the barrier height or well depths.
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Figure 4. 2DPMFs as a function of helicity (Qhel) and radius of gyration (Rg) comparing themapped AA system (ALA-AA)with various iterations (Iter
X) of MCCG. The iterative procedure improves the difference in free energy difference between the two states, as well as the free energy barrier to
match the AA system.

Figure 5. 1D PMFs for three CVs comparing the ALAMCCGmodel with all-atom PMFs, as well as the twoCGmodels comprising theMCCGmodel.
TheMCCGmodel more accurately represents CVs that are coupled (RMSD) or correlated with the coupled CVs (Rg

22). CVs that are not related to the
coupled CVs (end-to-end distance) are less accurately captured.
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H0 is characterized by Rg
22 and RMSD values less than 0.4 nm,

while the unfolded configuration is characterized by RMSD >
0.5 nm.
A BI CGmodel of the unfolded configuration (H0-BI-U) and

a HENM model of folded configuration (H0-HENM-F)
accurately reproduced, respectively, the unfolded and folded
portions of the PMF, along the CVs Rg

22 and RMSD, but with

smoothed PMF minima compared to the AA PMF. As noted

earlier, CG models typically smooth out portions of the free

energy surface because the high frequency motions are

integrated out of the model. We then constructed an MCCG

model of H0 (H0-MCCG). As in the case of dodecaalanine, the

coupling is highest in the transition region (Figure 6), as well as

Figure 6. 2D PMFs as a function of root mean squared deviation (RMSD) and the second component of the gyration tensor (Rg
22) for H0. For the

mapped AA system (H0-AA), the folded state is denoted in the red square (F) and the unfolded state (U), in purple. The Boltzmann inversion CG
model of the unfolded state (H0-BI-U) captures the unfolded portion of the AAPMF, and the hENMCGmodel of the folded state (H0-BI-F) captures
the folded portion of the AA PMF. The coupling term (V12(Q)) is at a maximum in the transition region (RMSD = 0.45) as well as the portions of the
PMF unsampled by H0-BI-U and H0-HENM-F.

Figure 7. 2D PMFs as a function of root mean squared deviation (RMSD) and the second component of the gyration tensor (Rg
22) comparing the

mapped AA system (H0-AA) with various iterations (Iter X) of MCCG. The iterative procedure improves the difference in free energy difference
between the two states and converges to H0-AA within 2 iterations.
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regions not sampled by the diabatic states (RMSD > 1.0 nm and
RMSD < 0.2 nm).
H0-MCCG exhibits two-state behavior, sampling both the

unfolded and folded configurations, with transitions between the
two states (Figure 7). H0-MCCG has a barrier height of 10 kJ/
mol, within an order of kBT of the barrier height of 7.5 kJ/mol in
the AA PMF. As in the case of dodecalanine, the initial MCCG
barrier height is incorrect. Applying the iterativeMCCGmethod
for only 2 iterations for H0-MCCG, however, reproduces the 7.5
kJ/mol barrier height at RMSD = 0.5 nm.
The H0-MCCG PMF is in much better agreement with the

AA PMF compared to ALA-MCCG. This is likely caused by the
more accurate diabatic states in the case of the H0-MCCG
models. The coupling term is therefore required to do less work
to reproduce the AA PMF, as it is already more accurately
represented by the individual CG models. Accordingly, the
number of iterations required to converge the barrier height and
PMF minima is significantly reduced due to the improved CG
diabatic states.

■ CONCLUSIONS
Proteins can undergo major conformational changes that cannot
always be captured by a single CG model having an imperfect
description of the interactions between the CG sites. The
MCCG method introduced in this work is thus designed to
capture the transitions between multiple conformational basins
in an approximate CG model in a way that can reasonably
reproduce the overall PMF for the conformational change
process. Although previous methods have been developed that
can simulate a CG model that transitions between multiple
conformational states, these methods are not guaranteed to
reproduce key features of the AA PMF, especially in the
transition barrier region. In contrast, the new MCCG method
utilizes an AA-based off-diagonal coupling, the V12(Q) term in
eq 6, to reproduce the correct distribution of states as well as the
transition barrier.
An important strength of the MCCG method is the fact that

the off-diagonal coupling term is defined to be a function of the
CVs that describe the transition process. When a constant off-
diagonal coupling term is used in contrast, the system may be
unable to capture the correct location of the transition barrier, in
addition to its height. Using a coupling term that is a function of
the transition CVs not only allows the system to reproduce the
transition barrier but also leads to a more realistic description of
the transition process. Additionally, as the method is applied to
other systems, more complicated CVs can be used to
incorporate other influences on structural transformations, for
example, environmental interactions that affect protein
structure. As long as a PMF can be calculated, or at least
estimated, to describe the transition between states, whether
from AA simulations, from experiment, or phenomenologically,
an MCCG model can be parametrized for the system under
study.
Another advantage of the MCCGmethod is the ability to use

simple CG models to capture complex, multistate (i.e.,
multiconformation) behavior in a sort of “divide and conquer”
fashion instead of using more complex CGmodelingmethods. If
CG models are constructed and adequate for each of the
individual protein conformations, and if the AA PMF (or a good
estimate of it) is known for the structural transition, then an
MCCG model can be created for the system. An accurate
MCCGmodel may ideally utilize the calculation of the AA PMF,
which can be computationally expensive, but for which many

methods have been developed.58−62 The major reduction in
computational effort afforded by the resulting MCCG model
can then be taken advantage of to investigate new emergent
behavior. For example, when many proteins are allowed to
interact with each other, such as in cellular environments, the
MCCG model will be influenced not only by the PMF for a
single protein but also by the interactions between proteins on
the CG level. This will lead to simulations that will be more
representative of actual cellular environments, where protein
conformations are influenced both by smaller scale atomic level
interactions and by the larger scale protein motions and
protein−protein interactions.
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(36) de Marco, G.; Vaŕnai, P. Molecular simulation of conformational
transitions in biomolecules using a combination of structure-based
potential and empirical valence bond theory. Phys. Chem. Chem. Phys.
2009, 11 (45), 10694.
(37) Bereau, T.; Rudzinski, J. F. Accurate Structure-Based Coarse
Graining Leads to Consistent Barrier-Crossing Dynamics. Phys. Rev.
Lett. 2018, 121 (25), 256002.
(38) Marcus, R. A. Chemical and electrochemical electron-transfer
theory. Annu. Rev. Phys. Chem. 1964, 15 (1), 155−196.
(39) Warshel, A.; Weiss, R. M. An empirical valence bond approach
for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc.
1980, 102 (20), 6218−6226.
(40) Chang, Y. T.; Miller, W. H. An empirical valence bond model for
constructing global potential energy surfaces for chemical reactions of
polyatomic molecular systems. J. Phys. Chem. 1990, 94 (15), 5884−
5888.
(41) Abraham, M. J.; Murtola, T.; Schulz, R.; Paĺl, S.; Smith, J. C.;
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