
BioMed CentralBMC Structural Biology

ss
Open AcceResearch article
Contact prediction in protein modeling: Scoring, folding and 
refinement of coarse-grained models
Dorota Latek*† and Andrzej Kolinski†

Address: Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

Email: Dorota Latek* - pledor@chem.uw.edu.pl; Andrzej Kolinski - kolinski@chem.uw.edu.pl

* Corresponding author    †Equal contributors

Abstract
Background: Several different methods for contact prediction succeeded within the Sixth Critical
Assessment of Techniques for Protein Structure Prediction (CASP6). The most relevant were non-
local contact predictions for targets from the most difficult categories: fold recognition-analogy and
new fold. Such contacts could provide valuable structural information in case a template structure
cannot be found in the PDB.

Results: We described comprehensive tests of the effectiveness of contact data in various aspects
of de novo modeling with CABS, an algorithm which was used successfully in CASP6 by the
Kolinski-Bujnicki group. We used the predicted contacts in a simple scoring function for the post-
simulation ranking of protein models and as a soft bias in the folding simulations and in the fold-
refinement procedure. The latter approach turned out to be the most successful. The CABS force
field used in the Replica Exchange Monte Carlo simulations cooperated with the true contacts and
discriminated the false ones, which resulted in an improvement of the majority of Kolinski-
Bujnicki's protein models. In the modeling we tested different sets of predicted contact data
submitted to the CASP6 server. According to our results, the best performing were the contacts
with the accuracy balanced with the coverage, obtained either from the best two predictors only
or by a consensus from as many predictors as possible.

Conclusion: Our tests have shown that theoretically predicted contacts can be very beneficial for
protein structure prediction. Depending on the protein modeling method, a contact data set
applied should be prepared with differently balanced coverage and accuracy of predicted contacts.
Namely, high coverage of contact data is important for the model ranking and high accuracy for the
folding simulations.

Background
Information on a pattern of long-range interactions, even
very sparse, can be crucial in protein structure predic-
tion[1,2]. Long-range interactions determine a protein
structure mainly by placing the building blocks (helices or
beta strands) at the appropriate distance between their
residues.

Whereas short-range information, such as the type of sec-
ondary structure, can be predicted in most cases with high
accuracy (70–80%)[3] on the basis of a protein sequence,
long-range contact predictions are still of rather low accu-
racy (at most 20%, according to the CASP6 results[4]).
Such low accuracy of contact predictions, although well
above random (by a factor of more than 11)[5], is not
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enough for the direct reconstruction of the 3D protein
structure using for example distance geometry methods,
common in NMR structure determination [6-8]. It is
mainly due to the large number of false contact predic-
tions[4]. Nevertheless, if we use this kind of data only as
additional and complementary information in protein
folding simulations, there is a good possibility that the
force field will cooperate with the true contacts and dis-
criminate against the false contacts, biasing the simula-
tions towards the native-like structures. The main aim of
this work was to establish to what extent this hypothesis
is true.

A frequently used definition of a term "contact" states that
two residues are in contact when the distance between
their Cβ atoms is smaller than 8 Å[4,9-11]. There are
other, and perhaps more precise, definitions[12]. How-
ever, due to the conventions employed by most of the
contact-prediction servers, we adhere to the Cβ-based def-
inition. A term called "sequence separation" divides con-
tacts into short-range (for which contacting residues are
separated by at least 6 and at most 12 residues in a
sequence), medium (12–24 residues) and long-range con-
tacts (at least 24 residues)[4]. If we generate a symmetric,
two dimensional matrix with rows and columns corre-
sponding to a protein sequence, in which contacts
between appropriate residues are binary depicted, we
obtain a contact map. Such contact maps can be generated
easily from a 3D protein structure, predicted from a pro-
tein sequence alone or obtained experimentally from
NOESY spectra[13].

Early methods for contact map prediction were based on
the observation that residues which are closed in space
often mutate in tandem. This was called correlated muta-
tions (CMA) and was detected by the analysis of multiple
sequence alignments[9]. The addition of other types of
data, such as sequence conservation, predicted secondary
structure and solvent accessibility, was necessary to
improve rather weak performance of contact predictions
based on CMA only[14,15]. The major breakthrough in
contact prediction resulted from the application of
machine learning methods such as neural net-
works[11,14,16]. Current methods also employ hidden
Markov models often combined with threading[4,17],
support vector machines [5,18] and genetic program-
ming[19]. Detailed information about the selected con-
tact prediction methods is shown in Table 1.

The contact prediction approach is usually not optimized
to find the closest homologues of a given protein[4],
unlike in the case of comparative modeling or fold recog-
nition methods [20,21]. Consequently, it could be more
sensitive in detecting more distant structure similarities
with respect to traditional fold recognition or comparative

modeling approaches[4,14]. This seems to be especially
useful in the structure modeling of new folds, for which
meta-predictors (Bioinfo[22] etc.) based on the consensus
of fold recognition methods do not yield any reliable tem-
plates. Therefore, our work focuses on the contact-based
structure prediction of targets from the two categories
defined in CASP6[23]: New Fold (NF) and Fold Recogni-
tion – Analogy (FR/A), for which producing a reliable
template structure was extremely difficult or impossible.

Despite the significant potential of contact prediction,
typical de novo protein structure prediction methods still
do not use this kind of data regularly in modeling pipe-
lines, except for a few examples[4,24-29] Probably the
main reason is the difficulty in implementation of such
low accuracy data in the reliable protein structure predic-
tion schemes. As we mentioned before, contact maps pre-
dicted on the basis of protein sequences are not accurate
enough for a direct and thus very fast and simple recon-
struction of 3D protein structures. The CABS algorithm,
which is used in this work, enables incorporation of dif-
ferent kinds of structural data, in the form of distance or
angular restraints, not necessary accurate, such as for
example chemical shifts[30]. This feature of CABS encour-
aged us to test the low accuracy contact data at various
stages of protein structure modeling.

We focused our test on CASP6 predictions because many
contact predictors, after moderate success in the CASP6,
abandoned the development of their methods, probably
because of the limited usage of such data by structure pre-
dictors, which resulted in slightly worse performance in
CASP7[31], in which the targets were apparently more dif-
ficult (many with good templates difficult to detect) as
well. Moreover, the Kolinski-Bujnicki group did not take
part in CASP7 and thus reproducing the same conditions,
as those typically applied in CASP competitions, could
not be possible. The aim of this work is to propose a
novel, predicted-contact-assisted approach to protein
structure prediction which could be used in high-through-
put modeling pipelines which are especially inevitable in
CASP – like, large-scale experiments.

An important issue in de novo modeling, enhanced by
contact prediction, is to establish a minimal level of accu-
racy and coverage of contact data that could be still useful
for structure prediction. Typically, increasing the coverage
to obtain the majority of the important contacts decreases
the average accuracy of the whole prediction. This inter-
play between coverage and accuracy seems to be crucial
for successful protein structure prediction (see Results
and Discussion). It is important to note that most of the
false contact predictions are shifted by one or two residues
with respect to the true native contacts and the minority
of all predicted contacts are completely wrong predictions
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(see Table 2 in Methods). As it is shown in this work,
these moderately shifted contacts can still be useful, pro-
vided that they are implemented as very soft biases in the
folding algorithms, as in the CABS algorithm[32]. This
fact should be taken into consideration while developing
contact prediction methods.

De novo modeling could be enhanced by contact predic-
tion in various ways. First of all, contact maps could be
used to generate restraints which bias either de novo fold-
ing simulations[28] or refinement simulations which start
from preliminary models obtained via more straightfor-
ward simulations (see Methods). In the other approach,
predicted contacts can be used as a part of various scoring
functions for ranking protein models generated by any de
novo or fold recognition method[27,33]. In this work, we
verify whether these three approaches could enhance pro-
tein structure prediction carried out using the CABS mod-
eling tool[32] and if so, to what extent. Our results are
compared to the CASP6 predictions of the Kolinski-
Bujnicki group[34] who used the CABS algorithm (de
novo method)[32] and the Frankenstein-3D (a fold recog-
nition tool)[35] without any information about predicted
contacts.

Methods
Preparation of data sets for predicted contacts
In this work we used contact data provided in CASP6 by
nine predictors performing best and average: Baker
group[4], GPCPRED[19], Hamilton-Huber-Torda
group[36], KIAS[37], Karypis group[5], SAM-T04[38],
baldi-group-server[39], CORNET[40] and PROFcon[11]
(see Table 1). Contacts provided by the average-perform-
ing groups were added to our data because in the real
CASP experiment the final performance of each group
would not be known a priori and it would rather be
impossible to choose only the best contact predictions for
the structure modeling. We used contact data only for tar-
gets from NF (New Fold) and FR/A (Fold Recognition
Analogy) categories because in the remaining CM (Com-
parative Modeling) and FR/H (Fold Recognition Homol-
ogy) categories template structures could be found
relatively easy in the PDB and thus the contact prediction
did not provide any additional and valuable information.

Original data sets contain different numbers of predicted
contacts (several, N/2, N; where N is sequence length, or
even a few thousands) and assume different minimal
sequence separations (from 1 to 12). Such heterogeneous

Table 1: Description of the selected nine CASP6 contact predictors.

Contact predictors Method Input data Accuracy [%] Coverage [%]

Baker Neural network Contact predictions from 24 servers, predicted by 
JUFO secondary structure, amino acid properties, 

PSI-BLAST generated PSSM matrix, length of a 
protein sequence

25.5 3.7

PROFcon Feed-forward neural network with 
back-propagation

evolutionary profiles obtained using PSI-BLAST, 
predicted secondary structure and solvent 

accessibility, sequence conservation, biophysical 
features and "complexity" of residues

24.2 3.6

Baldi-group-server RNN – Recursive neural network PSI-BLAST generated sequence profiles, correlated 
mutations, predicted secondary structure, solvent 

accessibility

21.9 2.9

GPCPRED Genetic programming with self-
organizing maps

PSI-BLAST generated sequence profiles, sequence 
separation

17.4 2.7

Karypis Support Vector Machines Sequence profiles, correlated mutations from 
multiple sequence alignment analysis, sequence 
conservation, sequence separation, predicted 

secondary structure

11.0 1.5

KIAS CMA analysis Multiple sequence alignment, hydrophobic packing 
of residues 

(data obtained from sequence conservation and 
hydrophobicity)

11.0 1.7

SAM-T04 Neural network Alignments, predicted secondary structure and 
propensities of residues in contact

9.6 1.43

Hamilton-Huber-Torda Feed-forward neural network Mutational correlations from multiple sequence 
alignments, biophysical class of contacting pair of 

residues, predicted secondary structure, sequence 
separation, length of protein sequence

9.1 1.3

CORNET Neural network PSI-BLAST generated sequence profiles, correlated 
mutations and sequence conservation, sequence 

separation

2.5 0.34

Mean accuracy and coverage was evaluated for all NF and FR-analogy targets. Here, we defined the accuracy and the coverage in the same fashion 

as in[4] for top N/5 predicted contacts with a sequence separation of 12: .Acc Cov
Ntrue positive

Ntrue positive N false positive

N
= ⋅ =+

 

  
100% ttrue positive

Nnative

 ⋅100%
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data had to be converted into sets of restraints which
could be most beneficial for protein structure prediction.
For this reason, we tested different data sets (see Table 2)
which contain either contacts from all nine predictors or
from the selected best-scoring predictions. All the nine
contact predictors used different methods and any con-
sensus selection could perhaps cover-up the imperfections
of a single method and thus improve the accuracy of the
combined data. Such an approach was successfully
exploited by Baker et al. in CASP6[4]. We compared the
results of the modeling supported by the consensus con-
tact data with the results obtained using the data set of N/
2 top-scoring contacts provided by each of two or three
best predictors. In the latter approach, instead of process-
ing the preliminary consensus which could filter out the
false contacts, we allow the CABS force field to cooperate
with the large sets of predicted contacts in order to obtain
some kind of consensus during the simulation. Moreover,
in this approach, top-scoring contacts, which were pre-
dicted by more than one predictor, were placed in a set of
restraints more than once. Consequently, the strength of

bias generated by these contacts became somehow multi-
plied.

When generating all tested sets of contact data we chose
only those contacts from each predictor for which the con-
tacting residues were separated in the sequence by at least
twelve residues. It has been observed in simulations (data
not shown) that the short-range contacts with sequence
separation below 12 could be obtained using solely the
CABS force field due to its well optimized short-rang
potentials. Such short-range contacts are typically respon-
sible for the loop formation at the end of a helix or a beta
strand. The CABS algorithm is able to reproduce such end-
ing of secondary structure elements itself, provided the
predicted secondary structure is of a reasonable accuracy.
This was tested in various cases of loop-modeling[32].
Ignoring the predicted contacts with sequence separation
below 12 eliminates also their over-expression in the data
sets, which is caused by the fact that they are typically
much easier to predict than the medium and long-range
ones[14]. Those medium and long-range contacts seem to

Table 2: Results of the contact-based ranking of Kolinski-Bujnicki's models for NF and FR/A CASP6 targets.

Set of contact data Number of 
predicted 
contacts

Accuracy 
δ = 0 [%]

Coverage 
δ = 0 [%]

Accuracy 
δ = 2 [%]

False contacts 
(δ > 5) [%]

ΔRMSD 
[Å]

Spearman corr. 
coeff. 

(GDT-TS)

Spearman corr. 
coeff. 

(RMSD)

N/2 top-scoring 
contacts from each of 

the best two 
predictors (a)

N 19.58 12.91 49.37 19.59 1.069 -0.300 0.329

N/2 top-scoring 
contacts from each of 

the best three 
predictors(b)

1.5 N 17.21 15.22 46.90 21.13 1.453 -0.321 0.275

Consensus of the 
whole data from the 
best three predictors

N/2 23.94 9.12 53.17 17.93 1.393 -0.325 0.344

N 18.90 14.44 49.17 20.35 1.387 -0.333 0.340
1.5 N 15.53 17.83 46.60 22.15 1.453 -0.329 0.288

Consensus of the 
whole data from the 
best five predictors(c)

N/2 23.78 8.97 52.47 17.67 1.272 -0.196 0.360

N 19.78 15.07 51.01 20.04 1.498 -0.350 0.348
1.5 N 16.64 18.91 47.70 22.11 1.443 -0.338 0.400

Consensus of the 
whole data from all 

nine predictors

N/2 24.98 9.50 51.69 20.56 1.252 -0.238 0.432

N 20.63 15.74 50.58 21.85 1.365 -0.333 0.400
1.5 N 18.08 20.37 49.35 23.39 1.322 -0.342 0.440

(a) Predictors: Baker and PROFcon
(b) Predictors: Baker, PROFcon, GPCPRED
(c) Predictors: Baker, PROFcon, GPCPRED, Karypis, SAM-T04
Spearman correlation coefficients together with the average difference of Cα RMSD of the best model and the first ranked model (ΔRMSD) were 
computed for each set of contact data. The average ΔRMSD of the Kolinski-Bujnicki group was 1.484 and the Spearman correlation coefficient: 
0.213 (RMSD) and -0.138 (GDT-score). These values were improved for every set of contact data. Apart from the mean accuracy and the mean 
coverage of contact data, averaged over all targets, we also present the percentage of semi-accurate contacts (shifted with respect to the real by at 
most two residues) and totally false contacts (shifted by more than five residues).
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be more important in the structure modeling because they
are sometimes difficult to reproduce in template-free
CABS simulations.

For the consensus sets of contacts we purposely ignore the
fact that some predictors optimised their contact predic-
tion to the specific number of contacts (e.g. N/10[19,36]
or N/2[11]). The reason for this was the limitation of their
methods which could score some relevant contacts very
low. Consequently, a minor improvement in accuracy of
the final set of contacts obtained by rejecting the low-scor-
ing contacts could be at the serious expense of coverage.

Contact-based ranking of CASP6 models
We employed the sets of contact data described in Table 2
in various protein structure modeling procedures. First of
all, we used the predicted contacts for ranking five models
for each target submitted to the CASP6 server by the
Kolinski-Bujnicki group. The purpose of this test was to
verify whether the selection of the best models (far from
perfect in CASP6) could be improved by scoring these 5
submitted models with predicted contacts, i.e. if the mod-
ified scoring function would correlate better with the
RMSD of the models than the scoring function based
solely on the CABS force field and the results of clustering
the simulation trajectories. We tested different kinds of
the contact-based component of the scoring function (lin-
ear, square root and quadratic dependence of the devia-
tions between the observed and predicted Cβ-Cβ
distances). The highest correlation coefficients were
observed for the linear scoring function and all the results
presented here are obtained using the following form of
this function:

where: f is a scaling factor (here equal to 1.0), d(i,j) is the
difference between the observed Cβ-Cβ distance and the
reference distance of 8 Å (a standard cut-off distance in the
contact definition[4]), i and j are residues predicted to be
in contact. The final score for the given structure and the
predicted contact set is computed as a sum of all i,j pair-
wise scores.

REMC simulations of CASP6 targets with contact-based 
restraints
The usefulness of the predicted contacts in protein mode-
ling was also tested in the structure refinement of the final
model and in contact-assisted de novo folding. In both
cases we used the CABS modeling tool[32]. The CABS
algorithm predicts protein structures on the basis of their
sequences. It employs a simplified lattice representation
of a protein. Each residue is represented by four centers of
interactions: Cα united atom, Cβ atom, a united atom in

the side-chain center of mass and a united atom represent-
ing the peptide bond, located in the center of a Cα-Cα
pseudobond. The conformational space of a model pro-
tein is explored by the Replica Exchange Monte Carlo
method (REMC), a very efficient technique for finding the
global energy minimum [41]. The conformational energy
of a protein is evaluated by several knowledge-based
potentials which bias the model chain towards protein-
like conformations. The force field includes long-range
orientation-dependent contact-type potentials, short-
range sequence-dependent potentials and a hydrogen
bonding potential. The details of the CABS force field
design and the description of its applications in general-
ised comparative modeling, folding pathway prediction,
docking and de novo modeling and modeling supported
by sparse experimental data can be found in other publi-
cations[30,42-44].

Apart from the protein sequence, for a better performance,
CABS also requires some information about the likely sec-
ondary structure coded in a three letter code (E-beta struc-
ture, H-helix, C-coil or loop). Such a secondary structure
is typically predicted quite accurately by different servers
(e.g. PSIPRED[45]). In order to reproduce the same con-
ditions of the folding simulations as those applied by the
Kolinski-Bujnicki group during the CASP6, except for the
additional contact data, we used the same predicted sec-
ondary structure and the same version of the knowledge-
based potentials as employed during CASP6.

The structure refinement supported by the contacts pre-
dicted was conducted in several low-temperature REMC
simulations with different sets of parameters and different
sets of contact data. In every simulation the five protein
models submitted to the CASP6 server by the Kolinski-
Bujnicki group were used as the initial replicas. The lowest
temperature starting replica was the first model submitted
in CASP6 by this group. Employing these initial condi-
tions, we refined the structures obtained by the CABS-
based de novo modeling combined with evolutionary
information from Frankenstein-3D[34].

The predicted contacts were used in the refinement as
restraints imposed onto Cβ-Cβ distances in the form of
square root potential, tested previously[32]:

Here, k is a number of a contact between residues i and j
and Ek – is a component of the contact potential associ-

ated with this contact; -is a current distance
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between Cβ atoms of residues i and j;  – is a

predicted maximum distance between these atoms, set to
8 Å; f is a scaling factor (typically between the value of 0.1
and 1). The energy component of the contact potential is
added to the total conformational energy only when its
value exceeds the certain cutoff depending on the
expected quality of the predicted contacts. This feature of
the CABS force field is very useful when the restraints data
is sparse and inaccurate, because it enables to incorporate
restraints into the simulation only when the protein con-
formation seriously disagree with most of them and dis-
carding them when only a small fraction of restraints
(typically 20–30%), which could be false anyway, are not
satisfied. The same type of restraint potential was used in
de novo folding simulations. Contact-assisted de novo
folding simulations were started from random polypep-
tide conformations. The first stage of de novo folding was
processed without contact-based restraints, which were
implemented only in the second stage of the simulation.
The preliminary simulation with the CABS force field only
facilities a very efficient search for the local minima of the

free-energy in the enormous conformational space, espe-
cially in the case of large protein structures, without any
restrictions from restraints [30]. Typically, in the prelimi-
nary simulation, a random polypeptide chain yields a pro-
tein-like secondary structure, but its overall topology is
not set.

Preliminary testing and optimisation was processed for
the limited number of 14 CASP6 targets (T0198, T0199-3,
T0209-1, T0212, T0215, T0230, T0235-2, T0239, T0248-
1, T0262-1, T0272-1, T0272-2, T0280-2, T0281) in the
series of contacts-supported de novo folding and refine-
ment simulations. After these testing simulations we
chose the best performing contact data set on the basis of
the RMSD of the obtained models. It was the contact data
obtained from the best two predictors (Baker and PROF-
con – see Results and Discussion, Table 3). We used this
contact data set in simulations for all the remaining tar-
gets from NF and FR-analogy categories.

In de novo folding and in the refinement simulations the
final protein models were selected from the CABS trajec-
tories as centroids of the most populated clusters using the
hierarchical clustering procedure, described else-

dk
predicted

Table 3: Comparison of different approaches to contact-based modeling tested in this work.

Set of contact data(a) Number of predicted contacts avg. Cα RMSD [Å]

Contact-based ranking De novo folding Refinement

First (c) Best (d) First (c) Best (d)

N/2 top-scoring contacts from each of 
the best two predictors

N 9.58 8.93 7.53 7.69 7.10

N/2 top-scoring contacts from each of 
the best three predictors

1.5 N 9.96 8.69 8.02 8.23 7.36

Consensus of the whole data from the 
best three predictors

N/2 9.82 8.15 7.14 8.28 7.17

N 9.80 8.82 7.35 8.11 7.30
1.5 N 9.81 9.21 8.03 8.68 7.73

Consensus of the whole data from the 
best five predictors

N/2 9.83 8.92 7.92 8.44 7.02

N 9.91 8.94 7.65 7.89 7.21
1.5 N 9.79 8.70 7.57 7.71 7.11

Consensus of the whole data from all 
nine predictors

N/2 9.70 9.26 7.98 8.06 6.44

N 9.77 8.79 7.52 7.63 6.41
1.5 N 9.64 8.42 7.07 8.02 6.99

(a) The same as in Table 2.
(b) RMSD computed only for models ranked as first.
(c) RMSD component computed only for that model of each target which was likely to be selected as the first model (the most probable), because it 
was a centroid structure of the most populated cluster obtained in a simulation.
(d) RMSD component computed only for the best model of each target (a centroid structure of a cluster which was most similar to the native 
structure).
The performance of each method is presented as the Cα RMSD of the final protein model averaged over 14 targets selected, for the sake of 
shortening computation time, from NF and FR/A categories (i.e. T0198, T0199-3, T0209-1, T0212, T0215, T0230, T0235-2, T0239, T0248-1, 
T0262-1, T0272-1, T0272-2, T0280-2, T0281). The average Cα RMSD of the first models for this subset of 14 CASP6 targets for the Kolinski-
Bujnicki group was 10.27 and we observed improvement of this value for every method and every contact data set. The lowest average RMSD was 
obtained in the case of the refinement simulations with contact restraints based on the data from the best two predictors.
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where[46]. The rebuilding of all-atom structures from the
CABS Cα only traces was done using the BBQ program
from the BioShell package[46].

Results and discussion
Predicted contact-based ranking of CASP6 models
The first question asked was whether the ranking of the
models provided by the Kolinski-Bujnicki group could be
improved by the ranking based on the contact-dependent
scoring function. Because of the limited size of the data set
which was too small to assume normal distribution, we
employed the Spearman rank order correlation instead of
the commonly used Pearson correlation. Spearman corre-
lation coefficients were evaluated for each target sepa-
rately and then averaged over all targets to obtain the final
correlation coefficient for a given set of contacts. The
Spearman rank-order correlation was used for example by
Feig et al. in the evaluation of CASP4 protein models
obtained by different modeling methods, from compara-
tive modeling to de-novo folding[47].

The contact-based scoring function improved the ranking
of models submitted by the Kolinski-Bujnicki group for
every set of contacts considered in this work. As it is
shown in Table 2, the more diverse (from different predic-
tors) and the larger data set is considered, the higher cor-
relation coefficients are observed. The highest RMSD-
based correlation coefficient (0.440) is for the set of 1.5 N
consensus contacts derived from all the nine tested predic-
tions. The correlation coefficient between the RMSD-
based ranking and the ranking provided in CASP6 by the
Kolinski-Bujnicki group was only 0.213, so the contact-
based ranking led to a significant improvement of the best
model selection.

In the case of protein models which differ significantly
from the native structures, the GDT-TS (global distance
test) measure is used more often in evaluating the results
than the RMSD values[47]. Though RMSD correlates with
GDT-TS values, GDT-TS is more sensitive in distinguish-
ing different protein topologies than RMSD[47]. In Table
2, apart from the correlation coefficients computed using
the RMSD measure, we also present correlation coeffi-
cients between the GDT-TS-based ranking of protein
models and the ranking based on the predicted contacts.
The GDT-TS scores were obtained using the TMscore pro-
gram[48]. If a protein model is similar to a native struc-
ture, the GDT-TS score is high. Thus, the best correlation
would be for the Spearman correlation coefficient equal
to -1.

The contact-based ranking of models correlates better
with the RMSD than with the GDT-TS. The correlation
coefficients based on the GDT-TS ranking were obtained
in the range from -0.350 to -0.196 (for the Kolinski-

Bujnicki group in CASP6: -0.138). Such results, though
obtained using a different testing set, are comparable with
those of Feig et al. (correlation coefficients for assessing
CASP4 models: from -0.407 to -0.218, depending on the
type of a physical energy function used)[47].

Apart from the correlation coefficients, we also present the
ΔRMSD value, which is the difference in Cα RMSD
between the first ranked model and the best model, aver-
aged over all targets (see Table 2). Such measure of the
performance of ranking methods is widely used[49]. In
this case, we improved Kolinski-Bujnicki's results in the
best case by about 0.4 Å (from 1.484 to 1.069).

Correlation coefficients and average ΔRMSD values were
compared in Table 2 with accuracy and coverage of the
given contact sets, averaged over all targets. The accuracy
of the data was computed considering the δ analysis by
Ortiz et al[28]. The value of δ, defined as a maximum shift
in the predicted contacts compared to the real ones, was
chosen as equal to 0 (accurate contacts), 2 (semi-accurate
contacts) and more than 5 (wrong contacts). Generally,
the coverage is higher when more contacts are taken into
the set but in that case the accuracy decreases. Also, when
the coverage improves, the number of completely wrong
contacts (shifted by more than 5 residues) increases and
the fraction of semi-accurate contacts decreases. The max-
imum number of shifted residues (δ = 5) which could be
still useful in structure modeling is chosen independently
of the type of the secondary structure of the target protein.
However, it is worth noticing that a 5-residue-long shift in
a contact set could be more destructive for extended beta-
type structures than for compact helix structures.

Generally, models are better ranked (higher correlation
coefficients) when the contact data are of high coverage
(e.g. 1.5 N contacts instead of N/2). However, if we exam-
ine only the difference between the first ranked and the
best model (ΔRMSD), better results are obtained when the
accuracy is high, but not the coverage (e.g. sets of N/2 and
for N contacts instead of 1.5 N).

In most cases (see Figure 1a), the Cα RMSD of the models
selected as first according to the contact-based criterion
was lower or the same as the RMSD values of the Kolinski-
Bujnicki's first models. Only one model out of 14 in the
FR-analogy category and two models out of 10 in the NF
category were worse than the first models selected by the
Kolinski-Bujnicki group. We managed to improve the pre-
diction of five models in the FR category and two models
in the NF category. The quality of the remaining models
did not differ significantly from the CASP6 results.

The two targets from the NF category for which the con-
tact-based scoring function failed in the selection of the
Page 7 of 15
(page number not for citation purposes)



BMC Structural Biology 2008, 8:36 http://www.biomedcentral.com/1472-6807/8/36
best models were T0241-2 and T0216-2. The reason for
such weak results is that all models provided by the Kolin-
ski-Bujnicki group were of a very poor quality (RMSD =
16–24 Å). In such cases, agreement with the predicted
contacts may not correlate with the quality of models.

The most significant improvement in the models' ranking
was obtained for targets for which the accuracy of contact
data was in the medium range of 15–30%. Below this
range, the contact-based selection did not improve the
quality of models significantly, but, and this is perhaps
more important, did not worsen the results. Above this
range the improvement in most cases was not significant,
probably because such high accuracy of contact data
means that contact prediction was straightforward. Such
high accuracy of contact prediction was observed only for
FR targets, for which some similar protein structures could
be detected by a sensitive fold recognition method and
was certainly detected by Frankenstein-3D used by the

Kolinski-Bujnicki group. Thus, contact prediction in these
cases did not provide any additional information.

As the results of the contacts-based scoring of the Kolin-
ski-Bujnicki's models were encouraging, we tested the
scoring function for models submitted by other groups in
CASP6 (see Figure 2). While, the contact-based scoring
function is able to distinguish between completely wrong
protein models (GDT-TS < 40) and those nearly native
(see Figure 2) it needs to be combined with other kinds of
data or scoring functions while accessing the models
much closer to the near-to-native structures (with GDT-TS
> 40).

Refinement of CASP6 models with predicted contacts
Predicted contacts are more valuable in refinement simu-
lations using CABS than in the post-simulation ranking of
the most probable models (see Figure 1). It is a conse-
quence of the fact that, in contrast (for instance) to

Comparison of the CASP6 results of the Kolinski-Bujnicki group with post-CASP contact-based modelingFigure 1
Comparison of the CASP6 results of the Kolinski-Bujnicki group with post-CASP contact-based modeling. 
Results of the contact-based ranking of Kolinski-Bujnicki's models from CASP6 is shown in (a). The scoring function was based 
on the contact data set from the best two predictors (Baker and PROFcon). The accuracy of the contact data used for scoring 
5 models of each target is plotted against the RMSD of the model ranked as first in CASP6 by the Kolinski-Bujnicki group 
(green squares) and against the RMSD of the protein model ranked as first by the contact-based scoring function (red lines 
which join corresponding points). Results for NF and FR/A categories are presented separately. The most significant improve-
ment is observed in the case of FR/A targets with the accuracy of the contact prediction range of 15–30%. In a similar way the 
results of the refinement simulations are presented in the right-hand panels (b). The refinement simulations performed better 
than the post-simulation ranking of the models.
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Rosetta[50], CABS was developed not to generate many
distinct protein conformations and rank them after the
simulation, but rather to bias the protein conformation
towards its single global free energy minimum. The
improvement of protein models after the CABS refine-
ment was significant in the case of targets from the FR/A
category (11 targets out of 14; even by about 6 Å). In the
case of NF targets we managed to decrease the RMSD
value of 7 out of 10 targets, but by no more than 2–3 Å.
Only 3 models out of all FR/A targets were worse than
those selected as the first by the Kolinski-Bujnicki group
(by about 0.6–1.5 Å) and only one model out of all NF
targets (by 1.4 Å). The accuracy of the contact data for
these 4 targets was either below 15% or above 30% and
this confirmed our hypothesis formulated in the previous
section that the most useful contact predictions are typi-
cally of 15–30% accuracy.

In Figure 3, we compared the real contact maps with pre-
dicted contact maps of selected targets. We also compared

the contact maps generated from models before and after
the refinement simulations. It is worth noticing that the
contact map of the final refined protein model does not
necessarily overlap entirely with the predicted contact
map used for generating restraints for simulations. It is the
consequence of the way the restraint potential is con-
structed (see Methods section), i.e. to allow a fraction
(typically 20–30%) of restraints to be ignored during
refinement simulations. Such a form of the restraint
potential is especially useful when only a small fraction of
predicted contacts is accurate.

In most cases we observed that contact maps of the refined
models were more accurate than those of Kolinski-
Bujnicki's original models. We also noticed that some
contacts which were visible in the contact map of the
refined model were not provided by contact predictors
(see selected contacts in the T0209-2 map in Figure 3a).
This is the consequence of the interplay between the CABS
force-field and the contact-based restraints in which CABS

Contact-based scoring of NF and FR/A models submitted as first by all groups in CASP6Figure 2
Contact-based scoring of NF and FR/A models submitted as first by all groups in CASP6. For each model, the final 
score computed using the scoring function, which was based on the contacts provided by the Baker group and PROFcon, was 
plotted as a function of GDT-TS. Although most of wrong or low quality models (with GDT-TS < 40) could be discarded by 
the contacts based scoring function, it seems inevitable to use some additional discriminating tools for assessing models with 
GDT-TS > 40.
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Figure 3
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plays the key role. For example, the CABS tool is able to
reach a protein energy minimum by rebuilding the con-
formation of one part of the protein chain to satisfy inter-
actions defined either by its force field or by contact-based
restraints, imposed on the other, even distant part of the
protein (see T0280-2 in Figure 3a).

Most of the contacts in the Kolinski-Bujnicki model of the
T0198 target were uniformly shifted by a few residues
with respect to the real contact map (see Figure 3a).
Thanks to rather precisely predicted contact-based
restraints the refinement simulation managed to shift
these contacts back to the native-like pattern. However,
the Cα RMSD of the final model did not improve signifi-
cantly with respect to Kolinski-Bujnicki's results (from 9.8
to 8.1 Å). As it was tested by Ortiz et al.[28], if all contacts
are slightly but uniformly shifted with respect to the
native ones, the RMSD of the overall protein model is
affected only to a minor extent (1–2 Å). Our results for the
T0198 target confirm this observation.

Most of the predicted contacts for all targets are precise if
they are accurate. The main problem with this kind of data
is not the shift of the contact data but the existence of
completely mispredicted contacts, very distant from the
native ones in the contact map (see the A group of con-
tacts in the T0201 map and A and B in the T0272-1 map
in Figure 3a). Such mispredicted contacts, if satisfied in
the simulations, could severely worsen the quality of the
final model[4]. Of course, if such contacts disagree com-
pletely with the CABS-only generated energy landscape or
satisfying them would require serious rebuilding of a con-
formation, not possible in the low-temperature refine-
ment, they may not be observed in the final contact map
(e.g. in the case of the A group in the T0201 contact map
in Figure 3a). In other cases, their influence could be
destructive (see T0280-2 in Figure 3a).

The effect of such false contacts could be reduced, as we
observed on the basis of contact maps presented in Figure

3, by diffusing the uncertain contact data or decreasing
their number. If some predicted contacts are concentrated
and, what is more important, numerous in one area of the
contact map, the component of the restraint potential cor-
responding to these contacts is high and significantly
influences the folding process. Consequently, concen-
trated contacts are likely to be observed in the final mod-
els (see the dense groups of contacts in T0198, T0209-2
and T0280-2 contact maps in Figure 3a). Of course, this
could be useful if contacts are accurate (the T0198 case).
However, if they are suspected to be false, like in the case
of the T0280-2, they should not be incorporated in the
simulations in the form of populated and dense data set.
On the other hand, if contacts in a certain area of the pre-
dicted contact map are diffuse, they are less numerous
and, therefore, they modify the energy landscape to a
lesser extent. More diffuse and less numerous contacts
could even remain undetected in the final model (see
selected contacts in the T0281 contact map in Figure 3a).

To confirm this observation, we tested several methods for
reducing the influence of false contacts on structure mod-
eling (see Figure 3b). We selected the T0272-1 case, for
which two distinct false clusters of contacts were pre-
dicted. The A group of contacts forms a dense and numer-
ous cluster and the contacts in the B group are less
numerous and less close to each other (see Figure 3a).
After the refinement simulation in the final model we
observed mainly contacts from the A group (depicted as
A'). The B group was barely visible (depicted as B'). To
reduce the A group of contacts, the scaling factor of the
potential component computed for this group of contacts
could be decreased, the number of these contacts could be
reduced and finally they could be more diffused (see A" in
Figure 3b-1). To obtain the B contacts in the final protein
model, on the other hand, the scaling factor should be
increased (see B" in Figure 3b-3), the number of these
contacts should be larger (see B" in Figure 3b-2) or they
should form a more dense cluster. Our results of addi-
tional simulations for T0272-1 (see Figure 3b) confirmed

Contact maps presenting results of fold-refinement simulationsFigure 3
Contact maps presenting results of fold-refinement simulations. The contact maps of the selected CASP6 targets are 
presented in (a). In the upper triangle in each contact map real (red) and predicted (green) contacts are compared. In the bot-
tom triangle a contact map of Kolinski-Bujnicki's first model (blue) is superposed on a contact map of the final model obtained 
after the refinement simulations (grey). In most cases we observed improvement of the contact maps for models after the 
refinement. Some accurate contacts were rebuilt by the CABS despite not being preliminarily predicted (T0209-2). Some 
falsely predicted contacts in diffused clusters were not observed in the final model (T0281). Predicted contacts in dense and 
numerous clusters were observed almost in all cases (A and A' in the T0272-1 contact map), contrary to diffuse sparse contact 
clusters. (b) Lower triangles, contact maps of the T0272-1 models obtained after the simulations with restraints based on the 
data sets (upper triangles) with either the A or B group of contacts modified. (1) Reduction of the influence of restraints based 
on the A group of contacts on the simulation with respect to the original contact data in (a) by diffusing these contacts. Inten-
sification of the effect of B contact-based restraints by increasing the number of these contacts (2) and by increasing the scaling 
factor in the restraint potential corresponding to these contacts(3).
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that if a cluster of predicted contacts is more numerous
and dense, it is more probable that we observe it in a final
refined model. Decreasing the scaling factor of the
restraint potential affects the simulation, but to a minor
extent only.

Another important issue which we encountered is the fre-
quent inconsistency of contacts obtained by the combina-
tion of different methods. For example, (see Figure 3a), a
large group of contacts in the T0201 contact map marked
as B, was obtained by combining contacts predicted by
two methods. In the refined model this group of contacts
was reduced to those contacts which were consistent (B').
As it was mentioned above, the specific form of the
restraint potential enables us to suppress the effect of
some inconsistent contacts, provided that the scaling fac-
tor is not too high. In such a way, accurate contacts could
be distinguished from the false ones due to some geome-
try or physical or knowledge-based criteria defined in the
CABS force field. This ability of the CABS algorithm could
be especially useful when a diverse set of data from differ-
ent sources is used.

The overall accuracy of predicted contacts may not be cru-
cial in refinement simulations. For example in the case of
T0281, T0230 and T0212 targets, for which the accuracy
of contact maps was nearly 40%, the quality of the final
models did not improve significantly after the simula-
tions. This is a consequence of the fact that the most of the
accurate contacts were already observed in the Kolinski-
Bujnicki starting model and were provided either by CABS
or Frankenstein-3D. The remaining contacts, though dif-
fuse, were mispredicted. The contacts which were crucial
for correct structure determination but were not observed
in the starting models were also absent in the predicted
sets (see the T0281 contact map in Figure 3a). Conse-
quently, mispredicted contacts, despite being sparse,
dominated the simulation driving the system into false
minima.

According to our analysis of Figure 3, it appears that
despite their frequent inconsistency more concentrated
contact clusters with some accurate and some shifted con-
tacts, but by a few residues only, are more useful for the
refinement simulations with the CABS model than a dif-
fuse set of precise contacts of higher overall accuracy.

De novo folding supported by predicted contacts
If we compare de novo folding supported by predicted
contacts with refinement simulations and the contact-
based ranking (see Table 3), it turns out that the perform-
ance of this approach is in between these two above dis-
cussed methods. The results of the contact-based ranking
are better in the case of contact sets of high coverage (1.5
N contacts or consensus from data for all predictors). On

the contrary, the results of the refinement simulations are
best for the data set of moderate, and thus well balanced,
coverage and accuracy. Namely, the results for sets of N
contacts are better than for 1.5 N contacts. Also, the best
results of the refinement simulations are for the consensus
from data from the best five predictors, for which the
accuracy is better than in the case of consensus from three
predictors, and the fraction of false contacts is smaller
than for the consensus data from all predictors (see Table
2). It seems that during the REMC simulations the accu-
racy of contact data is more important than the coverage,
because a large fraction of false contacts may disturb the
protein folding pathway, and thus a near-native structure
cannot be achieved. Regardless of which modeling
method we chose, contact data obtained by the consensus
of contact predictions performed better than simple com-
bining together the top-scoring contacts of each predic-
tion (compare results for N/2 top-scoring contacts from
each of the best three predictors and for the consensus of
the whole data from the best three predictors in Table 3).

In the case of T0198, mispredicted contacts (see selected
contacts in the T0198 contact map in Figure 3a) were
observed in the final model of de novo folding simulation
(data not shown), but not in the model obtained in the
refinement simulation. It is the consequence of the fact
that refinement simulations enable us to neglect some
mispredicted contacts if they diverge significantly from
the starting model and require too radical rebuilding of
the whole conformation, which is impossible due to too
low temperature and too loose restraints. In de novo fold-
ing simulations, in which the starting temperature is sig-
nificantly higher than the folding transition temperature,
all contacts, both mispredicted and accurate, can be
equally satisfied because the starting conformation can be
freely rebuilt. Consequently, if the predicted contacts are
not accurate enough, de novo folding simulation can lead
to the completely false fold, especially when contact-
based restraints are tight and thus satisfied in majority. On
the other hand, if the prediction of contacts is very accu-
rate and substantial, such de novo simulations exploit it
better than refinement simulations, because the energy
landscape is properly modified by these contacts nearly
from the beginning of the folding process. In Figure 4 we
present two distinct situations as an example of the most
favourable approach to protein modeling: refinement
simulations with low-quality contact data (target T0215)
and de novo folding with accurate contact data (T0248-1).

The accuracy of contact prediction for T0248-1 is 25.8%
and it covers all the important regions of the real contact
map (mainly contacts between helices) with a tolerance of
a few residues. Such high quality data are better exploited
when used as restraints in de novo folding (the RMSD of
the representative structure of the best cluster is 2.3 Å)
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Distinctive results of two simulation methods involving the predicted contacts: de novo folding and refinementFigure 4
Distinctive results of two simulation methods involving the predicted contacts: de novo folding and refine-
ment. Results of de novo folding (a) are represented by the best model of the T0248-1 target superimposed on the native 
structure (RMSD = 2.3 Å) and by the contact map with depicted real and quite accurate and precisely predicted contacts 
(upper triangle) and contacts of the best model obtained in the folding simulation and the first model of the Kolinski-Bujnicki 
group (lower triangle). Significant improvement of model quality and its contact map with respect to the native is observed. 
Results of the refinement simulations (b) are represented by the best model of the T0215 target (green) superimposed on the 
native structure (blue) (RMSD = 5.5 Å) and by the contact map constructed in the same fashion as in (a). Despite the low qual-
ity of the contact data predicted for the T0215 target the quality of the final refined model improved (but not significantly) in 
comparison to the original Kolinski-Bujnicki results (RMSD = 7.9 Å from the crystallographic structure Cα-trace).
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rather than in refinement simulations (RMSD = 3.0 Å).
For comparison, the best result of the Kolinski-Bujnicki
group was 7.9 Å from the native structure (this model was
submitted as the second). The accuracy of contact data for
T0215 is only 11.8% and the restraints based on such con-
tact data, if fully satisfied, could worsen the prediction.
The refinement simulation, however, takes advantage of
part of the restraints only rejecting those inconsistent with
the starting model and improves the RMSD from 6.2 Å to
5.5 Å (the best model). In the case of de novo folding the
best model obtained was 6.8 Å from the native structure.

In the case of poorly predicted contacts, e.g. for T0215, the
quality of the final model does not deteriorate in the
refinement as much as in the case of restrained de novo
folding. As the average accuracy of contact predictions is
still rather low, the refinement-based approach to protein
structure modeling seems to be more useful.

Conclusion
In this work we explored various methods for improving
template-free modeling by using contact prediction. In
the straightforward contact-based ranking of protein
models, the best way is to combine as many predicted
contacts as can be collected from different sources into a
consensus set of high coverage and at least medium accu-
racy. Such combination of data obtained by different
methods leads to a significant reduction of the effects of
limitations and errors of each method.

Introducing contact-based restraints into the template-
free REMC simulations requires high accuracy or at least a
significant number of accurate and semi-accurate contacts
and only few false ones. Covering the most of the real con-
tact map by predicted contacts improves structure predic-
tion but overall, coverage is of lesser importance than
accuracy. Contacts which are predicted with low probabil-
ity and therefore can be false should be more diffuse and
less numerous in the data set to reduce their influence on
the conformational energy. The CABS force field is able to
suppress the effect of the wrongly predicted contacts dur-
ing the REMC simulations, provided that they do not
form a densely-populated clusters in the predicted contact
map.

In general, we have shown that the theoretically predicted
contacts could be useful in protein modeling, providing
some other high-performance modeling tool, such as
CABS, is also used. The usage of additional modeling tool
is inevitable due to rather low accuracy of contact data,
insufficient for the direct reconstruction of the 3D model.
Predicted contacts can be used in simple and straightfor-
ward model ranking, refinement of crude models and de
novo folding simulations. On average, all approaches lead
to the improvement of the quality of predicted models.

Sometimes the improvements are of a qualitative nature.
This study provides a guideline how to use the contact pre-
diction methods at various stages of protein structure pre-
diction.

The method described here is not restricted to the use of
data from contact predictors. It is possible to employ con-
tacts provided by any other method, theoretical or experi-
mental. They can be extracted from very rough or coarse
structural alignments or from fuzzy experimental data, for
example from ambiguous NOEs or cross-link data. The
initial structures for the most successful refinement simu-
lations we obtained can be provided by any available
modeling method from fold-recognition to entirely de
novo methods.

Although we tested various methods for contact-assisted
model building, refining and ranking using only the CABS
generated models, it seems to be rather safe to expect sim-
ilar applicability of predicted contacts in other modeling
techniques.
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