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Abstract: Delirium, an acute alteration in mental status characterized by confusion, inattention and a
fluctuating level of arousal, is a common problem in critically ill patients. Delirium prolongs hospital
stay and is associated with higher mortality. The pathophysiology of delirium has not been fully
elucidated. Neuroinflammation and neurotransmitter imbalance seem to be the most important
factors for delirium development. In this review, we present the most important pathomechanisms of
delirium in critically ill patients, such as neuroinflammation, neurotransmitter imbalance, hypoxia and
hyperoxia, tryptophan pathway disorders, and gut microbiota imbalance. A thorough understanding
of delirium pathomechanisms is essential for effective prevention and treatment of this underestimated
pathology in critically ill patients.

Keywords: delirium; critical illness; hypoxia; hyperoxia; neuroinflammation; neurotransmitter
agents; kynurenine pathway; tryptophan; gastrointestinal microbiome

1. Introduction

Acute non-traumatic brain injury, manifested as a type of neuropsychological dysfunction,
is frequently noted in critically ill patients undergoing elective or emergency surgery and treated in
the intensive care unit (ICU). It includes various types of behavioral disorders, commonly known as
delirium, defined as an acute disturbance in attention and awareness with additional disturbances
in cognition not resulting from pre-existing neuropsychological disorders, and caused by another
medical condition [1,2]. Delirium has been observed in patients undergoing elective or emergency
surgery, and in critically ill patients treated in the ICU. The rates of delirium vary between 68% and
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80% in mechanically ventilated critically ill patients and between 9% and 70% in patients without
artificial breathing support [3–5]. It has been documented that delirium contributes independently to
poor outcome and prolongs the length of stay in the hospital [6,7]. The fact that delirium is a strong
determinant of hospital stay and is an extremely common complication of ICU treatment implicates it
as a contributing factor to the increased cost of hospitalization.

Generally, delirium is classified into three main subtypes: hyperactive and its extreme subtype,
excitation, hypoactive and its extreme subtype, a form of catatonia, and mixed [8]. Based on clinical
manifestations, delirium has five core domains: psychomotor disturbance, emotional dysregulation,
cognitive deficits, attention deficits and disorders in circadian rhythm [9]. Importantly, hypoactive
delirium is associated with worse long-term cognition than the hyperactive subtype [7]. Many patients
remain undiagnosed when validated delirium screening tools are not used, both in the ICU and outside
the ICU. Therefore, delirium monitoring policies should be implemented in every hospital ward [10].

More than 100 different risk factors have been described for delirium, and are categorized
into predisposing factors (present before the admission to the hospital) and potentially modifiable
precipitating factors (generated during the treatment period) [11]. Despite a large number of
risk factors, only a few of them significantly increase the incidence of delirium in hospital
settings. Hypoxia, prolonged mechanical ventilation, hyperbilirubinemia, raised creatinine and
the use of benzodiazepines, as well as elderly age, sleep deprivation, alcohol or drug addiction,
physical immobility, severe comorbidities and severe infection predispose to the development of
delirium [8,9,12].

Pathomechanisms of acute non-traumatic brain injury have been studied for many recent years.
Currently, there are a few leading theories that seem to explain the non-traumatic brain damage.
Some of them seem to be very clear, whereas others are very controversial (Table 1). The aim of this
review was to analyze the most popularly known pathomechanisms of delirium in critically ill patients
treated in the ICU.

2. Hypoxia or Hyperoxia-Related Brain Injury

The brain is considered the most vulnerable organ at the highest risk of oxygen disorders.
When oxygen delivery to the brain is decreased below a critical value, a biochemical cascade is induced
that leads to neuronal damage. Cerebral hypoxia results in changes in the intra- and extracellular
electrolyte concentrations. An anoxia-related increase in cell membrane permeability occurs between
60 and 180 s after the onset, leading to a decrease in extracellular sodium, chloride and calcium with
an increase in potassium leaks from the neuronal cells. At the same time, calcium rapidly influxes into
the neurons, leading to subsequent mitochondrial dysfunction and overproduction of reactive oxygen
radicals [13]. The mitochondrial dysfunction causes further ATP depletion, which impairs osmotic
pump activity. These disorders may induce neuronal apoptosis and necrosis within a few hours;
necrotic neuronal damage is commonly observed early after severe ischemic events, whereas apoptotic
cell death may occur with longer survival periods [14]. Additionally, prolonged or intermittent
hypoxia activates microglia, which is a trigger for neuroinflammation manifested as a so-called
delayed post-anoxic encephalopathy [15]. A decrease in cerebral oxygen saturation is associated with
delirium in septic shock patients [16]. Mikkelsen and colleagues also found relationships between
lower PaO2 on the day of admission to the ICU and cognitive impairment in general, and executive
dysfunction specifically [17]. The duration of hypoxemia during admission correlated with attention,
verbal memory and executive function in patients treated for severe acute respiratory distress syndrome
with PaO2/FiO2 < 150 mmHg, but it did not correlate with any neurocognitive functions at two-year
follow-up [18].

Similar to hypoxia, hyperoxia may also be harmful and increases the risk for acute non-traumatic
brain injury [19,20]. The most dramatic disorders in brain function and cerebral blood flow were
observed in healthy volunteers with combined hyperoxia and hypocapnia during anesthesia [20].
Notably, hyperoxia induces hypocapnia following hyperventilation, which is explained by the Haldane
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effect (oxygenated hemoglobin binds less CO2). Unbounded CO2 must be transported as the dissolved
ion, which increases pH and stimulates the brainstem nuclei to increase ventilation. Exposure to arterial
hyperoxia correlates with worse outcome and higher mortality in stroke and traumatic brain injury
patients [21]. Hyperoxia decreases phosphorylation of protein 3-kinase and increases activation of
c-Jun N-terminal kinase, favoring apoptotic cell death [22]. Acute 6-hour hyper-oxygenation markedly
down-regulates the brain-derived neurotrophic factors, neutrophins 3 and 4, and induces oxidative
stress, leading to apoptotic neurodegeneration [23]. High blood oxygen tension increases F2-isoprostane
and isofuran plasma concentrations—molecules reflecting the free radical-induced arachidonic acid
peroxidation, which can induce brain arteriole vasoconstriction [24,25]. Clinical observations seem
to confirm an unprofitable effect of high blood oxygen tension, suggesting hyperoxia may be an
independent risk factor for postoperative delirium in cardiac surgery patients [19,24]. Hence, it can be
speculated that both hypoxia and hyperoxia may be associated with increased risk of delirium.

3. Neuroinflammatory Hypothesis

Every systemic inflammatory event triggers the release of several pro- and anti-inflammatory
mediators, which may affect neuronal activity. Experimental studies have documented that peripheral
cytokines released following the systemic inflammatory response can penetrate the blood–brain
barrier (BBB) directly via active transport or indirectly via vagal nerve stimulation, and this effect can
be intensified by hypoxia [26–29]. Elevated plasma pro-inflammatory cytokine concentrations,
such as IL-1β and tumor necrosis factor α (TNFα), activate receptors in the endothelial cells,
which causes cyclo-oxygenase activation, resulting in increased BBB permeability [30,31]. Additionally,
elevated plasma interferon-γ concentration following a general inflammatory response damages
occludin (a tight junction protein), which enables macrophage transition to the intracellular space in the
brain, and stimulates astrogliosis and microglial activation [31,32]. Of note, peripheral administration
of lipopolysaccharide induces a rapid elevation of TNFα in the brain per se [33]. An increase in
BBB permeability is associated with cerebral edema and activation of microglia, which play a crucial
role in synaptic plasticity and produces behavioral adaptation to environmental signals. Microglial
cells are the main macrophage cells representing the brain immune system. Activated microglia
secrete proinflammatory cytokines, eicosanoids and excitatory amino acids and stimulate production
of reactive oxygen radicals and nitric oxide. Microglial activation is also responsible for regenerative
processes and releasing neuroprotective factors. Disorders in microglial signaling impair memory [34].
It has been suggested that sepsis-related cognitive decline results from neuroinflammatory cascade
following microglial activation [35]. Similarly, microglial activation with BBB dysfunction following the
systemic inflammatory response was observed in mice that underwent elective orthopedic surgery [36].
Activated microglia and inflammatory mediators released by them modulate cholinergic, β-adrenergic
and GABA-ergic neurotransmission, as well as secretion of vasopressin, corticotropin-releasing
factor and adrenocorticotropic hormone, leading in turn to non-traumatic neuronal injury in the
brain [37]. Significant reduction in the risk of postoperative delirium in patients treated with
anti-inflammatory medications seems to confirm this hypothesis [38,39]. Interestingly, statins also
reduce the neuroinflammatory response following systemic inflammation and/or ischemia-related brain
dysfunction. Statins have been suggested in the treatment of delirium [40]. Several clinical studies have
confirmed a relationship between systemic inflammation with increased cytokines, particularly IL-6,
which are associated with delirium in patients treated for hip fracture [41,42]. Therefore, the important
role of neuroinflammation in the development of postoperative neurocognitive dysfunction has
become apparent.

4. Neurotransmitter Disorders

The occurrence of delirium can also result from dysfunction of multiple neurotransmitter
systems. Disorders of the cholinergic system have been suggested as a crucial pathomechanism for
delirium. Activation of acetylcholine receptors is associated with better learning and memory, and an
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inhibition of postsynaptic acetylcholine muscarinic-1 receptor corresponds to cognitive dysfunction
and hallucinations [43,44]. Indeed, post-synaptic muscarinic-1 receptors are responsible for perception,
attention and cognitive function [44]. Cholinergic hypofunction in the basal forebrain results in
vulnerability to the cognitive deficits and memory dysfunction following systemic inflammation [45].
Additionally, centrally administrated interleukin 1β impairs memory in a cholinesterase-sensitive
manner with reduction of acetylcholine outflow [46]. On the other hand, the release of acetylcholine can
decrease the neuroinflammatory response to systemic inflammation via inhibition of IL-6, IL-8 and TNF
release [42,43]. Clinical study has shown a correlation between low blood acetylcholinesterase
concentration and delirium in cardiac surgery patients, whereas others have negated such a
relationship [47,48].

Risk for delirium is also related to an age-dependent loss of dopamine receptors, and the
imbalance between dopamine synthesis and dopamine receptors leading to neuropsychological
disorders. The dopamine (DA) receptors influence the activity of ion pumps affecting neuronal
excitability in the brain. The DA-1 and the DA-2 receptors modulate intracellular calcium levels
and their activation increases intracellular calcium in a different manner. The DA receptors affect
behavioral and locomotion functions [48]. The activation of D-1 receptors produces maximal locomotor
stimulation, whereas activation of D-2 receptors decreases dopamine release reducing activity [49].
The DA-3 receptors, which are mainly localized postsynaptically in the nucleus accumbens, inhibit
locomotor function [50]. Thus, elevated cerebral dopamine may cause neurobehavioral changes with
raised cognitive impairment, anxiety and working memory dysfunction in elderly patients [51,52].
Dopamine receptors play a crucial role in cortical acetylcholine release and systemic administration of
dopamine 2 antagonists significantly attenuated acetylcholine efflux [53]. A clinical study has shown
that dopamine infusion increased the risk for delirium in cardiac surgery patients in a dose-dependent
manner [54].

The DA-2 receptors inhibit neuronal signals via regulation of gamma-amino butyric acid (GABA)
release. Indeed, downregulation in GABA receptor sensitivity is also suggested as an important
pathomechanism of delirium, particularly in patients with alcohol dependency [55]. GABA is the
most important inhibitory neurotransmitter in the cortex, hippocampus, amygdala, basal ganglia,
cerebellum, medulla and spinal cord [56]. GABA concentrations in the cerebrospinal fluid and plasma
have been considered a useful marker of brain activity and delirium [57]. Moreover, GABA plays a
crucial role in sleep regulation, and disorders in GABA activity following neuroinflammation may
result in sleep deprivation, which is one of the most important risk factors for delirium [58].

Disorders in the glutamatergic system in the limbic area, which strongly contribute to depression
and mood disorders, are another reason for delirium. The proinflammatory cytokines, which are
released by activated microglia, reduce glutamate uptake via inhibition of glutamate transporters on
glial cells leading in turn to an increase in extrasynaptic glutamate concentration [59]. This glutamate
binds to N-methyl-D-aspartate (NMDA) receptors reducing synaptic neuroplasticity and neuronal
activity via suppression of synthesis and release of brain-derived neutrophic factor [60]. This hypothesis
seems to be confirmed by Wyrobek and colleagues’ clinical observation, who noted a relationship
between the decline in plasma brain-derived neutrophic factor (BDNF) concentration and episodes of
delirium in elderly patients >70 years old who underwent lumbar spine surgery [61]. The elevated
glutamate concentration bound to extrasynaptic NMDA receptors also suppresses the mammalian
target of rapamycin signaling pathway, which reduces the synaptic plasticity and consequently impairs
memory and learning [62].

The hypothesis that serotonin (5-hydroxytryptamine (5-HT)) plays an important role in the
development of delirium has been examined in several studies [63–65]. 5-HT is produced from
tryptophan by hydroxylation followed by acetylation and methylation to melatonin in the pineal
gland. This last step is vitamin B6 dependent. Currently, 5-HT is widely distributed in the brain,
and seven types of serotonin receptors have been characterized [64,65]. The serotonin 1 and 3 receptors
(5-HT1 and 5-HT3) are responsible for learning and memory, the 5-HT2 receptors are responsible for
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cognitive function, the 5-HT4 receptors are responsible for disorders in the mood and depression
development, and 5HT7 receptors are responsible for circadian rhythm [65]. The inhibition of
serotonergic neurotransmission intensifies impulsivity and reduces patience [63,65]. The decrease in
5-HT synthesis specifically impairs short-term and long-term memory [63,64]. Reducing serotonin
availability in the brain leads to delirium-like syndromes [66]. Clinical study with positron-emission
tomography showed an age-dependent decrease of 1% per decade in striatal 5-HT4 receptors, and 13%
lower 5-HT4 receptor activity in the limbic system with the largest difference of 19% in the amygdala
in women compared with men [67]. Given the prevalent influence of 5-HT on emotion, memory,
learning and circadian rhythm, the hypothesis about their crucial role in the pathogenesis of delirium
seems to be correct. Interestingly, stress and inflammatory states are triggers for serotonin deficiency,
and disorders in the above described receptors are initiated by neuroinflammation following trauma
or general inflammatory responses [68,69].

5. Tryptophan Metabolism and Kynurenine Pathway Dysregulation

Tryptophan is an essential amino acid, which is metabolized within two main pathways:
the serotonin pathway and the kynurenine pathway, leading to the synthesis of several neuroactive
metabolites such as kynurenic acid (KYNA), 3-hydroxyanthranilic acid oxygenated to quinolinic acid
(QUIN), picolinic acid, 5-hydroxyanthranilic acid, xanthurenic acid (XAN), kynurenine (KYN) and
others (Figure 1). Some of the final metabolites in the kynurenine pathway present anti-excitatory
activity, whereas others present pro-excitatory and pro-convulsive properties [68,70]. KYNA,
a broad-spectrum antagonist of endogenous excitatory amino acids with generally accepted
neuroprotective activity, blocks the strychnine-insensitive glycine recognition site in the NMDA
receptor and the choline-induced increase in GABAergic function at the nanomolar and micromolar,
physiological concentrations, respectively [71,72]. Elevated KYNA concentration was associated
with myelin damage leading to neuronal dysfunction [73]. Indeed, accumulation of brain KYNA
concentration induces learning and memory function, and a reduction of its level significantly
improves cognitive function [74,75]. Therefore, it may be speculated that the physiological KYNA
concentration in the brain has pronounced neuroprotective properties, whereas its elevated level
induces cognitive disorders.

Another kynurenine pathway’s metabolite, QUIN, has neurotoxic activity via an increase in
glutamate activity in the synaptic space by reducing the reuptake of glutamate in the presynaptic
NMDA receptors. QUIN is co-localized with hyperphosphorylated tau protein and induces its
phosphorylation in the cortical neurons [76]. A clinical study has documented a strong correlation
between cerebrospinal QUIN concentration and the presence of dementia in AIDS patients [77].
Low plasma KYNA concentration and a marked increase in QUIN concentration is associated with
a high risk for severe dementia in Alzheimer’s disease [78]. Several studies have documented
that disorders of the tryptophan pathway are associated with memory dysfunction, dementia and
delirium [79,80]. Additionally, QUIN is produced by activated macrophages, whereas elevated levels
of KYNA may result from an inflammatory response [77,81]. Indeed, under stressful and inflammatory
conditions tryptophan is quickly metabolised by indoleamine 2,3-dioxygenase (IDO), which plays a
crucial role in the kynurenine pathway, and which is localized in the lung, the brain, the kidney and
immune cells [82].

IDO activation has been shown to down-regulate neuroinflammation [83]. QUIN, picolinic acid,
3-hydroxykynurenine and 3-hydroxyanthranilic acids are neurotoxic and can cross the BBB during
systemic inflammation [83,84]. Concededly, KYNA has no ability to cross the healthy BBB, however,
general inflammation and inflammatory-related endothelial activation lead to BBB injury, opening the
way for penetration of high amounts of KYNA to the brain [85]. KYNA is also produced and released
by inflammation-activated astrocytes and microglia [86]. Therefore, we suggest that intra-cerebral
activation of the kynurenine pathway and cerebral influx of neurotoxic kynurenine metabolites may
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lead to neuronal damage and in turn delirium. However, these pathomechanisms should be confirmed
in further studies.Medicina 2020, 56, x FOR PEER REVIEW 6 of 18 
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6. Gut Microbiota Dysregulation

Recently, the role of gut microbiota as a physiological regulator of essential processes including
brain function has been the subject of many investigations. It has been documented that the
brain–gut axis, a complex bi-directional signaling system, regulates brain function [87]. Abnormal
composition of intestinal microbiota may contribute to the development of neurodegeneration and
neuroinflammation, which are associated with depression or autism [88,89]. An experimental study has
presented a modification of gut microbiota following gastrointestinal surgery, which required long-time
transformation [90–92]. Changes in gut microbiota composition mainly included Enterobacteriaceae,
Bacteroidaceae and Rhodospirillaceae [91]. This microbial dysbiosis is closely linked to disturbances of
gene expression of inflammatory cytokines. It has been documented that abnormal intestinal microbiota
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composition may be an important risk factor of postoperative delirium [93]. An experimental study
has shown an elevated amount of Escherichia and Shigella in animals with delirium [94]. A clinical
observation seems to confirm this relationship, because mechanically ventilated patients with delirium
had increased amounts of Firmicutes bacteria with concurrent reduction of Proteobacteria in the gut,
and these changes did not correspond to early nutrition, microbiome composition, and the type of
delirium [95]. Interestingly, treatment of postoperative dysbiosis with Lactobacillus or other probiotics
mitigated delirium [95]. It has been documented, that disorders in gut microbiota are associated with
the severity of depressive syndromes [96,97]. Hence, it can be suggested that the microbiome affects
neurocognitive dysfunction, however this hypothesis needs further study.
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Table 1. Studies regarding pathomechanisms of delirium—design and main characteristics.

Pathomechanisms Authors and
Reference Number Study Design Number of Patients Results

Hypoxia
Funk et al. [16] Prospective controlled clinical study 15 septic shock patients Decrease in cerebral saturation corresponds to the incidence of delirium

Mikkelsen et al. [17] Prospective, multicentre cohort
clinical study 406 adult patients treated for ARDS Low PaO2 was associated with cognitive impairment

Hopkins et al. [18] Prospective controlled clinical study 120 adult patients treated for ARDS Hypoxia assessed as SaO2 < 90% is associated with long-term
neurocognitive disorders

Hyperoxia
Kupiec et al. [19] Retrospective clinical study 93 cardiac surgery patients Hyperoxia defined as PaO2 > 120 mmHg is associated with the occurrence of

postoperative delirium

Mutch et al. [20] Prospective clinical study 12 healthy volunteers Disturbance in cerebral blood flow following hyperoxia corresponds with
postoperative neuropsychological disorders

Lopez et al. [24] Prospective controlled clinical study 310 cardiac surgery patients Hyperoxia defined as any intraoperative cerebral oxygenation greater than baseline

Neuroinflammation Velagapudi et al. [36] Experimental, behavioural and
histological study 61 animals undergoing orthopaedic surgery Orthopaedic surgery leads to microglial activation, astrogliosis and brain

blood-barrier disruption

Disorders in
neurotransmitters

Adam et al. [47] Prospective observational study 114 cardiac surgery patients Decrease in acetylcholine hydrolysing enzyme activity increases risk for delirium

John et al. [48] Prospective observational study 251 cardiac surgery patients There are no correlations between acetylcholine hydrolysing enzyme activity and
risk of delirium

Yilmaz et al. [54] Prospective observational study 137 cardiac surgery patients Dopamine infusion is an independent risk factor for delirium

Yoshitaka et al. [57] Prospective observational study 40 critically ill patients Plasma GABA activity is associated with delirium

Wyrobek et al. [61] Prospective observational study 77 elderly patients undergoing spinal surgery Decrease in the brain-derived neurotrophic factor is associated with delirium

Madsen et al. [67] Prospective observational study 30 healthy volunteers Disorders in 5-HT4 receptor correlate with impaired memory and risk for
neuropsychiatric disorders

Tryptophan metabolism
and kynurenine

pathway dysregulation

Kozak et al. [75] Experimental, behavioural and
histological study Animal study Elevated brain kynurenic acid impairs cognitive function

Valle et al. [77] Prospective observational study 62 HIV-infected patients Elevated quinolinic acid is a risk factor for neurocognitive disorders

Gulaj et al. [78] Prospective observational study 34 patients with Alzheimer dementia Plasma kynurenic acid and quinolinic acid correlate with impaired
cognitive function

Solvang et al. [79] Prospective observational study 155 patients with dementia Kynurenine had a nonlinear quadratic relationship with cognitive disorders

Gut microbiota
dysregulation

Zhang et al. [93] Experimental, behavioural study 11 pigs Gut microbiota disorders induce delirium

Liufu et al. [94] Experimental, behavioural study 10 mice Gut microbiota disorders induce delirium

Liskiewicz et al. [96] Prospective observational study 16 patients with major depression Disorders in gut microbiota are associated with the severity of depression

Huang et al. [97] Prospective observational study 54 patients with major depression Defects of the Firmicutes (gut bacteria) increase a risk for depression

Legend: ARDS—adult respiratory distress syndrome; GABA—gamma-amino butyric acid; HIV—human immunodeficiency virus; 5-HT4—5-hydroxytryptamine; PaO2—partial pressure
of oxygen; SaO2—oxygen saturation.
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7. Treatment of Delirium

Independent of the type of delirium, early identification of the risk factors of non-traumatic brain
injury and their modification or elimination are the most important elements of management for
reduction of delirium severity. It has been documented that approximately 30% of delirium cases are
preventable [98]. Prevention and treatment of delirium should be based on the implementation of the
routine daily practice care bundle presented by the Society of Critical Care Medicine (SCCM) called the
ABCDEF bundle (A—Assess, Prevent, and Manage Pain, B—Both Spontaneous Awakening Trials (SAT)
and Spontaneous Breathing Trials (SBT), C—Choice of analgesia and sedation, D—Delirium: Assess,
Prevent, and Manage, E—Early mobility and Exercise, F—Family engagement and empowerment) [99].
The implementation of early mobility activities combined with an appropriate level of sedation and
adequate pain management is a challenge in critically ill patients, but the combined efforts seem to be
effective methods of delirium prevention and treatment [100,101]. It must also be emphasized that the
mainstay of delirium treatment is early and focused management of disrupted homeostasis that can
lead to delirium. This approach should focus on treatable or reversible conditions, including treatment
of hypoxia, correction of underlying electrolyte disorders (i.e., hypo- or hypernatremia), early detection
and treatment of infections, maintaining adequate volemia and preventing gastrointestinal disorders.

Adequate management of hypoxia in a patient with delirium should be the primary goal of the
ICU team. It should not only be based on providing supplemental oxygen or mechanical ventilation,
but also on ensuring adequate cerebral blood flow, avoidance of anemia or avoidance of a range of
factors potentially leading to cerebral vasoconstriction (i.e., hypocarbia). Continuous monitoring
of cerebral oxygenation seems to reduce the risk of delirium effectively. Different clinical studies
and meta-analyses have shown close relationships between disorders in cerebral oximetry and the
severity of delirium, suggesting that cerebral oximetry is an easy and feasible method to measure
risk of postoperative neuropsychological disorders in cardiac surgery patients [24,102–104]. Likewise,
continuous measurement of cerebral oximetry can help to identify an episode of cerebral hypoxia
allowing quick intervention, which may reduce the risk of delirium in critically ill ICU patients [16,105].
Hence, monitoring of cerebral oximetry should be widely used in clinical practice, especially in patients
at increased risk of delirium.

Monitoring of hyperoxemia is difficult and commonly requires regular blood gas analysis because
pulsoximetry and arterial saturation (SpO2 and SaO2, respectively) are not credible when arterial
partial oxygen pressure (PaO2) increases above 100 mmHg. Recently, the oxygen reserve index
(ORI) has been implemented into clinical practice to avoid hyperoxemia [106,107]. The ORI is a
new multiple-wavelength pulse oximetry reflecting the oxygenation status in the moderate range
of hyperoxia with a PaO2 of approximately 100–200 mmHg [106]. Although this technology is new
and not commonly applied to routine clinical practice, it seems to make oxygen therapy significantly
safer and easier. Nevertheless, the usefulness of the ORI in prevention of hyperoxia-related delirium
requires further studies.

Maintaining the circadian rhythm of wakefulness and sleep in the ICU is difficult; therefore,
attention to normalize the circadian rhythm is of uttermost importance. It has been shown by Skrobik
et al. that introducing a low nocturnal dose of dexmedetomidine reduces the incidence of delirium
but does not improve sleep quality [108]. Treatment with melatonin to correct the circadian rhythm
is commonly used in patients with elevated risk of delirium [109–111]. Physiologically, melatonin
secretion is low during daytime and increases early in the evening and at night with the peak in
the middle of the night [112]. The circadian rhythm of melatonin secretion inversely corresponds to
cortisol secretion [113]. The desynchronization of the melatonin secretion rhythm has been reported in
sedated critically ill patients [110]. This desynchronization may result from disturbances in cortisol
secretion in critically ill patients or may be associated with a disturbed production of tryptophan,
because an elevated level of plasma interferon-γ following an inflammatory response induces IDO
activity leading to intensive tryptophan degradation in the kynurenine pathway [114,115]. Notably,
increased IDO activity has been described in patients with major depression [115,116]. Hence, treatment
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with melatonin should be implemented in depressive critically ill patients, in whom hypoactive or
mixed delirium has been diagnosed.

Immuno-inflammatory activation also plays a crucial role in the pathophysiology of major
depression, and elevated levels of inflammatory markers have been noted in patients with
delirium [117–119]. Therefore, some advocate the use of anti-inflammatory medications for
consideration in patients with non-traumatic brain injury. Importantly, treatment with dexamethasone
did not reduce the incidence of delirium, and intra-articular administration of corticosteroids induced
hyperactive delirium in elderly patients with moderate dementia [120,121]. Experimental and clinical
studies documented the anti-inflammatory and immunomodulatory effect of statins, which was
associated with a reduction of delirium in critically ill patients [40,122–125]. Administration of
atorvastatin/simvastatin decreased systemic and brain tissue levels of proinflammatory cytokines and
reduced lipid peroxidation, preventing the development of long-term cognitive dysfunction [122].
Another study also documented that simvastatin reduced the severity of depression via reduction of
microglia and astrocyte activation in the hippocampus after experimental traumatic brain injury [124].
Based on these observations, some authors postulate a protective effect of statins connected with their
anti-inflammatory activity in the brain. The possibility of a therapeutic anti-neuroinflammatory effect
of statins in patients with delirium should be confirmed in future clinical trials.

Treating agitation in the ICU has always been challenging and difficult, therefore antipsychotics
and anti-convulsive medications are commonly used in patients with hyperactive and mixed
delirium [126–129]. Antipsychotics are thought to work by nonspecific blockade and restoration
of the imbalanced neurotransmission in the brain. Haloperidol, the most popular neuroleptic agent,
is not recommended for routine use in delirium [130] but may have a role in the hyperactive subtype.
If used it should only be continued until agitation is controlled and no longer thereafter, because it
may cause several extrapyramidal symptoms and may be associated with increased mortality in
elderly hospitalized patients [126]. A clinical study including 68 mechanically ventilated patients with
subsyndromal delirium documented that a low dose of haloperidol administrated early during the ICU
stay did not prevent delirium and had little therapeutic advantage [127]. A retrospective analysis of the
effectiveness in the treatment of delirium showed no significant differences in delirium duration and
secondary outcome in geriatric patients treated with different antipsychotic agents [128]. A comparison
of haloperidol, ziprasidone and placebo in a randomized, double-blind trial of 566 patients with
ICU delirium found no effect of either antipsychotic medication on the number of coma-free and
delirium-free days [131]. Of note, antipsychotics also present extracerebral adverse effects such as QTc
prolongation, which is an independent risk factor for life threatening cardiac arrhythmia and sudden
cardiac death [132]. Antipsychotics cannot be suggested as the first line in treatment of delirium.
Valproic acid presents similar effectiveness to antipsychotics in the treatment of agitation associated
with hyperactive delirium, and the adverse effects of its administration are lower than antipsychotics;
overall this agent is well tolerated [129,133]. Hence, the use of valproic acid as an adjuvant for treatment
of hyperactive delirium can be a promising alternative to antipsychotics.

It must be stressed that effective delirium management should be based on its prevention and the
use of non-pharmacological measures, rather than pharmacological treatment. Management strategies
should include noise reduction, exposure to natural light during the day, limiting exposure to light at
night, avoiding extremes of temperature, ensuring undisturbed night rest. It is extremely important to
ensure efficient communication with the environment, which includes the patient’s daily orientation in
time, place and the condition and support of their senses (e.g., provision of glasses and hearing aids).
Moreover, the presence of family and friends to support the patient at the bedside and provide a link
with the reality outside of the ICU is of uttermost importance when dealing with delirium in critically
ill patients.
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8. Conclusions

This review briefly presents the most important pathomechanisms for delirium in critically ill
patients. Many of them are the basis for the application of targeted treatment in delirium. However,
the effect of pharmacological treatment may depend on brain reserve, cognitive reserve, intellectual
and non-intellectual activity and severity of pre-existing drug or alcohol addiction (if present) [134].
Therefore, the detailed recognition of the pathomechanisms of the non-traumatic brain injury requires
further study and shall lead to effective therapeutic options.
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