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Graft versus host disease (GVHD), a severe immunogenic complication of allogeneic hematopoietic stem cell transplantation
(HSCT), represents the most frequent cause of transplant-related mortality (TRM). Despite a huge progress in HSCT techniques
and posttransplant care, GVHD remains a significant obstacle in successful HSCT outcome. This review presents a complex
summary of GVHD pathogenesis with focus on references considering basic biological processes such as DNA damage response
and cellular senescence.

1. Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT)
offers the only curative modality for many hematological
disorders. Due to advances in transplant approaches and
supportive care, the use of HSCT is increasing worldwide.
Despite such a progress, HSCT is still associated with sub-
stantial transplant-related mortality (TRM). Graft versus
host disease (GVHD) represents the most frequent cause of
TRM. GVHD occurs in about 30–50% and 70% of recipients
allografted from matched related and matched unrelated
donors, respectively [1].

The degree of HLA disparity between donor and recipi-
ent is a well-known and widely accepted independent risk
factor for GVHD development [2]. With the growing under-
standing of GVHD pathogenesis, there is increasing attrac-
tion to non-HLA genotype as a tool to GVHD prediction in
the last ten years [3]. Inherited genetic variants such as
single-nucleotide polymorphisms (SNPs) of candidate genes,
encoding various cytokines, chemokines, and inflammatory
regulators, have become a subject of interest of genetic
studies searching for independent predictors of GVHD
development and HSCT outcome [4–7]. However, owing to
the immense heterogeneity of patients’ cohorts and progress

in HSCT techniques in the last decade, many of reported
results failed to be independently validated [6, 8, 9].

This review summarizes the updated GVHD pathogene-
sis linking GVHD with biological processes such as DNA
damage response (DDR) and cellular senescence (Figure 1).

2. GVHD Pathogenesis

2.1. Acute GVHD. The histocompatibility differences
between the donor and the recipient, the presence of donor’s
immunocompetent cells, and the inability of the recipient to
reject these cells were defined as the basic pathogenic prereq-
uisites for GVHD development by Billingham in 1966 [10].
Cytotoxic T lymphocytes were determined as the cellular
effectors of GVHD, and the key role of antigen-presenting
cells (APCs) in T-lymphocyte activation was established
during the following years [11, 12]. The current under-
standing of aGVHD pathogenesis can be summarized as
(1) initial tissue damage induced by the conditioning regi-
men followed by the denudation of auto- and alloantigens
accompanied by massive inflammatory cytokine secretion
(“cytokine storm”) activating APCs, (2) auto- and alloantigen
presentation mediated by APCs together with the costimula-
tory signaling prime donor’s cytotoxic T lymphocytes and
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their proliferation, and (3) the migration of activated cellular
effectors toward GVHD target tissues.

2.1.1. First Phase: Conditioning-Induced Tissue Damage. The
conditioning-induced damage of recipients’ tissues leads to
danger signal secretion [13]. Besides the secretion of pro-
inflammatory cytokines (TNF-alpha, IL-1beta, and IL-6),
the increased expression of receptor repertoire (pattern rec-
ognition receptors, PRR) on APCs, mostly macrophages
and dendritic cells, occurs as a result of the release of endog-
enous and exogenous antigens (damage-associated molecular
patterns, DAMPs, and pathogen-associated molecular pat-
terns, PAMPs). High-mobility group box 1 (HMGB1),
adenosine-triphosphate (ATP), uric acid, heparan-sulphate
proteoglycans (HSPG) as a part of extracellular matrix
(ECM), and heat-shock proteins are the most significant
DAMPs [13, 14]. Toll-like receptors (TLR) and other PRR
expressed on APCs have the ability to sense endogenous dan-
ger signals from DAMPs and are crucial in eliciting alloreac-
tive T-cell responses. Although the elimination of particular
DAMPs diminishes aGVHD manifestation in preclinical
models, such approach is controversial in clinical praxis
especially in HSCT after reduced and nonmyeloablative

conditionings with minimal conditioning-induced tissue
damage [14].

PAMPs represent a number of pathogen-derived
molecules released during the conditioning-induced disrup-
tion of natural anti-infective barriers. Lipopolysaccharides
(LPS), also called endotoxins, represent the most significant
ones. LPS are part of cellular membranes of gram-negative
bacteria and are presented by dendritic cells (DC) andmacro-
phages to alloreactiveT cells. LPS are ligands ofTLR4playing a
key role in innate immunity reactions leading toNF-κBactiva-
tion followed by pro-inflammatory cytokine secretion [13]. In
preclinical models, the chronic exposure to LPS leads to pul-
monary GVHD [15, 16]. However, interest in PAMPs mostly
studied in preclinical models subsided in recent years, owing
to their undetermined significance in real clinical praxis.There
is much more attention being paid to the whole microbiome
and its role inGVHDpathogenesis [17]. The impact of intesti-
nalmicrobiomeonGVHDobserved in preclinicalmodels his-
torically has recently become a subject of detailed clinical
studies due to advances in sophisticated technologies such as
culture-independent rRNA gene sequencing [18]. The elimi-
nation of certain bacterial species (e.g., Lactobacillus spp.)
and the subsequent shift of intestinal microflora in favor of
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Figure 1: The upper part of this scheme shows transplant procedure in time with important time points of transplant management. Patients
are conditioned with a variety of preparatory regimens. Shortly before graft infusion, GVHD prophylaxis (immunosuppression) is started.
Gastrointestinal toxicity occurs during the neutropenic (pre-engraftment) period. Acute GVHD occurs most frequently 30–40 days after
engraftment. Later occurrence is typical for late-onset aGVHD, overlap syndrome (features of aGVHD and cGVHD), or cGVHD. GVHD
pathogenesis corresponding to transplant time axis is shown in 3 phase-based concepts in the middle of the scheme. Biological processes
underlying GVHD pathogenesis are shown at the bottom of the scheme.
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pathogenic species (e.g., Enterococcus spp.) due to antibiotic
therapy lead todysbiosis and increased risk ofGVHDdevelop-
ment [19]. Recent studies have demonstrated that host-
derived metabolic products and metabolic products of the
intestinal microflora give rise to the intestinal metabolome
with possible impact on pathological processes of the gut
[20]. Butyrate resulting from the metabolism of complex
saccharides in Clostridia directly enhances the presence
of T-regulatory lymphocytes (Tregs) in the intestinal tract
[21]. Tregs help maintain the intestinal homeostasis by
their anti-inflammatory effect. Besides immunomodulatory
properties, butyrate is a source of energy for intestinal epithe-
lial cells and also helps maintain the recipient’s intestinal bar-
rier integrity while protecting against DAMPs and PAMPs
release [22, 23]. Butyrate improves GVHD-induced intestinal
epithelium damage [24].

2.1.2. Second Phase: Activation of Alloreactive T Lymphocytes
(Afferent Phase). Disparities in the HLA classes I and II
between the donor and the recipient play a major role in the
activation of the donor’s T lymphocytes. However, GVHD
occurs in recipients transplanted fromHLA-identical siblings
as well. Thus, disparities in the minor HLA are no less impor-
tant in GVHD development [25]. There have been more than
50 minor HLA identified so far [26]. The tissue specificity of
minor HLA and their distribution in different tissue compart-
ments are responsible for GVHD manifestation. Donor-
derived T lymphocytes are capable of recognizing antigens
on APC originating from both the donor and the recipient
[27, 28]. The binding of the HLA/antigen complex to T-cell
receptors (TCR) is not sufficient for T-cell activation. The
final immunologic response is controlled by regulatory
cosignaling between APC and T lymphocytes having either
inhibitory or stimulatory effect [14]. CD28, CD40L, CD30,
OX40, 4-1BB, ICOS, and LIGHT are the most significant
costimulatory molecules indispensable for T-cell activation
[29]. In contrary, CTLA4 or PD-1 is required for the physio-
logic elimination of autoreactive T lymphocytes and having
inhibitory effect on T-cell activation [29, 30].

Subpopulations of T lymphocytes are equally important
in the regulation of alloreactivity. Tregs and NK cells inhibit
T-cell alloreactivity and diminish GVHD occurrence in pre-
clinical as well as clinical observations [31]. T-cell activation
is associated with massive cytokine secretion. Based on differ-
ent cytokine profiles, CD4+ T lymphocytes are subdivided
into Th1, Th2, and Th17 subpopulations. Th1 lymphocytes
are involved in GVHD pathogenesis through the production
of pro-inflammatory cytokines such as interferon-gamma
(INF-gamma), interleukin-2 (IL-2), and tumor-necrotizing
factor-alpha (TNF-alpha). However, the actual role of Th1
cytokines in GVHD pathogenesis remains unclear since
Th1 cytokines exhibit variable function in different GVHD
target organs [32, 33]. In contrary, Th2 lymphocytes produce
IL-4, IL-11, and IL-18 that seem to be protective against
GVHD development. According to latest reports, Th17 lym-
phocytes secreting IL-17 represent highly pro-inflammatory
subpopulation capable of inducing GVHD [34]. The loss of
balance between subpopulations of CD4+ T lymphocytes
may influence GVHD severity [35].

2.1.3. Third Phase: Chemotaxis and Target Organ Damage
(Efferent Phase). Once primed in lymphatic tissues, T lym-
phocytes migrate toward GVHD target tissues and organs
by means of chemotaxis. Although HLA class I is expressed
on all nucleated cells of the recipient, the key GVHD target
organs are the GI tract, liver, and skin. There have been a
lot of hypotheses concerning the site and time of GVHD
onset. Organ-specific chemokines drive the migration of
alloreactive T lymphocytes. Inflammatory insults elicit the
expression of 4 families of chemokines (CC, CXC, C, and
CX3C) at the site of GVHD target tissue. Chemokines inter-
act with their compatible receptors expressed on lympho-
cytes and the recipient’s tissues. The complete list of
chemokines and their receptors relevant to GVHD exceeds
the extent of this review [36, 37].

The final organ damage is mediated by cytotoxic cellular
effectors together with inflammatory mediators. The cellular
effectors possess several mechanisms of action. Interactions
of CD8+ cytotoxic T lymphocytes with target cells result in
the release of perforins and granzymes leading to target cell
lysis. The activation of apoptotic signaling pathways Fas/FasL
(CD95−, CD95L) and TNFR/TRAIL represents another
mechanism of target cell damage. CD4+ T lymphocytes
mediate their effect through Fas/FasL-induced apoptosis
primarily [32]. By means of chemotaxis, neutrophils also
migrate toward the site of tissue damage contributing to
GVHD pathogenesis secondarily [38]. Activated macro-
phages colocalize with T lymphocytes at the site of tissue
damage and contribute to lytic activity [38].

INF-gamma, TNF-alpha, IL-1, and nitric monoxide pro-
duced by T lymphocytes and monocyte-macrophage system
are key inflammatory mediators contributing to target organ
damage [32].

2.2. Chronic GVHD. The pathogenesis of cGVHD is much
more complex, reflecting its variable clinical manifestation.
Mechanisms involved in cGVHD pathogenesis partially
overlap with aGVHD, especially in cGVHD developing from
pre-existing aGVHD. The pathogenesis of cGVHD is based
on alloreactive T-cell and deregulated B-cell interactions as
well as innate immunity effectors such as macrophages,
dendritic cells, and neutrophils mostly. The activation of
profibrotic processes is a consequence of the aforementioned
steps. The three phase-based concept of cGVHD pathogene-
sis is accepted currently [39].

2.2.1. First Phase: Pre-Existing Inflammation. The first phase
of cGVHD pathogenesis partially overlaps with aGVHD
development and is mediated by innate immunity mecha-
nisms resulting in acute inflammation and nonspecific tissue
damage caused by the administration of cytotoxic medica-
tions, infections, or previous Th1- and Th17-mediated
aGVHD activities. The initial tissue damage may persist, as
evidenced by the progressive onset of cGVHD or overlap
syndrome. Extensive tissue destruction caused by Th1 and
Th17 lymphocytes leads to the release of damage molecules
(e.g., ATP, nucleic acids, and HMGB1) that trigger TLR,
NOD-like receptor, and inflammasome pathways [40]. The
soluble form of ST2 is also released by endothelial cells,
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epithelial cells, and fibroblasts in response to cell damage. It
works as a decoy receptor for IL-33 and drives Th2 cells to
Th1-cell phenotype, which may be important in the patho-
genesis of GVHD [41]. Multiple INF-inducible genes and
receptors (PRRs) for PAMPS and DAMPS become upregu-
lated at the time of cGVHD onset [42]. The INF-gamma
induced expression of CXCL9, CXCL10, and CXCL11 is
responsible for the recruitment of Th1 and NK cells into tis-
sues [43]. Vascular endothelial cells (ECs) are the primary
barrier separating donor and recipient tissues. ECs are the
first host-derived cells to be exposed to donor immune
system. If ECs express and present cognate antigens to allor-
eactive donor T cells, they can become susceptible to direct
immune attack. Angiogenesis is critical to maintain tissue
homeostasis and is modulated by multiple angiocrine
factors and cytokines, which recruit inflammatory and
immune cells [44]. The immunostimulatory cytosine-
phosphate-guanosine (CpG) motifs in bacterial DNA bind
to PRR (TLR9) resulting in B- and NK-cell activations [45].
CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that
show immunostimulatory effect but suppressive impact on
angiogenesis [46]. CpG ODN-induced attenuation of angio-
genesis is TLR9 dependent. Of interest, increased numbers
of TLR9-expressing B cells associated with extensive cGVHD
show hypersensitivity to bacteria-derived CpG in HSCT
recipients. Also CpG response may be useful as a biomarker
for both the diagnosis and evaluation of response in cGVHD
treatment [47]. Apoptotic EC release LG3, a bioactive
fragment of perlecan of functional importance promoting
obliterative vascular remodeling [48]. Antiperlecan antibod-
ies (anti-LG3) are accelerators of immune-mediated vascular
injury [49]. Anti-LG3, endothelin-1, aminopeptidase N
(sCD13), and IL-2R-alpha are biomarkers of cGVHD [50].
Importantly, anti-LG3 and endothelin-1 are considered
markers of vascular inflammation suggesting that these
mechanism may contribute to the pathogenesis of cGVHD,
where the perturbation of microvasculature occurs [51].

2.2.2. Second Phase: Deregulation of Adaptive Immunity.
Thymus damage plays a key role in the second phase, mani-
festing as chronic inflammation and adaptive immunity
deregulation. Thymus dysfunction results in decreased het-
erogeneity of tissue specific auto-antigens mostly present in
cGVHD target organs such as the skin, liver, salivary glands,
lungs, eyes, and GI tract. Consequently, donor-derived T
lymphocytes possessing cGVHD antigen specificity and/or
cross-reactivity expand [52]. CD4+ Tregs play a key role in
peripheral and central tolerance maintenances. Tregs recon-
stitution is essential for the posttransplant recovery of the
immune system [53]. The deficit of Tregs is associated with
the significant clinical manifestation of GVHD [54].

Also B lymphocytes have a strong impact on cGVHD
pathogenesis. The fate and survival of B lymphocytes is
maintained by the activity of B-cell receptor (BCR) and B-
cell activating factor (BAFF) [55]. Posttransplant high BAFF
levels and the failure of controlling mechanisms of B-cell
activation are associated with persistence and propagation
of donor B lymphocytes capable of producing many auto-
and/or alloantibodies [39]. Probably due to high levels of

BAFF in the plasma of cGVHD patients, donor-derived
polyreactive B lymphocytes are capable of escape from
peripheral elimination [56]. Thus, BAFF excess expands
autoreactive B cells and directly promotes TLR7 and TLR9
expressions responsible for the recognition of RNA-
associated antigens and endogenous double-stranded DNA
antigens, respectively [57]. Furthermore, TLR7/TLR9 signal-
ing promotes BAFF receptor expression, thus providing a
positive feedback loop [58]. There is functional synergy
between BCR and TLR7/TLR9 signaling pathways, both
increasing B-cell proliferation, cytokine, and autoantibody
production [57]. Src kinases including Syk and Lyn kinases
are proximal components of BCR signaling pathway and
mediate a cross-talk between BCR-TLR pathways upon the
ligation of nucleic acids containing immune complexes. Also
increased BCR responsiveness with augmented Syk phos-
phorylation is frequently observed in B cells from patients
with cGVHD compared with B cells from patients without
cGVHD. The inhibition of Syk abrogates increased BCR
responsiveness and CpG responses in B cells from patients
with cGVHD suggesting possible novel therapeutic targets
in cGVHD treatment [59]. Autoreactive antibodies produced
by donor B lymphocytes are mainly targeted at minor HLA
[60, 61]. Antibodies directed at antigens derived from chro-
mosome Y (anti-HY) are often detected in male recipients
with cGVHD allografted from female donors [60]. Antibod-
ies targeted at platelet-derived growth factor receptor (anti-
PDGFR) activate the generation of reactive oxygen species
(ROS) inducing gene expression for collagen I followed by
fibrosis in cGVHD target organs [62]. High levels of anti-
PDGFR are observed in the plasma of patients with extensive
cGVHD [63]. Besides antibody production, B lymphocytes
possess the ability of antigen presentation or secretion of
regulatory cytokines and chemokines. The actual role of B
lymphocytes in cGVHD pathogenesis is more complex
[62]. Recently, the identified subpopulation of B lymphocytes
are CD19+CD21−/+ B-regulatory lymphocytes (Bregs),
involved in cGVHD pathogenesis [64, 65]. The Bregs counts
after day +100 correlate with the probability of cGVHD
development [66]. Patients with active cGVHD and severe
infections show significantly increased levels of immature/
transitional CD19+/CD21− B lymphocytes and significantly
lower counts of memory CD19+/CD27+ B lymphocytes [67].

Regulatory natural killer (NKregs) cells are a subpopula-
tion of NK cells with immunosuppressive characteristics.
NKregs express CD27+ CD11b low c-Kit+ NKp46+ phenotype
and produce molecules with immunosuppressive functions
(e.g., CTLA4, LAG-3, and PD-1). Kit+ NKregs indirectly
reduce local antigen-presenting capacity by targeting and
killing immature dendritic cells [68]. Lower proportions of
CD56 bright NKregs were detected in patients with higher
cGVHD frequency after filgrastim-stimulated peripheral
blood apheresis and bone marrow collection, suggesting their
important regulatory role in cGVHD development [69].

2.2.3. Third Phase: Excessive Fibrosis. The third phase of
cGVHD pathogenesis is based on deregulated processes in
response to chronic inflammation resulting in excessive
fibrosis, disruption of the architecture of target tissues and
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organs, and their dysfunction [70, 71]. Physiologic regulatory
mechanisms associated with inflammatory response work to
suppress and minimize cellular damage restore tissue integ-
rity and homeostasis in order to maintain functional healing.
Exuberant or excessive repair lead to fibrosis, scaring, and
organ dysfunction. ECM deposition is essential for the initi-
ation and development of healing processes. ECM represents
an active factor in cell-ECM interactions. The vascular
remodeling and restoration of the epithelia are the prerequi-
sites of functional healing [72, 73]. The differentiation of
fibroblasts into ECM-producing myofibroblasts is regulated
by the synergism of both, innate and adaptive, immunity
reactions. ECM-producing fibroblasts are activated by
innate immunity cellular effectors such as myeloid cells
producing TNF-alpha, IL-6, and IL-1-beta or macrophages
producing TGF-beta, PDGF, or matrix-metalloproteinases
(MMPs) [70]. MMPs exhibit proteolytic activities resulting
in degradations of several ECM components and are
important factors in tissue remodeling [74]. MMP3 is
known to promote epithelial-mesenchymal transition result-
ing in tissue fibrosis [75]. Importantly, MMP3 plasma
concentrations increase with time from cGVHD onset and
are suggested as a possible biomarker of tissue fibrosis in
patients with cGVHD [43]. Macrophages undergo repro-
gramming during the resolution of inflammation and start
producing wound-healing, immune-regulatory, and angio-
genic cytokines and growth factors, such as IL-10 or vascular
endothelial growth factor (VEGF) [76–78]. Adaptive immu-
nity cellular effectors Th2 and Th17 CD4+ lymphocytes
activate profibrotic processes through the production of spe-
cific cytokines IL-13 and IL-17. In the preclinical setting, the
contribution of B cells to cGVHD-related fibrogenesis has
been well documented [79–81].

3. Focusing on GVHD Pathogenesis from
Perspectives of Cellular Senescence

Alkylating agents and ionizing radiation used in the HSCT
conditioning cause severe DNA damage. DDR signaling
pathways are sensed and orchestrated by ATM and ATR
kinases regulating downstream processes such as DNA
repair, cell cycle arrest, cellular senescence, and apoptosis.
ATM plays a crucial role in identifying DNA lesions. Rodier
et al. showed that senescent cells with continuing low-
threshold DDR signaling due to irreparable DNA lesions
secrete a plethora of inflammatory cytokines, chemokines,
growth factors, proteases, and ECM components generally
known as senescence-associated secretory phenotype (SASP)
[82].

3.1. Senescence-Associated Secretory Phenotype. ATM activa-
tion in response to DNA damage induces under certain
conditions expression of various pro-inflammatory cytokines
such as IL-6 and IL-8 [83]. IL-6, a cytokine with pleiotropic
effects, is the most prominent SASP member [84]. IL-6 secre-
tion is known to be associated with DNA damage-induced
and oncogenic stress-induced senescence of mouse and
human keratinocytes, melanocytes, monocytes, fibroblasts,
and epithelial cells [85–88]. Both IL-1alpha and IL-1beta

signaling pathway are upregulated in senescent endothelial
cells, fibroblasts, and chemotherapy-induced senescent
epithelial cells [89–92]. Additional inflammatory cytokines
such as the colony-stimulating factors (GM-CSF and G-
CSF) are secreted at high levels by senescent fibroblasts [86].

Extracellular soluble factors such as the MMP family are
equally important subsets of SASP. Of interest, MMPs can
cleave some of the monocyte chemoattractant proteins
(MCP), IL-8, and a variety of CXCL/CCL family members
[93, 94]. MMPs participate in the resolution of extracellular
matrix fibrotic scars, being of immense importance for
wound healing and tissue repair or regeneration [86, 95].

Eventually, SASP produces several insoluble ECM
components such as fibronectin–a large glycoprotein
found in connective tissues, on cell surfaces, and in body
fluids. It interacts with other ECM components. Cells
undergoing senescence in vivo display increased fibronec-
tin expression [96].

Senescent cells can alter their microenvironment through
the secretion of nonprotein substances such as ROS or nitric
oxide (NO). These reactive molecules are known to reinforce
senescence phenotype and to propagate DNA damage to
neighbouring cells [97].

3.2. SASP Regulation, Expansion, and Immune System
Activation. Various analyses have proven that SASP gene
expression is predominantly controlled by the NF-κB sys-
tem [98–100] (Figure 2). The NF-κB activity is regulated
via positive and negative feedback loops and mediated,
besides other factors, by IL-1alpha and micro-RNA-146a,
respectively [83]. Senescence is reinforced via positive
cytokine feedback loops (IL-6 and IL-8), which help maintain
the senescent phenotype.

Irreparable DNA damage

DSB

ATR

Persistent DDR

CEBP1 NF-�휅B
SASP expression
e.g., IL-6 and IL-8

ATM

Figure 2: ATM kinase has a crucial role in the initiation of SASP in
the DNA damage response and is required for the secretion of the
two major inflammatory cytokines, for example, IL-6 and IL-8.
Persistent DNA damage stimulates NF-κB signaling, which
consequently regulates the expression of various SASP-related genes.

5Mediators of Inflammation



Also SASP causes the surrounding undamaged cycling
cells to irreversibly arrest cycling and become senescent, a
phenomenon called by-stander senescence [101] (Figure 3).
Thus, senescent cells communicate with and modulate their
microenvironment through SASP signaling. SASP compo-
nents such as IL-6, IL-8, and MMPs promote tissue repair.
Some SASP proteins, together with cell surface ligands and
adhesion molecules expressed by senescent cells, eventually
attract immune cells that kill and clear senescent cells [102].
NK cells, macrophages, andT cells participate in the clearance
of senescent cells [103]. Cells that become senescent after
genomic damage are known to express membrane-bound
ligands for the major NK-cell receptor (NKG2D) [104].

From longer-time perspective, despite dampening the
senescent activity through SASP negative regulatory feedback
loops and immune clearance, senescent cells outpace the
immune system and accumulate with time, producing SASP-
mediated low-level chronic inflammation with both beneficial
(tissue repair) and deleterious (organ dysfunction) effects [102].

3.3. Cellular Senescence and GVHD: Preliminary Evidence. A
recently published report has documented SNPs of the ATM
gene in association with increased risk for gastrointestinal
(GI) toxicity in allografted patients [105]. ATM-rs189037 sit-
uated in the promoter region ofATM gene has been shown to
predispose to high-grade GI toxicity in our study [105].
Accordingly, a hypothesis of defective DDR mechanisms in
patients carrying predisposing variants of the ATM gene
due to insufficient ATM production resulting in higher risk
of conditioning-induced tissue damage has been postulated.

As noted, NF-κB is an important regulator of innate
immunity responses and also a SASP controller. NF-κB sys-
tem has been well established in GVHD pathogenesis [14].
In GVHD preclinical models, the inhibition of the NF-κB
complex member c-Rel showed the amelioration of GVHD

symptoms while preserving the GVT effect [106]. Another
NF-κB protein subunit RelB was demonstrated to be critical
for host APC compartment maturation and function and
required for the expansion of donor helper T-cell type 1
(Th1). The targeted inhibition of its nuclear translocation
within APC was found as a promising strategy to dissociate
effector and regulatory T-cell function in the setting of Th1-
mediated tissue injury [107]. Importantly, we have shown
the association of two SNPs of the NFKB1 gene encoding
for the DNA-binding subunit of the NF-κB complex, namely,
NFKB1-rs3774937 and NFKB1-rs3774959, to be associated
with GVHD development [108]. Micro-RNA-146a as the
negative regulator of NF-κB activation has been well
documented to be involved in GVHD pathogenesis recently
[5, 109]. Association studies of the IL6-174 G/C SNP with
GVHD support the significance of IL-6, essential SASP factor,
in various steps of GVHD pathogenesis [110–112].

As mentioned previously, also the expression of
membrane-bound ligands for NKG2D by senescent cells after
DNA damage corresponds with GVHD-related NKG2D
expression by CD8+ T-cells in murine models of HSCT [113].

Telomere shortening during lifespan elicits persistent
low-level DDR signaling capable of inducing cellular senes-
cence. Interestingly, a recent study has shown that pretrans-
plant age-adjusted telomere length correlates with TRM in
allografted patients [114].

Of interest, according to our very recent data, selected
immunohistological markers of cellular senescence (e.g.,
decreased expression of Ki67 and increased expression of
p16) may improve histological diagnostics of gut mucosa
obtained from patients withGIGVHD symptoms and correlate
with the time of their onset, TRM, and overall survival [115].

Selected components with assigned SASP and also
GVHD-related effects are summarized in Table 1 [32, 37,
39, 43, 62, 84, 86, 116–123].

Conditioning-induced
DNA damage

DNA scars
DNA-damage response

Damaged cell
Nucleus

Nucleus

Cytoplasma
Positive feedback
loop

DDR-induced
pro-inflammatory signals

Cytoplasma

NF-�휅B

NF-�휅B

IL-6

IL-6ATM

Extracellular matrix Adjacent cell

Cell cycle arrest
Senescence

Senescence-associated
Secretory phenotype

Figure 3: Besides other factors, cytokines released in response to DNA damage give rise to the senescence-associated secretory phenotype
(SASP). These cytokines reinforce the senescent phenotype via positive feedback loops (IL-6 and IL-8), which help maintain the senescent
phenotype. Also, SASP causes the surrounding undamaged cycling cells to irreversibly arrest cycling and become senescent, a
phenomenon called by-stander senescence.
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4. Discussion

Despite advances in transplant techniques and posttrans-
plant care, GVHD remains the most challenging obstacle in
the whole process of allogeneic HSCT. Understanding
GVHD pathogenesis has dramatically evolved during the last
50 years. Nevertheless, GVHD diagnostics are still mostly
based on the careful examination of general and often non-
specific clinical signs and symptoms (Figures 4 and 5).

The lack of specific biomarkers makes GVHD differential
diagnostics difficult and may lead to misdiagnoses and less

than 50% response rate to the first-line treatment [124].
Novel insights into GVHD pathogenesis have not come up
with new predictors of GVHD refractoriness. Clinical obser-
vations conclude that patients with advanced aGVHD are at
highest risk for steroid refractoriness [125]. The mortality of
patients with clinically severe aGVHD reaches 90% [126].
Only 20–30% of patients with refractory GVHD survive one
year [124]. The further escalation of immunosuppression is
rather deleterious and is associated with poorHSCT outcome,
due to infectious complications and the suppression of GVT
effect resulting in increased relapse/progression rate [127].

Table 1: Summary of selected factors involved in SASP production and GVHD pathogenesis.

Factor Symbol SASP-related activity GVHD-related activity References

Interleukin-6 IL-6
Inflammation, autocrine growth arrest,

cell migration/invasion
Initial cytokine storm

Reviewed in Campisi
[116] and Paczesny

et al. [32]

Interleukin-8
IL-8,

CXCL8
Inflammation, autocrine growth arrest,

cell migration/invasion
Increased in cGVHD

Reviewed in Campisi
[116] and Pidala et al.

[119]

Interleukin-1 IL-1
Positive feedback component, positive
regulator of NF-kB, IL-6 and IL-8

Initial cytokine storm, secreted by
macrophages during the inflammatory

effector phase of aGVHD

Reviewed in Coppé
et al. [84] and

Paczesny et al. [32]

Monocyte
chemoattractant
proteins (CCL
chemokines)

MCPs,
CCLs

Inflammation, autocrine and paracrine
growth arrest, cell migration/invasion

Expressed on GVHD target organs
Coppé et al. [86],
reviewed in Castor

et al. [37]

Eotaxin-3 CCL26
Chemokine upregulated in senescent

cells
T-cell activation marker

Coppé et al. [86], Luft
et al. 2011

Matrix
metalloproteinase(s)

MMPs
Tissue remodeling, wound healing,
resolution of fibrosis, cell migration/

invasion
MMP-3, cGVHD biomarker

Reviewed in Campisi
[116], Yu et al. [43]

Fibronectin
Interacts with ECM molecules and

affects cell adhesion and survival growth
and migration

Chronic cutaneous GVHD
Reviewed in Coppé
et al. [84], van der
Straaten et al. [121]

Collagens Col ECM, fibrosis
Collagen deposition in cGVHD
including bronchiolitis obliterans

Reviewed in Coppé
et al. [84] and Cooke

et al. [39]

Amphiregulin AREG Cell proliferation Increased in late aGVHD
Reviewed in Campisi
[116], Holtan et al.

[117]

Vascular endothelial
growth factor

VEGF
Angiogenesis, endothelial cell migration

and invasion
Decreased in patients with steroid-

refractory GVHD

Reviewed in Coppé
et al. [84], Holtan and

Arora [117]

Keratinocyte growth
factor

KGF
(FGF7)

Stimulation of cell migration and
invasion

T-cell homeostasis, immune recovery,
thymic regeneration

Coppé et al. [86],
Chaudry et al. 2016

Epidermal growth
factor

EGF
Angiogenesis, stimulation of cell

migration and invasion
Decreased in patients with steroid-

refractory GVHD
Tonini et al. 2003,
Holtan et al. [118]

Placental growth
factor

PIGF Angiogenesis
Increased in patients with steroid-

refractory GVHD
Coppé et al. [86],
Holtan et al. [118]

Nitric oxide NO
Modulator of cellular phenotype,

differentiation of monocytes, promotes
DNA damage and aging

Secreted by macrophages during the
inflammatory effector phase of

aGVHD

Rewieved in Coppé
et al. [84] and

Paczesny et al. [32]

Reactive oxygen
species

ROS
Modulators of cellular phenotype,

differentiation of monocytes, promote
DNA damage and aging

Autoantibodies associated with
cGVHD induce ROS accumulation

and induce Col-1 expression

Reviewed in Coppé
et al. [84] and Socié

et al. 2017
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The GI tract harbors a substantial part of the immune
system and is a frequent site of aGVHDmanifestation. How-
ever, there are many other inflammatory processes including
opportunistic viral reactivations in severely immunosup-
pressed patients [128, 129]. Lerner’s histopathological
classification and its modifications are generally used for GI
GVHD [130–132]. However, strong interobserver variability
exists [133].

Cellular senescence refers to essentially irreversible cell
cycle arrest in response to oncogenic stress, a mechanism

formally described as limited growth of human cells in cul-
ture by Hayflick more than 50 years ago [134]. Since then,
the perception of the mechanisms of cellular senescence has
evolved. According to the theory of antagonistic pleiotropy:
a biological process that was selected to promote fitness in
younger organisms can be deleterious in elder organisms
[135]. Likewise, cellular senescence is known to promote
tumor suppression and wound healing in young organisms
but becomes detrimental with age, most likely by promoting
chronic inflammation [116].

The hypotheses mentioned above and supported by so far
limited clinical evidence provide suggestions that cellular
senescence—a phenomenon in the biology of aging—may
contribute to GVHD pathogenesis. These processes may also
elucidate mechanisms regulating the time and character of
GVHD onset as well as prediction of its therapeutic
responsiveness.
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