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Abstract: Trichothecene mycotoxins are a class of secondary metabolites produced by multiple genera
of fungi, including certain plant pathogenic Fusarium species. Functional variation in the TRI1 gene
produces a novel Type A trichothecene called NX-2 in strains of F. graminearum. Using a bioinformatics
approach, a systematic analysis of 52 translated TRI1 sequences of Fusarium species, including five
F. graminearum NX-2 producers and four F. graminearum non-NX-2 producers, was conducted to
explain the functional difference of TRI1p of FGNX-2. An assessment of several signature motifs of
fungal P450s revealed amino acid substitutions in addition to the post-translational N-X-S/T sequons
motif, which is indicative of N-linked glycosylation of this TRI1-encoded protein characteristic of
NX-2 producers. There was evidence of selection bias, where TRI1 gene sequences were found to
be under positive selection and, therefore, under functional constraints. The cumulative amino
acid changes in the TRI1p sequences were reflected in the phylogenetic analyses which revealed
species-specific clustering with a distinct separation of FGNX-2 from FG-non-NX-2 producers with
high bootstrap support. Together, our findings provide insight into the amino acid sequence features
responsible for the functional diversification of this TRI1p.
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Key Contribution: Specific amino acid sequence features in the primary TRI1p structure may be
responsible for the functional diversification of TRI1p in NX-2-producers.

1. Introduction

Trichothecenes mycotoxins are a large class of sesquiterpene metabolites, which are produced
by several genera of plant pathogenic fungi including several species of Fusarium. Trichothecenes
are considered to be virulence factors and their production improves the pathogenic potential of
Fusarium species in a number of economically important plant host species [1–4]. Trichothecenes
can be classified into four types based on (i) the carbonyl group at the 8-position, (ii) the position of
macrolide rings, and (iii) the number of epoxy rings [5]. Type A (e.g., T-2 toxin and HT-2 toxin) and
Type B trichothecenes (e.g., deoxynivalenol (DON) and nivalenol (NIV)) are harmful after acute and
chronic exposure, highly cytotoxic, pro-inflammatory with emetogenic properties and are efficient
inhibitors of eukaryotic protein synthesis [6–8]. The Food and Drug Administration (FDA) in the
USA and the European Commission, Europa EU, enforce maximum allowable limits of trichothecene
contamination of food products used in national and international trade (International Trade and Food
Safety/AER-828, Economic Research Service/USDA; https://www.ers.usda.gov/webdocs/publications/
41603/15640_aer828h_1_.pdf?v=42055).

Biosynthesis of trichothecenes is carried out by expression of a core TRI gene cluster [4]. Depending
on the Fusarium species, oxygenase (TRI1) and acyltransferase (TRI16) genes in addition to an
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acetyltransferase gene (TRI101) can be located external to the core [9]. The TRI1 gene of different Fusarium
species encode calonectrin oxygenase (TRI1p) [9] and its expression is regulated by transcription
factors TRI6p and TRI10p [5,10]. Specifically, for F. sporotrichioides, the TRI1 gene (FsTRI1) encodes a
cytochrome P450 monooxygenase that hydroxylates C-8 of calonectrin in the biosynthesis of Type A
trichothecenes. For F. graminearum, a homologue of this gene (FgTRI1) encodes a cytochrome P450
dioxygenase, trichothecene 7,8-dihydroxylase, that catalyzes the hydroxylation of both C-7 and C-8
of calonectrin to generate 7,8-dihydroxycalonectrin and/or generate the 7- and 8-monohydroxylated
calonectrin in the biosynthesis of DON and NIV [10–13] (Figure 1).
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et al. [4] reported that TRI gene gain, loss, and subsequent alterations in function of these genes are 
the primary effectors of this structural diversity. As a result, chemotype shifts can occur as a result of 
the introduction of new genotypes into new areas [15]; for example, detection of 3‐ADON genotypes 
of F. graminearum sensu stricto in Canada [16], 3‐ADON genotypes of F. asiaticum in Southern China 
[17], and the NIV genotype of F. asiaticum in the southern parts of the USA [18] and Brazil [19].  

The value of studying TRI genes has been demonstrated by the detection of a novel type A 
trichothecene toxin (NX‐2) produced by specific strains of F. graminearum (FGNX‐2) [20,21]. NX‐2 and 
3‐ADON producing strains primarily generate the 3‐acetylated derivative of trichothecenes, which 
are less toxic than their related metabolites [22]. Structural analysis of the NX‐2 toxin indicated that a 
distinct variant of the TRI1 gene product (TRI1p) catalyzes C‐7 hydroxylation, but not C‐8 
hydroxylation of calonectrin [23]. This lack of a C‐8 carbonyl group allows NX‐2 toxin to escape 
detection by HPLC‐UV‐based methods. While this underlines the value of genotyping at this initial 
stage of investigation, it also demonstrates the value of LC‐MS/MS or GC‐MS methods of toxin 
detection. Initially, a low frequency of occurrence of NX‐2 in northern US and in Canada was reported 
[20,21]. However, Lofgren et al. [24] more recently analyzed a large collection of F. graminearum 
strains from New York in the USA, and found that (i) the frequency of NX‐2 genotype strains was up 
to 14 times higher than previously reported, (ii) NX‐2 genotypes were detected in maize ears and 
stubble in addition to wheat heads, and (iii) 20% of the total F. graminearum population in the USA 
could be attributed to the NX‐2 genotype. The detection of NX‐2‐producing strains in Canada, albeit 
at low frequency, reinforces the need for continued monitoring of Fusarium populations in wheat‐
growing regions of North America [21].  

We present a study of 52 TRI1 peptide sequences (TRI1p) of Fusarium species including five F. 
graminearum (as NX‐2 producers, FGNX‐2) and four F. graminearum (as non‐NX‐2 producers, FG‐ non‐

Figure 1. Hydroxylation reactions catalysed by trichothecene 7,8-dihydroxylase (MetaCyc Accession
No. G-44257 [13] and UniProt Accession No. Q7Z886 (https://www.uniprot.org/uniprot/Q7Z886).

Functional analyses of TRI genes of the TRI biosynthetic gene cluster explained, in part, the
basis for the structural diversity of trichothecene analogs produced by Fusarium species [4,9,12,14].
Proctor et al. [4] reported that TRI gene gain, loss, and subsequent alterations in function of these
genes are the primary effectors of this structural diversity. As a result, chemotype shifts can occur as a
result of the introduction of new genotypes into new areas [15]; for example, detection of 3-ADON
genotypes of F. graminearum sensu stricto in Canada [16], 3-ADON genotypes of F. asiaticum in Southern
China [17], and the NIV genotype of F. asiaticum in the southern parts of the USA [18] and Brazil [19].

The value of studying TRI genes has been demonstrated by the detection of a novel type A
trichothecene toxin (NX-2) produced by specific strains of F. graminearum (FGNX-2) [20,21]. NX-2 and
3-ADON producing strains primarily generate the 3-acetylated derivative of trichothecenes, which
are less toxic than their related metabolites [22]. Structural analysis of the NX-2 toxin indicated
that a distinct variant of the TRI1 gene product (TRI1p) catalyzes C-7 hydroxylation, but not C-8
hydroxylation of calonectrin [23]. This lack of a C-8 carbonyl group allows NX-2 toxin to escape
detection by HPLC-UV-based methods. While this underlines the value of genotyping at this initial
stage of investigation, it also demonstrates the value of LC-MS/MS or GC-MS methods of toxin detection.
Initially, a low frequency of occurrence of NX-2 in northern US and in Canada was reported [20,21].
However, Lofgren et al. [24] more recently analyzed a large collection of F. graminearum strains from
New York in the USA, and found that (i) the frequency of NX-2 genotype strains was up to 14 times
higher than previously reported, (ii) NX-2 genotypes were detected in maize ears and stubble in
addition to wheat heads, and (iii) 20% of the total F. graminearum population in the USA could be
attributed to the NX-2 genotype. The detection of NX-2-producing strains in Canada, albeit at low
frequency, reinforces the need for continued monitoring of Fusarium populations in wheat-growing
regions of North America [21].

https://www.uniprot.org/uniprot/Q7Z886
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We present a study of 52 TRI1 peptide sequences (TRI1p) of Fusarium species including five F.
graminearum (as NX-2 producers, FGNX-2) and four F. graminearum (as non-NX-2 producers, FG-
non-NX-2), in which systematic analysis of signature motifs of P450s and of protein sequence phylogeny
are carried out in order to explain the functional difference of TRI1p of FGNX-2.

2. Results and Discussion

Note: In the figures, the five FGNX-2 and four FG-non-NX-2 sequences with 21 additional
Fusarium sequences are shown for comparison, as the entire 52 TRI1p sequence dataset could not be
depicted in any one figure.

2.1. TRI1 Peptide Primary Sequence Comparisons

Comparison of the TRI1p sequences revealed differences in the amino acid composition, in the
primary predicted peptide structure, and in chemical characteristics, e.g., the hydrophobicity was
higher for FGNX-2 and the number of hydroxyl groups was higher for FG-non-NX-2 (Figures 2 and
3A,B). A representative sequence of FGNX-2 (GenBank Accession No. AIU41071) and of FG-non-NX-2
(GenBank Accession No. AOC89125) are shown.
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2.2. Topology

Topology analysis indicated two transmembrane domains at the N- and C-terminus for all
TRI1p sequences in five out of six prediction programs in TOPCONS2 (Figure 4). This finding is
consistent with the data presented by Menke et al. [25], Kistler and Broz [26], and Boenisch et al. [27],
in which trichothecene reaction products and intermediates are sub-cellularly compartmentalized
and associated with the endoplasmic reticulum. Upon mycotoxin induction, the ER undergoes
ultrastructural re-organization into proliferations of the organized smooth endoplasmic reticulum
(SER) and TRI1p is associated with this modified ER membrane [27].
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2.3. PER/PxRW and ExxR Motifs

The alignment also revealed the conserved PER domain of P450s as the characteristic signature
for fungi (PxRW) [28,29] (Figure 5). Two clusters were represented by PPRF while all other Fusarium
species had PRRW. Both FGNX-2 and FG-non-NX-2 isolates had the PRRW motif.
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Figure 5. Signature ‘PxRW’ and ‘ExxR’ motifs in the TRI1p sequence of Fusarium species.

Two clusters contained variations of this ExxR motif as Eggf and Eggm, while other Fusarium
clusters contained EggR. The ExxR and PER motifs form “the E-R-R triad”, which functions to secure
the heme pocket into its correct position, and thus, to ensure stabilization of the core structure of the
enzyme [30]. Both FGNX-2 and non-NX-2 producers had the EggR motif (Figure 5). Sello et al. [31]
analyzed the ExxR motif among oomycetes and found that the first and fourth residues, i.e., “E” and “R”
are conserved in all P450 families, e.g., CYP5014, CYP5015, and CYP5017. There are a few exceptions;
in CYP5017F8, the motif consisted of a “K” instead of “E” and in CYP5014N1 and CYP5015L, the motif
consisted of “W” and “H”, respectively, instead of “R”. Variations of the “E” and “R” amino acids at
the ExxR motif are uncommon [32].

2.4. Dileucine (LL) Motifs

WoLFPSORT detected four dileucine sequence motifs (LL) based on the alignment of 52 TRI1p
sequences (Figure 6). The function of the LL sequence motif depends on the nature of the adjacent
residues; however, there is no specific peptide sequence within which LL motif resides [33]. Several
transmembrane proteins consist of LL motifs that function as sorting signals [34]. Although dileucine
sequence motifs are not necessarily characteristic of P450s, their detection was still included here.
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2.5. Heme Motif

P450s have a signature heme motif sequence FXXGXbXXCXG, where Xb is a basic amino acid
and the cysteine residue serves as the catalytic ligand located axial to the heme moiety, i.e., the
specific thiolate group of the cysteine amino acid structure occupies the axial coordination site of iron
opposite to the bound oxygen [35,36]. Substrates, due to their hydrophobicity, bind in a cleft or pocket
above heme.

Analysis of the 52-amino acid sequence alignment revealed that FGNX-2 producers have a
variant amino acid sequence signature for heme compared to the 10-amino acid consensus sequence:
[FW]-[SGNH]-x-[GD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD], where C is cysteine residue that interacts
with the heme iron ligand (Figure 7; Figure 8). This motif is located at the C-terminus of the P450
and this finding is supported by Menke et al. [25], who reported that the heme binding domains, and,
therefore, the enzyme active sites are near the C-terminus.
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enzyme which is in the ferric state and has a thiolate proximal ligand (cysteine thiolate, indicated as 
an S‐Cys atom linked to the iron) and a distal ligand (a water molecule, which changes to dioxygen 
as the cycle proceeds). (1) The substrate (RH) binds in proximity to the heme group displacing the 
distal water ligand leading to a conformational change in the active site of the P450 molecule and a 
shift in the ferric heme iron spin‐state equilibrium from low‐spin (S = 1/2) to a high‐spin (S = 5/2). (2) 
This leads to a shift in the redox potential that enables electron transfer from a redox partner to occur 
to reduce the heme iron to the ferrous state. The first electron transfer occurs which reduces the ferric 
iron (heme‐Fe(III)) to its ferrous form (heme‐Fe(II)). The ferric complex in the presence H2O2 or any 
organic peroxy compound (e.g., an alkyl hydroperoxide or peracid) can lead to the production of the 
ferric hydroperoxo intermediate (although inefficiently in most cases). (3) Oxygen then binds to the 
ferrous heme center to produce the ferrous‐oxy intermediate that is isoelectronic with the ferric 
superoxy form. (4) A second electron transfer occurs reducing the heme iron to the ferric peroxo 
intermediate. This electron transfer step is usually, but not always, the rate‐limiting step in the 
cytochrome P450 catalytic cycle. (5) Rapid protonation of the peroxo intermediate leads to the ferric 
hydroperoxo intermediate. (6) The hydroperoxo formed in step (5) is unstable and undergoes rapid 
protonation leading to scission of the dioxygen bond with the production of a water molecule and the 
generation of iron‐oxo‐Fe(IV) porphyrin π cation radical (ferryl species) also known as Compound I. 
This is considered to be the catalytically reactive substrate oxidant in most cytochrome P450 reactions. 
Alternative formulations of the ferryl intermediate shown are as (i) a protein radical cation Fe(IV) 
species or (ii) as an Fe(V) species. (7) Attack of the nearby substrate by the ferryl species effects its 
hydroxylation and metabolite/product (ROH) dissociation from the cytochrome P450 molecule via 



Toxins 2019, 11, 689 8 of 20

Figure 8. Catalytic cycle of cytochrome P450. The heme macrocycle is depicted to represent the resting
enzyme which is in the ferric state and has a thiolate proximal ligand (cysteine thiolate, indicated as an
S-Cys atom linked to the iron) and a distal ligand (a water molecule, which changes to dioxygen as
the cycle proceeds). (1) The substrate (RH) binds in proximity to the heme group displacing the distal
water ligand leading to a conformational change in the active site of the P450 molecule and a shift in
the ferric heme iron spin-state equilibrium from low-spin (S = 1/2) to a high-spin (S = 5/2). (2) This
leads to a shift in the redox potential that enables electron transfer from a redox partner to occur to
reduce the heme iron to the ferrous state. The first electron transfer occurs which reduces the ferric iron
(heme-Fe(III)) to its ferrous form (heme-Fe(II)). The ferric complex in the presence H2O2 or any organic
peroxy compound (e.g., an alkyl hydroperoxide or peracid) can lead to the production of the ferric
hydroperoxo intermediate (although inefficiently in most cases). (3) Oxygen then binds to the ferrous
heme center to produce the ferrous-oxy intermediate that is isoelectronic with the ferric superoxy form.
(4) A second electron transfer occurs reducing the heme iron to the ferric peroxo intermediate. This
electron transfer step is usually, but not always, the rate-limiting step in the cytochrome P450 catalytic
cycle. (5) Rapid protonation of the peroxo intermediate leads to the ferric hydroperoxo intermediate.
(6) The hydroperoxo formed in step (5) is unstable and undergoes rapid protonation leading to scission
of the dioxygen bond with the production of a water molecule and the generation of iron-oxo-Fe(IV)
porphyrin π cation radical (ferryl species) also known as Compound I. This is considered to be the
catalytically reactive substrate oxidant in most cytochrome P450 reactions. Alternative formulations of
the ferryl intermediate shown are as (i) a protein radical cation Fe(IV) species or (ii) as an Fe(V) species.
(7) Attack of the nearby substrate by the ferryl species effects its hydroxylation and metabolite/product
(ROH) dissociation from the cytochrome P450 molecule via oxygen insertion from the ferryl species
into the substrate. Product dissociation allows water to rebind to the ferric iron and complete the
cycle. Within the cycle non-productive pathways leading to the collapse of intermediates are also
indicated. (A) Irreversible denaturation to an inactive form of the cytochrome P450 ferrous complex
yields a ferrous-CO complex. (B) Decay of the ferrous oxy intermediate leads to the reformation of
ferric P450 complex with the production of superoxide. (C) Reduction of molecular oxygen in this
step also results in the release of •O2 and H2O2 due to the decay of the ferric superoxo intermediate.
(D) In the peroxide shunt the ferric hydroperoxo species can collapse with the release of peroxide. (E)
The decay/collapse of the ferryl species via the addition of two electrons results in the release of water.
Factors such as untimely electron/proton delivery or if the substrate is inappropriately positioned or
resistant to oxidative attack can result in the collapse of this species [37–41].

Varga et al. [22] analyzed amino acid sequences of F. graminearum DON-producers and F.
graminearum NX-2 producers and found that NX-2 producers had a distinct heme binding motif
according to a 20 amino acid heme binding motif. Sello et al. [31] analyzed the heme motif across three
P450 families and reported that amino acid residues “F”, “G” and “C” located as the first, fourth, and
eighth positions in the heme motif are conserved in among P450s across biological kingdoms [32], but
there are some P450s with different amino acids at these positions [42].

P450-catalyzed hydroxylation is the most characteristic reaction catalyzed by P450 enzymes
(Figure 9); however, substrate specificity is determined by three factors.
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Figure 9. A–D. Single amino acid substitutions of 30 representative TRI1 peptide sequences including
those of FG-non-NX-2 isolates (numbers 1 to 4) and of FGNX-2 (numbers 5 to 9); 21 sequences belonged
to the other Fusarium species; the entire 52-sequence alignment could not be shown here.
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(i) Substrate lipophilicity affects its compatibility with the P450 active site architecture and
ultimately influences the affinity of the substrate for the P450 active site. The domain located above the
heme group is relatively hydrophobic compared to other enzymes and interactions with substrates are
driven entirely by lipophilic contacts [43].

(ii) In a case where oxidation of C-H bond is controlled by intrinsic reactivity rather than by steric
constraints or positioning of the substrate within the active site, the C-H bond strength determines the
reactivity of the substrate [43].

(iii) The size and shape of P450 active sites impose substrate selectivity [30]. Substrates are
situated in catalytic pockets where the atom to be hydroxylated is oriented within a specific distance
from the heme iron depending on the P450 with restricted mobility [43]. Regio- and stereo-selective
hydroxylation is enabled by specific active site-substrate interactions that position the substrate for
oxidation [36]. P450s with high catalytic specificity have key residues involved in orientation and
steric interactions between the substrate and the protein residues of the active site, and it is these
imposed steric barriers that affect access of the ferryl species [44]. Regio-selectivity is mainly controlled
by amino acid residues at the active site of P450s and specific amino acid substitutions within the
active site have the potential to interact with an aromatic hydrocarbon substrate to induce selective
hydroxylation of the ortho- or meta- or para-position despite having a native preference for one or
the other [45]. What controls aromatic oxidation is that position that is electron rich and has the least
steric hindrance by other substituents; +R substituents give product mixtures that have relatively high
combined yields of ortho- and para- products [46]. With respect to oxidation of mono-substituted
benzene rings, ortho- para-directors include hydroxyl groups [47,48]. This may also explain why
hydroxylation of calonectrin at C-7 (para-position) is preferred over C-8 hydroxylation (meta-position)
in TRI1p of FGNX-2. Unique combinations of amino acid patterns detected at ExxR and heme motifs
suggest that these variant motifs are perhaps characteristic of a particular P450 subfamily.

Supplementary Figures S1 and S2 show the details of substrate binding relative to the heme moiety.

2.6. TRI1 DNA Polymorphism Profile and Evidence of Selection

Silent mutations are not manifested in an organism’s phenotype. Silent mutations in the nucleotide
sequence of the TRI1 gene will not result in an amino acid change and there should be no alteration of
enzyme function. When FGNX-2 TRI1 nucleotide sequences (N = 5) were compared with FG-non-NX-2
(N = 4) in DnaSP 6, there were minor differences in DNA polymorphism profiles between the two
datasets (Table 1). This is in contrast to DNA polymorphism analysis of the dataset consisting of 52
nucleotide sequences of all Fusarium species which indicated that the TRI1 gene is highly polymorphic
with the exception of significant nucleotide sequence conservation at nucleotide positions nt 1–36
[ATGGCTTTGATTACTTCATTGCAAGATGTTAGATTG] (p = 0.0013).

Table 1. Comparative DNA polymorphism profile for FGNX-2 and FG-non-NX-2 isolates based on an
alignment of 1533 nucleotides of the partial TRI1 gene.

DNA Polymorphism Parameter FGNX-2 FG-Non-NX-2 52 Fusarium Sequences

N 5 4 52
h 3 2 46

Hd 0.70000 1.00000 0.99500
Pi 0.00052 0.00065 0.30227
k 0.80000 1.00000 463.382

Ct 0.14 0.14 0.14
C 0.049 0.049 0.049

N—number of sequences in dataset; h—number of haplotypes; Hd—haplotype differences; Pi—nucleotide diversity;
k—nucleotide differences; Ct—conservation threshold; C—sequence conservation.



Toxins 2019, 11, 689 11 of 20

Conversely, synonymous mutations result in changes to the amino acid sequence that can affect
transcription, post-transcriptional modifications, mRNA export, and translation, and which result in
alterations to the structure and function of the protein. Analysis of 52 TRI1 nucleotide sequences in
DnaSP 6 revealed that the ratio of non-synonymous to synonymous substitutions (dN/dS ratio) was
3.54, which is >1. Fu and Li’s D* statistic was also positive and significant (2.05433; p < 0.02), and
thus, it is inferred that TRI1 gene sequences are under positive selection and under selective functional
constraints. However, Kelly et al. [49] reported that tests of positive selection were not significant and
the TRI1 gene sequences of the FGNX-2 were identical except for one nucleotide. In a subsequent
F. graminearum genome study by Kelly and Ward [50], it was reported that among several genomic
regions, TRI genes exhibit the strongest signals of selection. These non-synonymous substitutions that
are restricted to FGNX-2 TRI1 sequences suggest that the emergence of the NX-2 genotype may have
been driven by changes in selection pressure on this gene [49] and perhaps this genotype is a transient
P450 conformation [51].

2.7. TRI1p Residue Substitutions

TRI1p sequences of the five FGNX-2 isolates were highly conserved. When compared with other
Fusarium species, however, there were approximately six amino acid substitutions specific only to
FGNX-2 sequences that contributed to distinct resolution of FGNX-2 sequences from all other Fusarium
TRI1p sequences (Figure 9A–D). Amino acid substitutions specific to FGNX-2 sequences were: at
alignment position 252 A/R/N>S; at alignment position 254 L>M; at alignment position 349 F/K>I;
at alignment position 421 Q/E/L>K; at alignment position 435 T>P; at alignment position 455 A > V.
Kelly et al. [49] reported that there were no differences in the predicted amino acid sequences of
FGNX-2 but, detected 14 amino acid differences specifically between the TRI1 gene product of FGNX-2
strains and F. graminearum strain PH-1 (non-NX-2-producer) due analysis of a larger dataset.

2.8. Phylogeny of TRI1p Sequences of Fusarium

This difference in TRI1p amino acid substitution among Fusarium species is also shown in the
phylogenetic tree produced in RaXML (Figure 10). Species-specific clustering was indicated with
moderate to high bootstrap support (>75% and >90%, respectively) for most taxa. It was also apparent
that residue substitutions in the PxRW and ExxR motifs accumulated in three clusters of Fusarium
species which excluded F. graminearum TRI1p sequences. In addition, there was also distinct separation
of FGNX-2 from FG-non-NX-2 isolates with high bootstrap support (>99%).
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2.9. N-Linked Glycosylation

Based on NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) predictions, only the TRI1p
sequences of FGNX-2-producers have a definite N-X-S/T sequon motif; this motif is absent in
non-NX-2-producers (Figure 11). This N-X-S/T sequon is conserved in N-linked glycosylation.
N-linked glycosylation is a critical post-translational modification of proteins that are synthesized and
folded in the endoplasmic reticulum [52].
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the TRI1p sequence of FGNX-2 and FG-non-NX-2 isolates. A: Representative FGNX-2 sequence, B:
Representative FG-non-NX-2 sequence. Red frame indicates the location of a N-X-S/T sequon found
only in FGNX-2 sequences. Purple circle indicates common location of dileucine repeat in both FGNX-2
and FG-non-NX-2 sequences.

There are >900 P450 structures available in the Protein Data Bank (http://www.wwpdb.org/), many
of which contain bound ligands. Structural flexibility enables an expansion of the substrate spectrum of
a P450 due to flexibility of the active site where substrate docking occurs. Most P450s have a conserved
basic P450 structural fold, but their substrate-binding pockets demonstrate high structural plasticity
which enables these enzymes to significantly vary the dimensions of their active sites according to the
chemical structure of the substrates and this drives catalytic selectivity [36,43]. Thus, the existence
of multiple conformations of P450s is reflected in multiple docking models [53]. It follows that a
given substrate can bind in multiple orientations depending on regio- and/or stereo-selectivity of the
active site. In extreme cases, a single amino acid substitution may be enough to change an enzyme’s
regio-specificity and catalytic efficiency [54]. TRI1p can apparently utilize calonectrin, 3, 15-DAS and,
to a lesser extent, isotrichodermin as substrates in the production of trichothecene mycotoxins, which
suggests that the TRI1p active site has a relaxed substrate specificity [14,55].

In view of the role of the heme-Fe complex and the conformational interactions of specific amino
acid residues in P450-driven oxidation, it is hypothesized that the TRI1p variant heme sequence
and select amino acid substitutions of NX-2-producers may affect regio- and stero-selectivity for
substrate (calonectrin) docking, orientation and position for oxidation relative to the heme-Fe complex.
Substitution of key residues would affect the ability of the substrate to make multiple orientations in
the active site relative to the heme-Fe complex. Furthermore, the N-X-S/T sequon, which is tagged
for N-linked glycosylation that appears to be unique to FGNX-2, would impact upon folding of the
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protein compared to non-NX-2- producers for which this sequon is absent. It is an advantage to P450
chemistry if the correct tertiary structure is retained as P450s also repositions their active site residues
upon substrate binding [51].

According to Kimura et al. [14], closely-related Fusarium species (i) produce trichothecenes
as different structural variants due to substitution patterns of functional groups at C-3, C-4, C-7,
C-8, and C-15, (ii) the late stages of trichothecene biosynthesis differs for Type A and Type B
trichothecene production as a result of substrate specificity, and (iii) trichothecene biosynthesis
operates along “metabolic grids” rather than linear pathways. As such, 7-hydroxycalonectrin and
8- hydroxycalonectrin can both be used as substrates for generation of DON. Although there is no
specific data on the ratio of 7, hydroxycalonectrin to 8, hydroxycalonectrin produced, their production
is sequential and not random [14,56]. Furthermore, structural diversity that results in altered TRI
gene function (acetylation, acylation, and hydroxylation) in different fungal genera that produce
these mycotoxins and the current TRI gene functions can be either ancestral, derived, or demonstrate
retained, but attenuated ancestral gene function [4].

Although the folded structure and catalytic competence of P450s must be maintained, the active
sites can tolerate certain mutations and still retain its function. It is perhaps this mutational robustness
that reflects the diversity of the P450 family, the key role of the iron-heme prosthetic group in catalysis,
the hydrophobicity of the active site, and the conformational variability upon substrate binding [51].
Although most random mutations are either neutral or deleterious, mutation fixation in certain F.
graminearum genomes indicates that these heme motif mutations may confer an adaptive advantage
that is not yet defined [57–60].

3. Conclusions

TRI1 gene sequences are more divergent among different Fusarium species than among closely
related species [14]. It is important to understand the molecular mechanisms that drive the different
substitution patterns at the later stages of trichothecene biosynthesis because the relative toxicity
of trichothecenes is determined by the pattern of oxygenation, acetylation, and/or esterification of
different substrates [14]. Furthermore, if a significant change in selective pressure enabled motif and
amino acid variation in NX-2-producers, monitoring of the NX-2 genotype according to host and
geographical range in an effort to identify potential source and range expansions should be carried
out [49]. It is also relevant to understand whether the NX-2 genotype confers a selective advantage
over other TRI genotypes [60].

4. Materials and Methods

The bioinformatics pipeline developed for analysis of TRI1 nucleotide and protein sequences are
outlined in Figure 12.
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4.1. Protein Sequence Selection and Alignment

TRI1 nucleotide sequences of different Fusarium species were accessed as PopSets in GenBank:
PopSet: 699128280 [20] and PopSet: 1052473830 [49]. These sequences were selected, as they included
F. graminearum NX-2 producers from two different studies [20,49], other F. graminearum strains as a
non-NX-2 producers as well as TRI1 sequences of other Fusarium species to be used as additional
references. The sequence identities of all 52 sequences were verified in NCBI Multiple Sequence
Alignment Viewer (MSAViewer: https://www.ncbi.nlm.nih.gov/projects/msaviewer/). Nucleotide
sequences were translated (https://www.ebi.ac.uk/Tools/st/emboss_transeq/) and the amino acid
sequences were aligned in CLUSTAL OMEGA (https://www.ebi.ac.uk/Tools/msa/clustalo/) and trimmed
to a common length and analyzed for motifs and amino acid substitutions in BioEdit.

4.2. Comparative Primary Peptide Sequence Analysis

Primary sequence structure of the TRI1 peptide of FGNX-2 and FG-non-NX-2 sequences were
predicted and drawn on pepdraw (http://pepdraw.com/). The FGNX-2 protein sequences are AOC89153,
AIU41071, AIU41072, AIU41073, and AOC89167. The FG-non-NX-2 protein sequences are AOC89125,
AOC89149, AOC89272, and XP_011315667. The proteins’ theoretical properties were also calculated
in NPS-Network Protein Sequence Analysis (https://npsa-prabi.ibcp.fr/) and ProtParam-Protein
Identification and Analysis Tools on the ExPASy Server (https://web.expasy.org/protparam/) [61].

Alignment of TRI1p of FGNX-2 and a representative FG-non-NX-2 was compared in the Sequence
Manipulation Suite (https://www.bioinformatics.org/sms2/color_align_prop.html). The color represents
the biochemical properties of a particular residue.

4.3. Topology Analysis

Topology analysis was carried out in TOPCONS2-Consensus prediction of membrane protein
topology and signal peptides (http://topcons.cbr.su.se/pred/result/rst_gW7Qq0/prediction) [62] and in
WoLFPSORT (https://wolfpsort.hgc.jp/). Topologies for FGNX-2 and a representative FG-non-NX-2
were based on structure prediction and modeling against macromolecule data in the Protein Data
Bank (PDB). Phobius (http://phobius.sbc.su.se/; http://phobius.sbc.su.se/poly) [63] and SignalP 5.0
(http://www.cbs.dtu.dk/services/SignalP/) [64] were used to determine presence/absence and location(s)
of signal peptide sequences.
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4.4. Signature Motifs of P450s

The alignment of 52 TRI1p sequences was examined for characteristic signature motifs of fungal
P450s as identified by Syed and Mashele [42]. These motifs have been identified as conserved among
P450 tertiary structure and enzyme functions [30]. Therefore, our specific objective was to detect TRI1p
motif differences between FGNX-2 producers and non-NX-2 producers.

4.5. Selection Bias

Alignment of nucleotide sequences was carried out in MAFFT (Multiple Alignment using Fast
Fourier Transform) server (https://www.ebi.ac.uk/Tools/msa/mafft/) and aligned sequences were then
edited to a common length prior to analysis. DnaSP 6 [65] was used out to determine if TRI1 gene
sequences were under positive selection by assessing the ratio of non-synonymous to synonymous
substitutions (dN/dS) [66] by using Fu and Li’s D* test statistic at p < 0.02 [67,68].

4.6. Phylogeny of TRI1 Nucleotide and Protein Sequences

Inferred TRI1 phylogenetic relationships among Fusarium species were analyzed using the
Maximum Likelihood (ML) algorithm. Phylogenetic inference of TRI1p sequences was estimated in
RAxML [69] v0.9.0 (https://raxml-ng.vital-it.ch) using the maximum likelihood optimality criterion. The
75% consensus trees were retained and re-drawn in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).
Clusters for which motif variation were detected are also indicated as blue- and orange-colored icons
on the tree.

4.7. Post-Translational Modification of TRI1p

NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) predicts the number and location of
N-Glycosylation sites using artificial neural networks that examine the sequence context of
Asn-Xaa-Ser/Thr sequons (where Xaa is not proline). GPMAW lite (https://alphalyse.com/gpmaw/)
was also used to detect N-glycosylation sites in the protein sequences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/12/689/s1,
Figure S1: Examples of heme interactions in a fungal cytochrome P450 monooxygenase, Figure S2: Example of
substrate/ligand binding relative to heme moiety.
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