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Abstract In 2016/2017, Washington State experienced a mumps outbreak despite high

childhood vaccination rates, with cases more frequently detected among school-aged children and

members of the Marshallese community. We sequenced 166 mumps virus genomes collected in

Washington and other US states, and traced mumps introductions and transmission within

Washington. We uncover that mumps was introduced into Washington approximately 13 times,

primarily from Arkansas, sparking multiple co-circulating transmission chains. Although age and

vaccination status may have impacted transmission, our data set could not quantify their precise

effects. Instead, the outbreak in Washington was overwhelmingly sustained by transmission within

the Marshallese community. Our findings underscore the utility of genomic data to clarify

epidemiologic factors driving transmission and pinpoint contact networks as critical for mumps

transmission. These results imply that contact structures and historic disparities may leave

populations at increased risk for respiratory virus disease even when a vaccine is effective and

widely used.

Introduction
In 2016 and 2017, mumps virus swept the United States in the country’s largest outbreak since the

pre-vaccine era (CDCMMWR, 2019). Washington State was heavily affected, reporting 889 con-

firmed and probable cases. Longitudinal studies (Davidkin et al., 2008), epidemiologic outbreak

investigations (Cardemil et al., 2017), and epidemic models (Lewnard and Grad, 2018) suggest

that mumps vaccine-induced immunity wanes over 13–30 years, consistent with the preponderance

of young adult cases in recent outbreaks. Like with other recent mumps outbreaks, most Washington

cases in 2016/17 were vaccinated. Unusually though, while most US outbreaks in 2016/2017 were

associated with university settings (Albertson et al., 2016; Bonwitt et al., 2017; Donahue et al.,

2017; Golwalkar et al., 2018; Iowa Mumps Outbreak Response Team et al., 2018; Wohl et al.,

2020), incidence in Washington was highest among children aged 10–18 years, younger than

expected given waning immunity. The outbreak was also peculiar in that approximately 52% of the

total cases were Marshallese, an ethnic community that comprises ~0.3% of Washington’s popula-

tion. These same phenomena were also observed in Arkansas. Of the 2954 confirmed and probable

Arkansas cases, 57% were Marshallese, and 57% of cases were children aged 5–17 (Fields et al.,

2019). Among the infected school-aged children in Arkansas and Washington, >90% had previously

received two doses of MMR vaccine (Fields et al., 2019). The high proportion of vaccinated cases,
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younger-than-expected age at infection, disproportionate impact on the Marshallese community,

and epidemiologic link to Arkansas suggest that factors beyond waning immunity are necessary to

explain mumps transmission during this outbreak in Washington.

The US and the Marshall Islands are closely linked through a history that continues to impact the

health of US-residing Marshallese to this day. Between 1947 and 1986, the United States occupied

the Republic of Marshall Islands and detonated the equivalent of >7000 Hiroshima size nuclear

bombs as part of its nuclear testing program (Barker, 2012). The effects were devastating, precipi-

tating widespread environmental destruction, nuclear contamination, and dire health consequences

(Hallgren et al., 2015; Niedenthal, 1997; Palafox et al., 2007; Simon, 1997; Takahashi et al.,

1997). Marshallese individuals inhabiting the targeted atolls were forcibly moved to other islands,

and many were exposed to nuclear fallout (Abella et al., 2019) that persists on the Islands today

(Bordner et al., 2016). Significant concern remains within the community regarding long-term health

impacts of nuclear exposure and its potential impacts on immune function. Marshallese individuals

living on and off the Islands experience significant health disparities including a higher burden from

infectious diseases and chronic health conditions (Adams et al., 1986; Wong et al., 1979;

Yamada et al., 2004). Compounding these disparities, from 1996 to 2020 (Hirono, 2019), Marshal-

lese individuals were specifically excluded from Medicaid eligibility despite legal residency in the US

permitted under the Compact of Free Association (COFA) Treaty. As a result, many US-residing Mar-

shallese are uninsured, with poor access to healthcare (McElfish et al., 2015). Marshallese house-

holds are more likely to be multigenerational and tend to be larger on average (Harris and Jones,

2005; US Census Bureau, 2021), potentially increasing the number and intensity of interactions

among individuals. These factors combined mean that Marshallese individuals may be at increased

risk of respiratory virus infection.

Clarifying the determinants of infectious disease transmission is important for prioritizing preven-

tion and mitigation resources. However, sampling bias presents a persistent challenge for elucidat-

ing source-sink dynamics from genomic data (De Maio et al., 2015; Dudas et al., 2018;

Frost et al., 2015; Kühnert et al., 2011; Lemey et al., 2020; Stack et al., 2010), which may under-

mine the utility of genomic epidemiological studies in some situations. Here, we formulate a set of

genomic epidemiological approaches that are robust to sampling frame and apply them to investi-

gate patterns of mumps transmission in Washington. We sequenced 110 mumps viral genomes

obtained from specimens collected from laboratory-confirmed mumps cases in Washington State

and another 56 from other US states collected between 2006 and 2018. We employ a novel applica-

tion of phylogeographic methods to detailed epidemiologic data on age, vaccination status, and

community membership, and develop a new statistic for quantifying transmission in the tree. By

combining these phylodynamic approaches with community health advocate interviews that contex-

tualize our results, we provide a framework for investigating viral transmission dynamics that is sensi-

tive to community health priorities and readily applicable to other viral pathogens.

Results

Outbreak characteristics and data set composition
We generated genome sequences for 110 PCR-positive mumps samples collected throughout Wash-

ington State during 2016/2017, and 56 samples collected in Wisconsin, Ohio, Missouri, Alabama,

and North Carolina between 2006 and 2018 (Supplementary file 1a). The Washington State out-

break began in October 2016 and peaked in winter of 2017, culminating in 889 confirmed and prob-

able cases across Washington (Figure 1). Individuals aged <1 to 64 years were affected, but

incidence was highest among children aged 10–14 (44.9 cases per 100,000) and 15–19 (47.0 per

100,000) (Supplementary file 1b). Among outbreak cases 5–19 years of age, 91% of individuals

were considered up-to-date on mumps vaccine. Adults in the age group most likely to be parents of

school aged children (20–39 years old) were infected at a rate of only 12.9 cases per 100,000, but

comprised a significant proportion (29%) of total cases (Supplementary file 1b). While Marshallese

individuals comprise only ~0.3% of Washington’s total population, they accounted for 52% of

reported mumps cases (Supplementary file 1c). Among Marshallese cases aged 5–19, 93% were

up-to-date on vaccination, suggesting that this over-representation is not attributable to poor vac-

cine coverage.
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Outbreaks across North America are related
We combined our sequence data with publicly available full genome sequences sampled from North

America between 2006 and 2018 and built a time-resolved phylogeny, inferring migration history

among 27 US states and Canadian provinces (Figure 2, Figure 2—figure supplement 1; Figure 2—

figure supplement 2). Sequences from samples collected between 2006 and 2014 clustered with

other North American mumps viruses sampled from the same times. Nine Washington sequences

were highly divergent from other North American genotype G viruses, with a time to the most

recent common ancestor (TMRCA) of ~22 years (Figure 2, blue tips with long branches clustered

toward the top of the tree). To place these genomes in context, we built a divergence tree using all

publicly available global full genome mumps sequences (Figure 2—figure supplement 3). Seven of

these divergent Washington sequences cluster with viruses sampled from New Zealand (Figure 2—

figure supplement 3), suggesting they could be travel-related. The other two sequences cluster

with other divergent genotype G viruses sampled from geographically disparate locations (Fig-

ure 2—figure supplement 3). The remaining Washington sequences nest within the diversity of

other North American viruses, and descend from the same mumps lineage that has circulated in

North America since 2006 (Figure 2). We observe substantial geographic mixing along the tree.

While viruses from the northeast (teal tips and branches) seeded outbreaks in the Northeast and

Midwest, we also infer transmission from the Northeast to Southern US states and British Columbia.

Despite the close geographic proximity between British Columbia and Washington, most British

Columbia sequences form a distinct cluster on a long branch (Figure 2), suggesting seeding from an

unsampled location. Although viruses from Washington are scattered throughout the phylogeny,

most cluster within a clade of viruses sampled in Arkansas (Figure 2).

Mumps is classified into 12 genotypes (labeled A–N, excluding E and M) based on its SH gene

sequence. There is some evidence that mumps genotypes are geographically associated (Nomencla-

ture, 2020), and the vast majority of mumps viruses circulating in North America since 2006 have

been genotype G viruses. Although most samples in our data set are also genotype G, we did

sequence three viruses that group in different genogroups. One sample from Wisconsin in 2006

grouped with genotype A viruses, another sample from Wisconsin in 2015 grouped with genotype H

viruses, and one sample from Washington in 2017 grouped with genotype K viruses (Figure 2—
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Figure 1. Genomic sampling covers the duration of the outbreak. The first mumps case in Washington was

reported on October 30, 2016, and case counts peaked in the winter of 2017. Here we show recorded numbers of

confirmed and probable cases by epidemiologic (epi) week. Blue dots above the epidemiologic curve represent

the number of Washington genome sequences sampled from viruses collected during that epi week.

The online version of this article includes the following source data for figure 1:

Source data 1. Washington State mumps case counts in 2016–2017.

Source data 2. Metadata for sequences generated in this manuscript with collection dates.
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Figure 2. North American mumps outbreaks are related. We combined all publicly available North American mumps genomes and built a time-

resolved phylogeny. We inferred geographic transmission history between each US state and Canadian province using a discrete trait model, but have

grouped these locations into regions for plotting purposes. A tree colored by the full geographic transmission history across all 27 locations is shown in

Figure 2—figure supplement 2. Here, we display the maximum clade credibility tree, where color represents geographic location. We grouped the US

Figure 2 continued on next page
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figure supplement 3). The Washington genotype K virus (Washington.USA/9.17/FH94/K) is closely

related to a genotype K mumps virus collected during a mumps outbreak in Massachusetts from an

individual who reported international travel (Wohl et al., 2020; Figure 2—figure supplement 3).

These divergent, non-genotype G genomes were excluded from further phylogenetic analysis.

Mumps was introduced into Washington multiple independent times
Estimating the number and timing of viral introductions is important for estimating epidemiologic

parameters and evaluating public health surveillance systems, but detecting these dynamics may be

challenging with case count data alone (Faria et al., 2017; Grubaugh et al., 2017). The Washington

Department of Health had identified a single potential index case infected in October 2016. To

determine whether the genomic data similarly supported a single introduction of mumps to Wash-

ington state, we separated each introduction inferred in the maximum clade credibility tree and plot-

ted each as its own transmission chain (Figure 3a). We enumerated the number of transitions into

Washington in each tree in the posterior set, and plotted the distribution of Washington introduc-

tions consistent with the phylogeny (Figure 3b).

Genomic data show that mumps was introduced into Washington State approximately 13 inde-

pendent times (95% highest posterior density, HPD: 12–15), from geographically disparate locations

(Figure 3). In addition to the nine highly divergent Washington tips (Figure 2—figure supplement

3), we detect one introduction from Massachusetts that descends from a long branch. Prior to being

sampled in Washington, this lineage was last inferred to circulate in Massachusetts in late 2015. Thus

rather than representing a direct introduction from Massachusetts to Washington, this lineage likely

moved through other geographic locations that lack genomic sampling. We infer introductions from

Ontario and Missouri that each lead to one to three sampled cases (Figure 3b), suggesting limited

onward transmission following these introductions. In contrast, four introductions from Arkansas

account for 92/110 sequenced cases, suggesting that these introductions led to more sustained

chains of transmission following introduction (Figure 3b). We refer to the largest cluster as the ‘pri-

mary outbreak clade’, and infer its introduction from Arkansas to Washington around August 2016

(August 7, 2016, 95% HPD: July 11, 2016 to September 19, 2016, Figure 3b), 3.5 months before

Washington’s first reported case. These data reveal that what had appeared to be a single outbreak

based on case surveillance data was in fact a series of multiple introductions, primarily from Arkan-

sas, sparking overlapping and co-circulating transmission chains.

Figure 2 continued

states by geography as follows: non-Washington West include California and Montana; Midwest USA includes North Dakota, Kansas, Missouri, Iowa,

Wisconsin, Indiana, Michigan, Ohio, and Illinois; South USA includes North Carolina, Alabama, Virginia, Georgia, Texas, Arkansas, and Louisiana;

Northeast USA includes New York, Massachusetts, Pennsylvania, New Hampshire, and New Jersey. Canadian provinces are also grouped by

geographic area. The x-axis represents the collection date (for tips), or the inferred time to the most recent common ancestor (for internal nodes). The

internal node coloring represents the sum of the posterior probabilities for each inferred geographic division within the most probable region. For

example, since we group Manitoba and Ontario into the same Canadian region, if a node was inferred with highest probability to circulate in Manitoba,

then the node would be colored red to represent that Canadian region. The opacity of the color then corresponds to the sum of the probabilities that

the node circulated in Manitoba or that the node circulated in Ontario. The posterior probability is expressed by the color gradient, where increasingly

gray tone represents decreasing certainty of the inferred geographic state. The ancestral state at the root was poorly resolved and is therefore colored

mostly gray.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. XML file to run discrete trait phylogeographic analysis of North American mumps transmission shown in Figure 2, with combined mcc

tree and output log files.

Source data 2. Divergence trees with metadata for divergence trees shown in Figure 2—figure supplement 4 and Figure 2—figure supplement 5.

Figure supplement 1. Mumps genomes accumulate mutations linearly over time.

Figure supplement 2. Phylogeographic history inferred with the full, 27-state discrete trait model.

Figure supplement 3. Placement of divergent Washington and non-genotype G genomes on a global phylogeny.

Figure supplement 4. The full genome divergence tree closely matches the time-resolve phylogeny.

Figure supplement 5. SH gene sequences are inadequate for fine-scale resolution of mumps transmission.
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SH gene sequencing is insufficient for fine-grained geographic inference
Mumps virus surveillance and genotyping rely on the SH gene (Centers for Disease Control and

Prevention, 2019a), a short, 316 bp gene that is simple and rapid to sequence. To determine

whether SH gene sequencing would have produced similar results, we built a divergence tree using

our set of North American full genomes (Figure 2—figure supplement 4), and then truncated that

data to include only SH gene sequences (Figure 2—figure supplement 5). Almost all North Ameri-

can SH genes were identical, resulting in a single, large polytomy (Figure 2—figure supplement 5).

This indicates that SH sequences lack sufficient resolution to elucidate fine-grained patterns of geo-

graphic spread, consistent with previous findings (Gouma et al., 2016; Wohl et al., 2020).

Quantifying differences in transmission patterns within Washington
In both Arkansas and Washington, Marshallese individuals comprised over 50% of mumps cases,

despite accounting for a much lower proportion of the population in both states. Phylogenetic

reconstruction links the outbreaks in Washington and Arkansas, placing most sampled mumps

genomes in Washington as descendant from Arkansas. We sought to investigate how mumps trans-

mission may have differed within Marshallese and non-Marshallese communities within the same out-

break. Phylogenetic trees reflect the transmission process and can be used to quantify differences in

transmission patterns among population groups. If transmission rates were distinct between Mar-

shallese and non-Marshallese mumps cases, we would expect the following: 1. Sequences from the
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Figure 3. The mumps outbreak in Washington was seeded by approximately 13 introductions. (a) We separated each introduction into Washington

inferred on the maximum clade credibility tree (Figure 2) and plotted them independently. Large, colored dots represent the inferred geographic

location that the Washington introduction was seeded from. Branches that extend further back in time than April 2016 (approximately 6 months prior to

the first reported case in Washington) are dotted to represent that transmission likely occurred via other, unsampled locations. The nine tips at the very

top without inferred geographic ancestry represent the highly divergent nine Washington genomes with a TMRCA of ~22 years that are highlighted in

Figure 2—figure supplement 3 and shown in Figure 2. For reference, the cumulative case counts from Arkansas and Washington are plotted below.

(b) For each tree in the posterior set, we inferred the number of introductions into Washington. We plot the proportion of trees in the posterior set in

which that number of introductions was inferred.

The online version of this article includes the following source data for figure 3:

Source data 1. Inferred introductions into Washington State across posterior distribution.
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high-transmitting group should be more frequently detected upstream in transmission chains. 2.

Introductions seeded into the high-transmitting group should result in larger and more diverse

clades in the tree. 3. The internal nodes of the phylogeny should be predominantly composed by

members of the high-transmitting group, while members of the low-transmitting group should pri-

marily be found at terminal nodes, since less propagated transmission will cause the lineage to die

out.

Marshallese cases are enriched upstream in transmission chains
We developed a transmission metric to quantify whether Marshallese cases were enriched at the

beginnings of successful transmission chains. We traverse the full genome divergence phylogeny

(Figure 2—figure supplement 4) from root to tip. When we encounter a tip that lies on an internal

node, we enumerate the number of tips that descend from its parent node. We then classify each

tip in the phylogeny as either a ‘basal tip’ (i.e., there are tips detected downstream of that tip) or a

‘terminal tip’ (there are not tips detected downstream), and compare the proportion of basal and

terminal tips among groups (Figure 4a, see Materials and methods for more details). Given our sam-

pling proportion (110 sequences/889 total cases, ~12%), we do not expect to have captured true

parent/child infection pairs. Rather, we expect to have preferentially sampled long, successful trans-

mission chains within the state. This allowed us to test whether community membership, vaccination

status, and age were associated with sustained transmission via logistic regression (see

Materials and methods for details and statistical model). While those with unknown vaccination sta-

tus were more likely to be basal in the tree than those with known up-to-date vaccination, the confi-

dence interval could not exclude a null or positive association between vaccination status and basal/

terminal status (Table 1). Having an age of at least 20 years predicted a mean lowered odds of being

basal in the tree, but a wide range of effects is plausible given our sample. Resolving the precise

effects of vaccination status and age would likely require a larger data set. However, we do find evi-

dence for community status as a strong predictor for being basal on the phylogeny. Marshallese

cases were significantly more likely to be basal than non-Marshallese cases (odds ratio = 3.2,

p=0.00725, Table 1). While only 27% (14/52) of non-Marshallese tips were ancestral to downstream

samples, 56% (32/57) of Marshallese tips were ancestral in lineages with sampled propagated trans-

mission (Supplementary file 1d). These results suggest that community membership was a signifi-

cant determinant of sustained transmission while controlling for vaccination status and age.

We evaluated the impact of vaccination status, age, and community membership on the probabil-

ity that a sampled virus was basal in the tree. Coefficients represent the increase in the log odds of

being basal in the tree for each given predictor variable while controlling for the others. Coefficients

were exponentiated to produce odds ratios. We evaluated the impacts of having an unknown vacci-

nation status, having a vaccination status that is not up-to-date, having an age of at least 20 years,

and being Marshallese as binary predictor variables.

Longer transmission chains are associated with community status
In the absence of recombination, closely linked infections will cluster together on the tree, while

unrelated infections should fall disparately on the tree, forming multiple smaller clusters. We inferred

the number of Washington-associated clades in the tree as a function of whether sampled infections

came from Marshallese or non-Marshallese individuals. Using the full North American phylogeny, we

removed all Washington sequences and separated them into viruses sampled from cases noted as

Marshallese or non-Marshallese. Then, separately for each group, we added sequences back into

the tree one by one, until all sequences for that group had been added. For each number of sequen-

ces, we performed 10 independent trials (see Materials and methods for complete details), and at

each step, we enumerated the number of inferred Washington clusters in the phylogeny. For com-

parison, we also grouped tips by vaccination status and repeated this analysis.

For viruses sampled from non-Marshallese individuals, the number of inferred clusters increases

linearly as tips are added to the tree (Figure 4b). This suggests that these infections are not closely

related and are therefore not part of sustained transmission chains (Figure 4b). In contrast, the num-

ber of inferred clusters for Marshallese tips stabilizes after ~10 tips are added, even as almost 50

more sequences are added to the tree. This pattern likely arises because many Marshallese infec-

tions are part of the same long transmission chain, such that newly added tips nest within existing
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clusters. We do not observe similar differences among vaccination groups (Figure 4—figure supple-

ment 1). These findings are consistent with distinct patterns of transmission among Marshallese ver-

sus non-Marshallese cases: transmission among Marshallese individuals resulted in a small number of

large clusters, while transmission among non-Marshallese individuals are generally the result of dis-

parate introductions that generate shorter transmission chains.
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Figure 4. Marshallese individuals sustain longer transmission chains. (a) A schematic for quantifying tips that lie ‘upstream’ in transmission chains. For

tips that lie on an internal node, meaning that they have a branch length separating them from their parent internal node of less than one mutation, we

infer the number of child tips that descend from that tip’s parental node. For each tip in the example tree, its classification as either a ‘basal tip’ or a

‘terminal tip’ is annotated alongside it. All tips that have a nonzero branch length are annotated as terminal tips. We can then compare whether

sequences of particular groups (here, blue vs. red) are more likely to be basal or terminal via logistic regression. (b) We separated all Washington tips

and classified them into Marshallese and not Marshallese. We then performed a rarefaction analysis and plotted the number of inferred Washington

clusters (y-axis) as a function of the number of sequences included in the analysis (x-axis). Dark blue represents not Marshallese sequences, and light

blue represents Marshallese sequences. Each dot represents the number of trials in which that number of clusters was inferred, and the solid line

represents the mean across trials. (c) The exploded tree as shown in Figure 3a is shown, but tips are now colored by whether they represent

Marshallese or non-Marshallese cases. For reference, the number of Washington cases (y-axis) is plotted over time (x-axis), where bar color represents

whether those cases were Marshallese or not.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Rarefaction results for community status analysis shown in Figure 4b.

Figure supplement 1. Rarefaction results by vaccination status.

Figure supplement 1—source data 1. Rarefaction results for vaccination status analysis shown in Figure 4—figure supplement 1.

Table 1. Associations between basal tip position in the phylogeny and possible predictors of transmission.

Predictor variable Estimated coefficient (standard error) Odds ratio (95% CI) p-value

Not up-to-date �0.76 (0.69) 0.47 (0.11, 1.73) 0.27

Vaccination status unknown 0.72 (0.77) 2.04 (0.47, 10.15) 0.35

Age �20 years �0.38 (0.51) 0.69 (0.25, 1.86) 0.46

Community status 1.21 (0.42) 3.36 (1.49, 7.91) 0.0042

Moncla, Black, et al. eLife 2021;10:e66448. DOI: https://doi.org/10.7554/eLife.66448 8 of 30

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.66448


We next separated each Washington introduction and colored each tip by community member-

ship. Every introduction that was not seeded from Arkansas led to exclusively non-Marshallese infec-

tions, while introductions from Arkansas defined lineages that circulated for longer and were

enriched with Marshallese tips (Figure 4c). The primary outbreak clade is particularly enriched, con-

taining 43 Marshallese tips and 26 non-Marshallese tips, hinting that transmission chains are longer

when Marshallese cases are present in a cluster.

Mumps transmitted efficiently within the Marshallese community
Internal nodes on a phylogeny represent ancestors to subsequently sampled tips, while terminal

nodes represent viral infections that did not give rise to sampled progeny. If the mumps outbreak

was primarily sustained by transmission within one group, the backbone of the phylogeny and the

majority of internal nodes should be inferred as circulating in that group. We selected the four intro-

ductions that contained both Marshallese and non-Marshallese tips (Figure 4c, the four Arkansas

introductions), and reconstructed ancestral states along the phylogeny and migration/transmission

rates between Marshallese and non-Marshallese groups using a structured coalescent model.

Of 88 internal nodes, 74 were inferred to circulate within the Marshallese community with poste-

rior probability of at least 0.95 (Figure 5a,b). Movement of a lineage from the Marshallese deme

into the non-Marshallese deme subsequently caused the lineage to die out quickly (Figure 5a, dark

blue branches). This suggests that transmission was overwhelmingly maintained within the Marshal-

lese community, and that infections seeded into the non-Marshallese community did not sustain pro-

longed transmission chains. We estimate substantially more transmission from Marshallese to non-

Marshallese groups than the opposite: within the primary outbreak clade, we estimate 29 transmis-

sion events from Marshallese to non-Marshallese groups (95% HPD: 21, 37), and only 6 (95% HPD: 0,

14) from non-Marshallese to Marshallese groups (Figure 5d). This strongly suggests that transmis-

sion predominantly occurred in one direction: transmission events leading to non-Marshallese infec-

tions usually died out and did not typically re-seed circulation within the Marshallese community.

These results hold true regardless of migration rate prior (Figure 5—figure supplement 1).

To ensure that our results were not driven by unequal sampling within the analyzed clades, we

generated three data sets in which the number of Marshallese and non-Marshallese tips were sub-

sampled to be equal. For each of these three subsampled data sets, we ran three independent

chains under the same model described above. Chains converged for two of the three subsampled

data sets. In the converged chains, we recover very similar tree topologies (Figure 5—figure supple-

ment 2a) with equivalent phylogenetic reconstructions of lineage circulation within Marshallese and

non-Marshallese demes. We also recovered maximum clade credibility trees in which the vast major-

ity of the internal nodes are inferred to circulate within the Marshallese deme (Figure 5—figure sup-

plement 2a,b), confirming that our findings are robust to sampling, consistent with the past

observations of model performance (De Maio et al., 2015; Dudas et al., 2018; Vaughan et al.,

2014).

The above structured coalescent model requires both groups to be present in each cluster, which

meant that we had to exclude several small Washington introductions composed entirely of non-

Marshallese tips (Figure 4c). To assess whether our findings would change if we analyzed all

sequenced samples, we performed an additional analysis incorporating all Washington genotype G

sequences in our data set and estimated a single tree using an approximate structured coalescent

model (Müller et al., 2018). All Washington sequences were annotated as either Marshallese or not

Marshallese. To provide a ‘source’ population for the extensive diversity among our disparate Wash-

ington introductions, we also specified a third, unsampled deme, for which migration was only

allowed to proceed outward. As above, we inferred very few non-Marshallese internal nodes (Fig-

ure 6 and Figure 6—figure supplement 1). All internal nodes in the primary outbreak group are

inferred as Marshallese with high probability, while non-Marshallese cases are present as terminal

nodes. We recovered support for a single non-Marshallese cluster, indicating limited sustained trans-

mission in the non-Marshallese population.

Structured coalescent models infer the effective population size (Ne) for each group, which

reflects the number of infections necessary to generate the observed genetic diversity. Differences

in Ne can result from different transmission rates or different numbers of infected individuals

(Volz, 2012) and can therefore approximate differences in disease frequency between groups. While

the total number of Marshallese and non-Marshallese cases reported through the public health
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surveillance system were similar (Supplementary file 1b), we estimate that Ne for the non-Marshal-

lese group is approximately three times higher than that of the Marshallese group. Assuming the

same number of infected individuals in each group, lower Ne’s suggest higher transmission rates

(Volz, 2012), suggesting more transmission within the Marshallese deme. Taken together, our

results suggest that the outbreak was primarily sustained by transmission within the Marshallese

community. While we do observe spillover into the non-Marshallese community, transmission was

generally not as successful there, resulting in short, terminal transmission chains.
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Figure 5. The Washington outbreak was sustained by transmission in the Marshallese community. (a) Using the four Washington clusters that had a

mixture of Marshallese and non-Marshallese cases, we inferred phylogenies using a structured coalescent model. Each group of sequences shared a

clock model, migration model, and substitution model, but each topology was inferred separately, allowing us to incorporate information from all four

clusters into the migration estimation. For each cluster, the maximum clade credibility tree is shown, where the color of each internal node represents

the posterior probability that the node is Marshallese. (b) For each internal node shown in panel (a), we plot the posterior probability of that node

being Marshallese. Across all four clusters, 74 out of 88 internal nodes (84%) are inferred as Marshallese with a posterior probability of at least 0.95. (c)

The posterior distribution of the number of ‘jumps’ or transmission events from Marshallese to not Marshallese (light blue) and not Marshallese to

Marshallese (dark blue) inferred for the primary outbreak clade.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. XML file to run structured coalescent analysis and combined output log and tree files with a migration rate prior of 1 (shown in Figure 5,

identifiable metadata have been removed).

Figure supplement 1. Inferences are similar under a higher migration rate prior.

Figure supplement 1—source data 1. XML file to run structured coalescent analysis and combined output log and tree files with a migration rate prior
of 10 (shown in Figure 5—figure supplement 1, identifiable metadata have been removed).

Figure supplement 2. Structured coalescent analyses are robust to sampling differences.

Figure supplement 2—source data 1. XML files and combined output files to run structured coalescent analysis where clades were subsampled to
have equal numbers of Marshallese and non-Marshallese tips (shown in Figure 5—figure supplement 2, identifiable metadata have been removed).
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Viruses infecting individuals in different vaccination groups are
genetically similar
Although only 9.7% of reported mumps cases in Washington were not up-to-date for mumps vacci-

nation, infection of these individuals could have disproportionately impacted transmission in the

state. Emergence of an antigenically novel strain of mumps could also allow infection of previously

vaccinated individuals, and result in different virus lineages infecting individuals in different vaccina-

tion categories. We colored the tips of all Washington cases in our phylogeny to represent whether

they were derived from individuals who were up-to-date, not up-to-date, or whose vaccination status

was unknown. Mirroring overall vaccination coverage in Washington, the vast majority of samples in

our data set were from up-to-date individuals. The not up-to-date individuals present in our data set

Figure 6. Including all Washington sequences recovers majority of transmission in Marshallese. To ensure that

excluding non-Marshallese clusters did not skew our findings, we inferred a single tree using all Washington

sequences. We performed a structured coalescent analysis specifying three groups: Marshallese, not Marshallese,

and not Washington. Each internal node is colored by its most probable group, with its opacity specifying the

posterior probability of being in that group (fully opaque being probability = 1, fully transparent being

probability = 0).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. XML file and output files to run structured coalescent analysis with unsampled ‘ghost’ deme shown

in Figure 6 (identifiable metadata have been removed).

Figure supplement 1. Posterior probabilities of internal node states.
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are dispersed throughout the phylogeny and do not cluster together (Figure 7), suggesting that

there is no genetic difference between viruses infecting individuals with different vaccination

statuses.

Discussion
The resurgence of mumps in North America has ushered renewed attention toward understanding

post-vaccine era mumps transmission. While many studies have used phylodynamic approaches to

elucidate viral patterns of geographic spread (Dudas et al., 2017; Gouma et al., 2016;

Grubaugh et al., 2017; Stapleton et al., 2019), using genomics to distinguish transmission patterns

among epidemiologically distinct groups is novel. We employ a phylogenetic method

(Vaughan et al., 2014) traditionally applied to geography that is robust to sampling bias

(Dudas et al., 2018) to investigate drivers of mumps transmission in Washington. We show that the

Washington State outbreak was fueled by approximately 13 independent introductions, primarily

Figure 7. Individuals in different vaccination groups are infected by genetically similar viruses. The exploded tree as shown in Figure 3a is shown, but

tips are now colored by whether they represent cases from individuals who are up-to-date for mumps vaccination, not up-to-date, or cases for which

vaccination status was unknown. The color of the large dot represents the inferred geographic location from which the Washington introduction was

seeded.
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from Arkansas, leading to multiple co-circulating transmission chains. Within Washington, transmis-

sion was more efficient within the Marshallese community. Marshallese individuals were more often

sampled at the beginnings of transmission chains, contributed to longer transmission chains on aver-

age, and were overwhelmingly enriched on internal nodes within the phylogeny. We were unable to

evaluate the precise effects of age and vaccination status on transmission in our outbreak. Future,

larger studies will be necessary to disentangle the interplay between contact patterns, waning immu-

nity, and vaccination status during mumps transmission. However, our data do suggest that social

networks can be critical determinants of mumps transmission. Future work exploring how social and

economic disparities may amplify respiratory disease transmission will be necessary for updating out-

break mitigation and prevention strategies. By combining detailed metadata, novel metrics of trans-

mission in the tree, and robust controls for sampling, we provide a framework for investigating

source-sink dynamics that is readily applicable to other viral pathogens.

Sampling bias presents a persistent problem for phylodynamic studies that can complicate infer-

ence of source-sink dynamics (De Maio et al., 2015; Dudas et al., 2018; Frost et al., 2015;

Kühnert et al., 2011; Lemey et al., 2020; Stack et al., 2010). Sampling bias can arise from unequal

case detection or from curating a data set that poorly represents the underlying outbreak. Washing-

ton State uses a passive surveillance system for mumps detection and case acquisition, which is

known to result in underreporting. Because the WA Department of Health did not perform active

mumps surveillance, it is difficult to assess whether different epidemiologic groups have different

likelihoods of being sampled. Marshallese individuals are less likely to seek healthcare (Towne et al.,

2021), which may have resulted in particularly high rates of underreporting in this group. If the num-

ber of cases within the Marshallese community were in fact higher than reported, this would increase

the magnitude of the patterns we describe, making our estimates conservative. Given a distribution

of cases, composing a data set for analysis also requires sampling decisions. Uniform sampling

regimes in which sampling probability is equal across groups have been shown to perform well for

source-sink inferences (Hall et al., 2016). By selecting sequences that matched the overall attributes

of the outbreak, including a near 50:50 split between Marshallese and non-Marshallese cases, we

adhere to this recommendation. We then specifically employed structured coalescent approaches

which have been shown to be robust to sampling differences (Dudas et al., 2018; Müller et al.,

2018; Vaughan et al., 2014), rather than using other common approaches that treat sampling inten-

sity as informative of population size (Lemey et al., 2009). Within this framework, we further explore

the possibility that unequal sampling within Washington clades could skew internal node reconstruc-

tion by forcing the sampling within each Washington clade to be equal between Marshallese and

non-Marshallese tips. In doing so, differences within each clade must necessarily be driven by differ-

ences in transmission dynamics, rather than sampling. By combining careful sample selection with

overlapping approaches to evaluate sampling bias, we were able to mitigate concerns that our

source-sink reconstructions are driven by sampling artifacts.

Our results highlight the utility of genomic data to clarify epidemiologic hypotheses. While geno-

mic data and epidemiologic investigation (including case interviews and contact follow up) sug-

gested an Arkansas introduction as the Washington outbreak’s primary origin, sequence data

revealed repeated and ongoing introductions into Washington, similar to patterns observed in Mas-

sachusetts, and the Netherlands (Gouma et al., 2016; Wohl et al., 2020). We also find widespread

geographic mixing across the phylogeny, consistent with investigations from the US (Wohl et al.,

2020), Canada (Stapleton et al., 2019), and Europe (Gavilán et al., 2018; Gouma et al., 2016).

Like others (Gouma et al., 2016; Wohl et al., 2020), we confirm that SH genotyping alone is insuffi-

cient for fine-grained resolution of geographic transmission patterns. While CDC guidelines currently

recommend SH-based genotyping specifically for tracking transmission pathways (Clemmons et al.,

2020), building public health capacity for full-genome sequencing may be more useful for resolving

local mumps transmission patterns.

Our finding that most introductions sparked short transmission chains suggests that mumps did

not transmit efficiently among the general Washington populace. We suspect that more diffuse con-

tact patterns may help explain this. Mumps has historically caused outbreaks in communities with

strong, interconnected contact patterns (Barskey et al., 2012; Fields et al., 2019; Nelson et al.,

2013), and in dense housing environments (Snijders et al., 2012), highlighted most recently by out-

breaks in US detention centers (Lo et al., 2021). In 2016, most outbreaks in the US were associated

with university settings (Albertson et al., 2016; Bonwitt et al., 2017; Donahue et al., 2017;
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Golwalkar et al., 2018; Iowa Mumps Outbreak Response Team et al., 2018; Wohl et al., 2020),

including a separate, smaller outbreak in Washington State associated with Greek housing

(Bonwitt et al., 2017). Outside of university settings, other outbreaks in 2016 were reported within

close-knit ethnic communities (Fields et al., 2019; Marx et al., 2018). We speculate that while wan-

ing immunity may promote outbreaks by increasing susceptibility among young adults, outbreaks in

younger age groups may be possible in sufficiently high-contact settings. Provision of an outbreak

dose of mumps-containing vaccine to high-risk groups may therefore be especially effective for limit-

ing mumps transmission in future outbreaks. Others have reported success in using outbreak dose

mumps vaccinations to reduce mumps transmission on college campuses (Cardemil et al., 2017;

Iowa Mumps Outbreak Response Team et al., 2018) and in the US army (Arday et al., 1989;

Eick et al., 2008; Green, 2006; Kelley et al., 1991), and the CDC currently recommends providing

outbreak vaccine doses to individuals with increased risk due to an outbreak (Marlow et al., 2020).

Future work to quantify the interplay between contact rates and vaccine-induced immunity among

different age and risk groups should be used to guide updated vaccine recommendations.

Recent research has focused on identifying groups at risk for mumps infection due to their age

(Lewnard and Grad, 2018), with less attention to other factors that may make populations vulnera-

ble. While a combination of waning immunity and dense housing settings make college campuses

ideal for mumps outbreaks, the Washington and Arkansas outbreaks show that populations other

than young adults are at risk. Soliciting feedback from the Marshallese community allowed us to con-

textualize our genomic results with the lived experience of individuals most heavily affected during

the outbreak and to identify reasonable hypotheses for efficient transmission. Based on these inter-

views and previously published studies, we speculate that within the Marshallese community, a com-

bination of factors likely led to a high force of infection. The following paragraph outlines

contributing factors that were brought to light during our interviews with a collaborating community

activist, along with corroborating citations from the literature. Each of these factors were specifically

cited as important and directly stem from our interviews with her.

Multigenerational living is common in the Marshallese community (Fields et al., 2019), and Mar-

shallese households tend to be larger on average (average household size = 5.28 (Harris and Jones,

2005), average household size for entire US populace = 2.52 US Census Bureau, 2021). Having

more household contacts may have facilitated a greater number and higher intensity of interactions

among individuals, allowing the force of infection to overcome pre-existing immunity. The Marshal-

lese community is often described as close-knit, with frequent and close interactions among individu-

als, a strong sense of community, and a broader sense of family than the single-family unit typical of

broader American culture (Barker, 2012; Embassy of the Republic of the Marshall Islands to the

United States of America, 2021). Contacts within the community could therefore be more frequent

or intense, which may facilitate transmission. It is also possible that infection intensity within the Mar-

shallese community was exacerbated by low rates of insurance coverage and poor access to health-

care (McElfish et al., 2017; Towne et al., 2021), hesitancy to seek medical care (Williams and

Hampton, 2005), and health disparities stemming from US occupation, nuclear testing, and exclu-

sion from healthcare services. As part of reparations for US nuclear testing, the US signed the Com-

pact of Free Association Treaty (COFA)(Congress 108th United States, 2003) with the Marshall

Islands in 1989, permitting Marshallese residents to live and work in the US without visas. However,

eligibility for Medicaid was revoked for COFA immigrants in 1996, and US-residing Marshallese

remain economically disadvantaged and under-insured (McElfish, 2016; McElfish et al., 2017,

McElfish et al., 2015). The passage of the Affordable Care Act (ACA) has not ameliorated these

issues. Interviews with US-residing Marshallese note confusion among ACA staff regarding the legal

status of COFA recipients, leading to drawn out enrollment processes that often leave individuals

uninsured, frustrated (McElfish et al., 2016), and far less likely to access care (Towne et al., 2021).

A study of healthcare-seeking behavior among patients with diabetes showed that while multiple

factors contribute to foregone care in the US populace, 77% of surveyed Marshallese individuals

reported recent forgeone care and lack of insurance was the primary reason (Towne et al., 2021).

Marshallese trust in US medical institutions was seriously undermined by the unconsented use of

Marshallese individuals for experiments on health impacts of nuclear exposure, with effects lingering

today (Barker, 2012). Banked historical samples confirm uptake of radioactive materials in Marshal-

lese inhabitants of affected Islands (Simon et al., 2010), but there has been limited published data

on long-term health impacts of nuclear exposure, and significant concern remains within the
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community (Bordner et al., 2016). Finally, when Marshallese individuals do access care, they report

experiencing disdain from healthcare workers (Duke, 2017) and sub-optimal care (McElfish et al.,

2016). Interviews with medical workers show that blame for poor Marshallese health outcomes is

sometimes placed on host genetics or cultural practices (Duke, 2017), poor health literacy

(McElfish et al., 2018), or choosing to delay care (McElfish et al., 2018), with less consideration

given to how the economic and legal impacts of US occupation affect the health of Marshallese indi-

viduals. These factors compound, and Marshallese individuals report hesitation to seek medical care,

even when sick (McElfish et al., 2016). Hesitancy to seek care could have contributed to mumps

transmission if sick individuals were primarily cared for at home without knowledge of or the ability

to implement community-isolation protocols.

Our findings highlight that social networks can be the primary risk factor for a respiratory virus

outbreak, even when a vaccine is effective and widely used. This finding is especially pertinent as

SARS-CoV2 continues to disproportionately impact populations who live and work in high-risk set-

tings, including the Marshallese (Center et al., 2020; McElfish et al., 2021), and for whom vaccine

licensure and distribution alone may not be a panacea. Future work should explore whether nuclear

exposure has impacted Marshallese immune function and susceptibility to infectious disease. The

passing of federal legislation remedying the exclusion of Marshallese individuals from Medicaid

access (Hirono, 2019) in December 2020 marks an important step toward improving healthcare

access. Future work to evaluate whether this change improves Marshallese access to healthcare and

mitigates increased disease risk will be crucial follow-up. The findings of this paper demonstrate the

importance of expanding our understanding of populations at risk for mumps re-emergence, so that

rapid and comprehensive outbreak response strategies can be implemented to mitigate negative

health impacts for all affected communities. Finally, future work to disentangle the complex interplay

between healthcare access, social and economic disparity, and respiratory virus risk will be essential

for mitigating health impacts of mumps and other respiratory viruses.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation Source or reference Identifiers Additional information

Biological sample
(Mumps virus)

110 buccal swabs from
mumps positive patients
in Washington

Washington State
Department of Health

Sequences were deposited in
Genbank under accessions
MT859507-MT859672. Raw reads
were deposited under SRA
project number PRJNA641715

Full metadata for each sequence
is available in the manuscript
in Supplementary file 1a

Biological sample
(Mumps virus)

56 buccal swabs from
mumps positive patients
from other US states

Wisconsin State
Lab of Hygiene

Sequences were deposited in
Genbank under accessions
MT859507-MT859672. Raw reads
were deposited under SRA
project number PRJNA641715

Full metadata for each sequence
is available in the manuscript
in Supplementary file 1a

Biological sample
(Mumps virus)

Publicly available
mumps genomes

NIAID Virus Pathogen
Database and
Analysis Resource (ViPR)
(Pickett et al., 2012)

http://www.viprbrc.org/

Sequence-
based reagent

mumps_1.5 kb primers This paper PCR primers Full list of PCR primer sequences
is available in the
Materials and methods
section under ‘Viral RNA
extraction, cDNA synthesis,
and amplicon generation’

Commercial
assay or kit

QiAmp Viral
RNA Mini Kit

Qiagen, Valencia, CA, USA Cat #: 52904

Commercial
assay or kit

Protoscript II First
strand synthesis kit

New England Biolabs,
Ipswich MD, USA

Cat #: E6560L

Commercial
assay or kit

Q5 Hotstart DNA
polymerase

New England Biolabs,
Ipswich, MD, USA

Cat #: M0493L

Continued on next page
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Continued

Reagent type
(species)
or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

Ampure XP beads Beckman Coulter Cat #: A63881

Commercial
assay or kit

Nextera XT DNA
Library Prep Kit

Illumina, San Diego, CA, USA Cat #: FC-131–1096

Software, algorithm Bowtie2 Langmead and Salzberg, 2012 http://bowtie-bio.
sourceforge.net/
bowtie2/index.shtml

RRID:SCR_016368

Software, algorithm MAFFT Katoh et al., 2002 https://mafft.cbrc.jp/
alignment/software/

RRID:SCR_016368

Software, algorithm TreeTime Sagulenko et al., 2018 https://github.com/
neherlab/treetime

Software, algorithm BEAST (versions 1.8.4
and 2.6.2)

Drummond et al., 2012,
Lemey et al., 2009,
Bouckaert et al., 2019

https://beast.community/
and https://www.beast2.org/

RRID:SCR_010228

Software, algorithm IQTREE Nguyen et al., 2015 http://www.iqtree.org

Software, algorithm Github repo with protocols
for generating mumps
sequences from
buccal swabs

This paper https://github.com/
blab/mumps-seq

This github repository contains
documentation and protocols
for all lab procedures and
bioinformatics pipelines used to
generate consensus genomes
from mumps buccal swabs

Software, algorithm Github repo with scripts
used to analyze data
and generate figures
for this manuscript

This paper https://github.com/
blab/mumps-
wa-phylodynamics

This github repository contains
all of the code used to generate
figures and perform the
analyses described in this
manuscript. This repository also
contains xml files used for input
for BEAST analyses and
alignments and tree files used to
generate and plot
phylogenetic trees

Data and code availability
All code used to analyze data, input files for BEAST, and all code used to generate figures for this

manuscript are publicly available at https://github.com/blab/mumps-wa-phylodynamics; swh:1:rev:

b8358a0d49d70670dbab9eeffa9972c277b3021b; Moncla, 2021b. Raw FASTQ files with human

reads removed are available under SRA project number PRJNA641715. All protocols for generating

sequence data as well as the consensus genomes are available at https://github.com/blab/mumps-

seq; swh:1:rev:3309d1535804a71e6d9e7cc55295b6ea61bde730; Moncla, 2021a. Consensus

genomes have also been deposited to Genbank under accessions MT859507-MT859672.

Community feedback
In order to ensure that this study was faithful to the experience of the Marshallese community in

Washington State, we sought paid consultation from a local Marshallese community health advocate.

We conducted video and telephone interviews to directly address the impacts of mumps transmis-

sion on the Marshallese community, community healthcare goals and priorities, and the impacts of

the mumps outbreak on stigmatization. This feedback informed what is being presented herein, pro-

vided crucial context for understanding mumps transmission, and allowed us to work with the com-

munity to determine how best to discuss Marshallese involvement in the outbreak.

Mumps surveillance in Washington State
Mumps is a notifiable condition in Washington State. Therefore, per the Washington Administrative

Code (WAC), as specified in WAC Chapter 246-101 (Washington State Legislature, 2014), health-

care providers, healthcare facilities, and laboratories must report cases of mumps or possible mumps
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to the local health jurisdiction (LHJ) of the patient’s residence. LHJ staff initiate case investigations

and facilitate optimal collection and testing of diagnostic specimens. Buccal swabs and urine are

acceptable specimens for real-time reverse transcription polymerase chain reaction (qRT-PCR), a pre-

ferred diagnostic test for mumps. Most mumps rRT-PCR tests for Washington State residents are

performed at the Washington State Public Health Laboratories, where all positive specimens are

archived.

Individuals testing positive for mumps ribonucleic acid (RNA) by qRT-PCR are classified as con-

firmed mumps cases if they have a clinically compatible illness (i.e., an illness involving parotitis or

other salivary gland swelling lasting at least 2 days, aseptic meningitis, encephalitis, hearing loss,

orchitis, oophoritis, mastitis, or pancreatitis). During case investigations, case-patients or their prox-

ies are interviewed. Information about demographics, illness characteristics, vaccination history, and

potential for exposure to and transmission of mumps are solicited from each case-patient. In concor-

dance with CDC guidelines (Centers for Disease Control and Prevention, 2019b), only vaccine

doses for which there was written documentation with the date of vaccine receipt were considered

valid. Individuals for whom such documentation could not be provided were classified as having an

unknown vaccination status. For individuals with documented vaccine doses, they were further char-

acterized as up-to-date or not up-to-date based on their age. The Washington State Department of

Health (DOH) receives, organizes, performs quality control on, and analyzes data from, LHJ case

reports and supports investigations upon request.

Sample collection and IRB approval
This study was approved by the Fred Hutchinson Cancer Research Center (FHCRC) Institutional

Review Board (IR File #: 6007–944) and by the Washington State Institutional Review Board, and clas-

sified as not involving human subjects. Samples were selected for sequencing to maximize temporal

and epidemiologic breadth and to ensure successful sequencing. As such, samples were chosen

based on the date of sample collection, the PCR cycle threshold (Ct), case vaccination status, and

community status (Marshallese or non-Marshallese). Samples were selected for sequencing in two

batches. In the first, samples were selected based on covering a wide geographic range within

Washington, a full range of dates covering the outbreak, and having a Ct value <36. This initial sam-

pling regime resulted in a sample set skewed slightly toward samples from Marshallese individuals.

To ensure that the proportion of samples in our data closely matched the distribution of cases in the

outbreak, we then selected a second batch of samples using the same criteria as above, but

excluded samples from Marshallese individuals. We then randomly sampled an additional 30 sam-

ples from non-Marshallese individuals. This sampling regime resulted in a data set that closely mir-

rors the distribution of metadata categories in the outbreak overall. All metadata, including case

vaccination status, were transferred from WA DOH to FHCRC in a de-identified form.

We also sequenced an additional set of 56 samples collected in Wisconsin, Ohio, Missouri, Ala-

bama, and North Carolina provided by the Wisconsin State Laboratory of Hygiene. Ten of these

samples were collected in Wisconsin during the 2006/2007 Midwestern college campus outbreaks,

six samples were collected in 2014, and the rest were collected between 2016 and 2018. For these

samples, we received metadata describing sample Ct value and date of collection. All metadata

were received by FHCRC in de-identified form.

Viral RNA extraction, cDNA synthesis, and amplicon generation
Viral RNA was extracted from buccal swabs using either the QiAmp Viral RNA Mini Kit (Qiagen,

Valencia, CA, USA) or the Roche MagNA Pure 96 DNA and viral NA small volume kit (Roche, Basel,

Switzerland). For samples extracted with the QiAmp Viral RNA Mini Kit, 500 ml of buccal swab fluid

was spun at 5000 � g for 5 min at 4˚C to pellet host cells. The supernatant was then removed and

centrifuged at 14,000 rpm for 90 min at 4˚C to pellet virions. Excess fluid was discarded, and the pel-

letted virions were resuspended in 150–200 ml of fluid. Resuspended viral particles were then used

as input to the QiAmp Viral RNA Mini Kit (Qiagen, Valencia, CA, USA), following manufacturer’s

instructions, and eluting in 30 ml of buffer AVE. For extraction with the MagNA Pure, we followed

manufacturer’s instructions. cDNA was generated with the Protoscript II First strand synthesis kit

(New England Biolabs, Ipswich MD, USA), using 8 ml of vRNA as input and priming with 2 ml of ran-

dom hexamers. vRNA and primers were incubated at 65˚C for 5 min. Following this incubation, 10 ml
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of Protoscript II reaction mix (2�) and 2 ml of Protoscript II enzyme mix (10�) were added to each

reaction and incubated at 25˚C for 5 min, then 42˚C for 1 hr, followed by a final inactivation step at

80˚C for 5 min. To amplify the full mumps genomes, we used Primal Scheme (http://primal.zibrapro-

ject.org/) to design overlapping,~1500 base pair amplicons spanning the entirety of the mumps virus

genome, where each tiled set of primes overlapped by ~100 base pairs. Primers are listed below.

Primer Primer sequence Forward/reverse Primer pool

mumps_1.5 kb_1F ACCAAGGGGAAAATGAAGATGGG Forward pool 1

mumps_1.5 kb_1R TAACGGCTGTGCTCTAAAGTCAT Reverse pool 1

mumps_1.5 kb_2_F TTGTTGACAGGCTTGCAAGAGG Forward pool 2

mumps_1.5 kb_2_R TTGTTCAAGATGTTGCAGGCGA Reverse pool 2

mumps_1.5 kb_3_F TGCAACCCCATATGCTCACCTA Forward pool 1

mumps_1.5 kb_3_R AGTTTGTTCCTGCCTTTGCACA Reverse pool 1

mumps_1.5 kb_4_F AGTGAGAGCAGTTCAGATGGAAGT Forward pool 2

mumps_1.5 kb_4_R CCCTCCATTAGACCGGCACTTA Reverse pool 2

mumps_1.5 kb_5_F AACAACAGTGTTCCAGCCACAA Forward pool 1

mumps_1.5 kb_5_R GGTGGCACTGTCCGATATTGTG Reverse pool 1

mumps_1.5 kb_6_F TGCCGTTCAATCATGAGACATAAAGA Forward pool 2

mumps_1.5 kb_6_R CGTAGAGGAGTTCATACGGCCA Reverse pool 2

mumps_1.5 kb_7_F TGTCTGTGCCTGGAATCAGATCT Forward pool 1

mumps_1.5 kb_7_R CGTCCTTCCAACATATCAGTGACC Reverse pool 1

mumps_1.5 kb_8_F CCAAAAGACAGGTGAGTTAACAGATTT Forward pool 2

mumps_1.5 kb_8_R ACGAGCAAAGGGGATGATGACT Reverse pool 2

mumps_1.5 kb_9_F TTTGGCACACTCCGGTTCAAAT Forward pool 1

mumps_1.5 kb_9_R TGACAATGGTCTCACCTCCAGT Reverse pool 1

mumps_1.5 kb_10_F ACTCGCACAGTATCTATTAGATCGTGA Forward pool 2

mumps_1.5 kb_10_R GCCCAGCCAGAGTAAACAAACA Reverse pool 2

mumps_1.5 kb_11_F GCCAAGCAGATGGTAAACAGCA Forward pool 1

mumps_1.5 kb_11_R GGCTCTCTCCAACATGCTGTTC Reverse pool 1

mumps_1.5 kb_12_F GCGGGGCCTCTATGTCACTTAT Forward pool 2

mumps_1.5 kb_12_R CCAAGGGGAGAAAGTAAAATCAAT Reverse pool 2

Primers were pooled into two pools as follows: the first contained primer pairs 1, 3, 5, 7, 9, and

11, all pooled at 10 mM. The second pool contained primer pairs 2, 4, 6, 8, 10, and 12. All primers in

pool two were pooled at 10 mM, except for primer pair 4, which was added at a 20 mM

concentration.

PCR was performed with the Q5 Hotstart DNA polymerase (New England Biolabs, Ipswich, MD,

USA), using 11.75 ml of nuclease-free water, 5 ml of Q5 reaction buffer, 0.5 ml of 10 mM dNTPs, 0.25

ml, 2.5 of pooled primers, and 5 ml of cDNA. Amplicons were generated with the following PCR

cycling conditions: 98˚C for 30 s, followed by 30 cycles of: 98˚C for 15 s, then 67˚C for 5 min. Cycling

was concluded with a 10˚C hold. PCR products were run on a 1% agarose gel, and bands were cut

out and purified using the QiAquick gel extraction kit (Qiagen, Valencia, CA, USA), following the

manufacturer’s protocol. All optional steps were performed, and the final product was eluted in 30

ml of buffer EB. For samples extracted on the MagNA Pure, amplicons were cleaned using a 1�

bead cleanup with Ampure XP beads. Final cleaned amplicons were quantified using the Qubit

dsDNA HS Assay kit (Thermo Fisher, Waltham, MA, USA).

Library preparation and sequencing
For each sample, pool 1 and pool 2 amplicons were combined in equimolar concentrations to a total

of 0.5 ng in 2.5 ml. Libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina, San

Diego, CA, USA), following manufacturer’s instructions, but with reagent volumes halved for each
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step, for the majority of samples in our data set. For samples processed in our last sequencing run,

several samples had higher Ct values. We therefore chose to process these samples using the stan-

dard 1� reagent volumes for the library preparation step. All libraries were purified using Ampure

XP beads (Beckman Coulter, Brea, CA, USA), using a 0.6� cleanup, a 1� cleanup, and a final 0.7�

cleanup. At each step, beads were washed twice with 200–400 ml of 70% ethanol. The final product

was eluted off the beads with 10 ml of buffer EB. Tagmentation products were quantified with the

Qubit dsDNA HS Assay kit (Thermo Fisher, Waltham, MA, USA), and run on a Tapestation with the

TapeStation HighSense D5K assay (Agilent, Santa Clara, CA, USA) to determine the average frag-

ment length. All but eight samples and negatives were pooled together in 6 nM libraries and run on

300 bp � 300 bp v3 kits on the Illumina MiSeq, with a 1% spike-in of PhiX. The remaining eight sam-

ples (MuVs/Washington.USA/1.17/FH77[G], MuVs/Washington.USA/12.17/FH78[G], MuVs/Washing-

ton.USA/16.17/FH79[G], MuVs/Washington.USA/19.17/FH80[G], MuVs/Washington.USA/20.17/FH81

[G], MuVs/Washington.USA/20.17/FH82[G], MuVs/Washington.USA/29.17/FH83[G], and MuVs/

Washington.USA/2.17/FH84[G]) were pooled to a 1.2 nM library, and run as a 50 pM library with 2%

PhiX on the Illumina iSeq, with a 151 bp � 151 bp v3 kit.

Negative controls
A negative control (nuclease-free water) was run for each viral RNA extraction, reverse transcription

reaction, and for each pool for each PCR reaction. These negative controls were carried through the

library preparation process and sequenced alongside actual samples. Any samples whose negative

controls from any step in the process resulted in >10� mumps genome coverage were re-extracted

and sequenced.

Bioinformatic processing of sequencing reads
Human reads were removed from raw FASTQ files by mapping to the human reference genome

GRCH38 with bowtie2 (Langmead and Salzberg, 2012)(RRID: SCR_016368) version 2.3.2 (http://

bowtie-bio.sourceforge.net/bowtie2/index.shtml). Reads that did not map to the human genome

were output to separate FASTQ files and used for all subsequent analyses. Illumina data was ana-

lyzed using the pipeline described in detail at https://github.com/lmoncla/illumina_pipeline. Briefly,

raw FASTQ files were trimmed using Trimmomatic (Bolger et al., 2014) (http://www.usadellab.org/

cms/?page=trimmomatic), trimming in sliding windows of 5 base pairs and requiring a minimum

Q-score of 30. Reads that were trimmed to a length of <100 base pairs were discarded. Trimming

was performed with the following command: java -jar Trimmomatic-0.36/trimmomatic-0.36.jar SE

input.fastq output.fastq SLIDINGWINDOW:5:30 MINLEN:100. Trimmed reads were mapped to a

consensus sequence from Massachusetts (Genbank accession: MF965301) using

bowtie2 (Langmead and Salzberg, 2012) version 2.3.2 (http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml), using the following command: bowtie2 -x reference_sequence.fasta -U read1.trimmed.

fastq,read2.trimmed.fastq -S output.sam –local. We selected this Massachusetts sequence as an

initial reference sequence because at the time, it represented one of the only available genomes of

a genotype G mumps virus that had been sampled during a US outbreak in 2016. Mapped reads

were imported into Geneious (https://www.geneious.com/) for visual inspection and consensus call-

ing. To avoid issues with mapping to an improper reference sequence, we then remapped each sam-

ple’s trimmed FASTQ files to its own consensus sequence. These bam files were again manually

inspected in Geneious, and a final consensus sequence was called, with nucleotide sites

with <20� coverage output as an ambiguous nucleotide (‘N’). All genomes with >50% Ns were dis-

carded. In total, we generated 140 genomes with at least 80% non-N bases, and 26 genomes with

50–80% non-N bases. Our median completeness (percent of bases that are not Ns) across the

data set is 90%. All genomes used in these analyses are available at https://github.com/blab/

mumps-seq/tree/master/data.

Data set curation and maximum likelihood divergence tree generation
We downloaded all currently available (as of June 2020), complete mumps genomes from North

America, and separately from any country in the world, from the NIAID Virus Pathogen Database

and Analysis Resource (ViPR) (Pickett et al., 2012) through http://www.viprbrc.org/. We also

obtained mumps genomes from British Columbia, Ontario, and Arkansas. We obtained written
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permission from sequence authors for any sequence that had not previously been published on. In

total, this data set includes 437 full mumps genomes from North America. Sequences and metadata

were cleaned and organized using fauna, a database system that is part of the Nextstrain platform.

Sequences were processed using Nextstrain’s augur software (Hadfield et al., 2018), and filtered to

include only those with at least 8000 bases and were sampled in North America in 2006 or later.

Genomes were aligned with MAFFT (Katoh et al., 2002)(RRID: SCR_016368) and trimmed to the

reference sequence (MuV/Gabon/13/2[G], GenBank accession: KM597072). We inferred a maximum

likelihood phylogeny using IQTREE (Nguyen et al., 2015) with a GTR nucleotide substitution model,

and inferred a molecular clock and temporally resolved phylogeny using TreeTime (Sagulenko et al.,

2018). Sequences with an estimated clock rate that deviated from the other sequences by >4 times

the interquartile distance were removed from subsequent analysis. We inferred the root-to-tip dis-

tance with TempEst version 1.5.1 (Rambaut et al., 2016) with the best fitting root by the heuristic

residual mean squared function. Trees were output in JSON format and are available at https://

github.com/blab/mumps-wa-phylodynamics/blob/master/auspice.

Phylogenetic analysis of full North American mumps genomes
Using the same set of genome sequences used for divergence tree estimation, we aligned sequen-

ces with MAFFT and inferred time-resolved phylogenies in BEAST version 1.8.4 (Drummond et al.,

2012)(RRID: SCR_010228). We used a skygrid population size prior with 100 bins, and a skygrid cut-

off of 25 years, allowing us to estimate four population sizes each year. We used an HKY nucleotide

substitution model with four gamma rate categories, and a strict clock with a CTMC prior. We used

a discrete trait model (Lemey et al., 2009) and estimated migration rates using BSSVS and ancestral

states with 27 geographic locations. Here, ‘state’ refers to the inferred ancestral identity of an inter-

nal node, where the inferred identity could be any of the 27 geographic locations (US states and

Canadian provinces) in the data set. For the prior on non-zero rates for BSSVS, we specified an expo-

nential distribution with a mean of 26. As a prior on each pairwise migration rate, we used an expo-

nential distribution with mean 1. All other priors were left at default values. We ran this analysis for

100 million steps, sampling every 10,000, and removed the first 10% of sampled states as burn-in. A

maximum clade credibility tree was summarized with TreeAnnotator, using the mean heights option.

All tree plotting was performed with baltic (https://github.com/evogytis/baltic). Input XML files and

output results are available at https://github.com/blab/mumps-wa-phylodynamics/tree/master/

phylogeography.

Quantifying transmission in divergence trees using basal and terminal
tips: formulation and rationale
To determine whether specific groups were more likely to be part of sustained, serially sampled

transmission chains, we developed a statistic to quantify transmission in the tree. Our aim was to

develop a heuristic method that would capture patterns similar to those captured by more complex

structured coalescent models. In a population with high rates of transmission and high sampling

intensity, it is possible that sampled individuals may represent true ancestors to subsequent infec-

tions (Gavryushkina et al., 2014). While this is theoretically possible in our data set, we expect this

to be rare. Because viruses accumulate mutations at a constant rate over time, a tip’s branch length

should correlate with its position along the underlying transmission chain, that is, a short branch

length should indicate that the tip is closer to the true ancestral infection than a longer branch. Plot-

ting the number of mutations on each branch vs. its estimated branch length in time units confirms

that mutations and time-calibrated branch length are correlated (Figure 8). This suggests that on

average, branches with fewer mutations also tend to represent shorter periods of time. For our

data set, most tips with an estimated branch length within the mumps serial interval of ~18 days

Vink et al., 2014 have 0 mutations (Figure 8, circles below dashed line). In a population with high

rates of transmission in which true ancestral infections are not directly sampled, we therefore expect

that tips that are genetically closer to the ancestral node should be closer to the true ancestral infec-

tion than tips that are genetically dissimilar.

Either time or genetic divergence could be used to categorize how close tips are to their parental

node. Here, we have opted to use divergence for two main reasons. Mumps has a relatively slow

substitution rate and a long serial interval, resulting in stacks of identical genomes at several points
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in the divergence phylogeny (Figure 2—figure supplement 4). In time-resolved phylogenies,

branching among identical genomes is resolved by sampling date, and the x-coordinate of the inter-

nal node is inferred based on time information. Because the internal node location is based not on

actual genetic information, there is variability in the estimated placement of the internal node on the

tree, resulting in branch lengths that may vary among realizations of the tree. This is reflected in the

95% confidence interval of internal node dates. Plotting the estimated branch length from each

Washington tip to its internal node and incorporating the 95% confidence interval of the internal

node date show that a wide range of branch lengths are plausible for most tips (Figure 9). This com-

plicates setting a simple branch length threshold based on the serial interval. In contrast, divergence

trees have branch lengths expressed in the number of mutations arising along on that branch, which

is intrinsic to the sequences themselves. Second, higher transmission in one group could result in

shorter serial intervals within that group, which complicates defining a branch length cutoff based on

serial interval. For these reasons, we have opted to use genetic divergence as our metric of ‘close-

ness’ to avoid arbitrary time cutoffs and issues of uncertainty in timetree internal node placements.

Given a divergence tree, we next categorized tips by how close they are to their parental node.

To maximize the similarity between the tip and its inferred ancestral node, we classified tips as

‘close’ to their ancestral node if no mutations occurred on the branch leading to that tip, that is, the

branch length was less than 1 divided by the alignment length. This cutoff can be set to the lower

bound of the tree software (for IQTree, this cutoff is ~<1 � 10�16) with the same results. Using the

JSON for the North American full genome mumps tree output from the Nextstrain pipeline (shown

in Figure 2—figure supplement 2; Hadfield et al., 2018), we traversed the tree from root to tip.

Figure 8. Mutations vs. estimated branch length in days. For each Washington tip in the full North American phylogeny with an estimated branch

length in time units of �1 year, we show the number of mutations on that branch on the x-axis vs. the mean estimated branch length in days on the

y-axis. The dashed line at 18 represents the mumps serial interval.
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We collapsed very small branches (branches with no mutations) to obtain polytomies, and then clas-

sified tips as either ‘basal’ (i.e., there were tips in the tree that descended from that internal node)

or ‘terminal’ (meaning that no sampled tips descended from that branch). Here, we define a ‘descen-

dant’ tip as a tip that occurs in any downstream portion of the tree, that is, it falls within the same

lineage but to the right of the parent tip. A diagram of what we classify as basal vs. terminal tips is

shown in Figure 4a.

We expect that requiring branches to have 0 mutations should be robust regardless of mutation

rate and serial interval, because a branch length of 0 will always be the closest in sequence to the

true ancestor. However, variation in the substitution rate will impact the power of the analysis for

detecting associations. Because mumps has a low substitution rate, some internal nodes contain

stacks of identical genomes that cannot be ordered in terms of their placement along the underlying

transmission chain. Instead, we treat each of these nodes as basal with equal probability of being

upstream in the transmission chain. A higher substitution rate would jitter these polytomies and

increase resolution, while a lower substitution rate would further reduce power. Our application is

therefore conservative, but likely underpowered. Future work will be necessary to define the precise

interaction between mutation rate, serial interval, sampling intensity, and effect sizes in determining

the power of this test.

Regression model for quantifying a tip’s probability of being basal
For each Washington tip in the tree, we classified it as either being basal (coded as a 1) or being ter-

minal (coded as 0). For each tip, we coded its corresponding age, vaccination status, and community

membership as a predictor variable input into a logistic regression model. We coded these attrib-

utes as follows: For community membership, non-Marshallese tips were coded as 0 and Marshallese

tips were coded as 1. For age, we split our data set into adults and children, with individuals

aged <20 coded with a 0 and �20 coded with a 1. In our data set, there were three classifications

for vaccination status: up-to-date, not up-to-date, and unknown vaccination status. According to the

Advisory Committee on Immunization Practices (ACIP) (McLean, 2013), individuals aged 5–18 had

to have received both recommended doses of mumps-containing vaccine, children aged 15 months

to 5 years required one dose of mumps-containing vaccine, and adults over 18 had to have received

at least one dose of mumps-containing vaccine to be classified as up-to-date for mumps vaccination.

Figure 9. Washington tip branch lengths in days. For each Washington tip in the full North American phylogeny with an estimated branch length in

time units of �1 year, we show the estimated branch length in days with the 95% confidence interval. The solid line at 18 represents the mump serial

interval. For most tips, the estimated branch length is variable, depending on the placement of its parental internal node. This variability in internal

node placement complicates setting a clear threshold for branch lengths based on time.
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Individuals under 15 months are considered up-to-date without any doses of mumps-containing vac-

cine. Not up-to-date individuals are those with a known vaccination status who did not qualify under

criteria to be classified as up-to-date. Individuals who could not provide documentation regarding

their MMR vaccination history were considered to have ‘unknown’ vaccination status. Individuals

with ‘known’ vaccination status could either be fully up-to-date, undervaccinated, or unvaccinated.

To ensure that we measured the effect of vaccination among individuals who knew their vaccination

status, we coded vaccination information using two dummy variables in our logistic regression, one

signifying whether vaccination status was known or not, and one indicating whether vaccination was

up-to-date or not. We then fit a logistic regression model to this data using the glm package in R

(https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm), specifying a binomial

model as:

PrðbeingbasalÞ~b0 þb1�1 þb2�2 þb3�3 þb4�4;

where x1 represents 0 or one value for member of Marshallese community (not Marshallese coded

as a 0, Marshallese coded as a 1), x2 represents a 0 or one value for age, where individuals were clas-

sified as adults (�20 years of age, coded as a 1) or children (<20 years of age, coded as a 0). x3 rep-

resents a 0 or one value for whether vaccination status is unknown (having a known vaccination

status coded as a 0, having an unknown vaccination status coded as a 1), and x4 represents 0 or one

value for whether vaccination status is up-to-date (up-to-date coded as a 0 and not up-to-date

coded as a 1). Under this formulation, an individual with unknown vaccination status would be coded

as x3 = 1, x4 = 0, an individual who is up-to-date would be coded as x3 = 0, x4 = 0, and an individual

who is not up-to-date is coded as x3 = 0, x4 = 1. This encoding allows us to evaluate the effects of

having an unknown vaccination status and a vaccination status that is not up-to-date.

p-values were assigned via a Wald test, and inferred coefficients were exponentiated to return

odds ratios. All codes used to parse the divergence tree and formulate and fit the regression model

are available at https://github.com/blab/mumps-wa-phylodynamics/blob/master/divergence-tree-

analyses/Regression-analysis-on-descendants-in-divergence-tree.ipynb.

Rarefaction analysis to estimate transmission clusters
Using the full set of North American mumps sequences, we designated all non-Washington North

American sequences as ‘background’ sequences. We then separated Washington sequences into

Marshallese tips (57 total sequences) and non-Marshallese tips (52 total sequences). For this analysis,

we excluded the genotype K sequence in our data set due to its extreme divergence from other

viruses sampled in Washington, which were all genotype G. For each group (Marshallese vs. non-

Marshallese), we then generated subsampled data sets comprised of a random sample of 1 to n

sequences, where n is the number of total sequences available for that group. For each number of

sequences, we performed 10 independent subsampling trials. Subsampling was performed without

replacement. So, for community members, we generated 10 data sets in which one community

member sequence was sampled, then 10 data sets in which two community members sequences

were sampled, etc. up to 10 data sets in which all 57 community members sequences were sampled.

For each subsampled data set, we then combined these subsampled data sets with the background

North American sequences, and reran the Nextstrain pipeline. For each subsample and trial, we infer

geographic transmission history across the tree and enumerate the number of introductions into

Washington. Geographic transmission history was inferred using a discrete trait model in

TreeTime (Sagulenko et al., 2018). For each number of sequences tested, n, we report the number

of trials resulting in that number of inferred introductions, and the mean number of inferred intro-

ductions across the 10 trials. Each resulting ‘cluster’ consisted of a set of sequences that are related

to one another that descend from a single inferred introduction of mumps into Washington.

Inference of community transmission dynamics using a structured
coalescent model
To infer the rates of migration between community and non-community members and to infer ances-

tral states of Washington internal nodes, we employed a structured coalescent model. Here, ‘state’

refers to the inferred ancestral identity of an internal node, where the identity could be inferred as

‘Marshallese’ or ‘not Marshallese’. The multitype tree model (Vaughan et al., 2014) in BEAST 2
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v2.6.2 (Bouckaert et al., 2019) infers the effective population sizes of each deme and the migration

rates between them. Because the multitype tree model requires that all partitions contain all demes,

we could only analyze four clades that circulated in Washington State and included both Marshallese

and non-Marshallese tips. We generated an XML in BEAUti v2.6.2 with four partitions and linked the

clock, site, and migration models. We used a strict, fixed clock, set to 4.17 � 10�4 substitutions per

site year and used an HKY substitution model with four gamma-distributed rate categories. This

clock rate was set based on the inferred substitutions per site per year from all North American

mumps genomes on nextstrain.org/mumps/na. Migration rates were inferred with the prior specified

as a truncated exponential distribution with a mean of 1 and a maximum of 50. Effective population

sizes were inferred with the prior specified as a truncated exponential distribution with a mean of 1,

a minimum value of 0.001, and a maximum value of 10,000. All other priors were left at default val-

ues. In order to improve convergence, we employed three heated chains using the package Cou-

pledMCMC (Müller and Bouckaert, 2019), where proposals for chains to swap were performed

every 100 states. The analysis was run for 100 million steps, with states sampled every 1 million

steps. We ran this analysis three independent times, and combined log and tree file output from

those independent runs using LogCombiner, with the first 10% (1000 states) of each run discarded

as burn-in. We then summarized these combined output log and tree files. A maximum clade credi-

bility tree was inferred using TreeAnnotator with the mean heights option. To ensure that results

were not appreciably altered by the migration rate prior, we also repeated these analyses with

migration rates inferred with the prior specified as a truncated exponential distribution with a mean

of 10 and a maximum of 50.

Although our complete data set contains approximately equal numbers of sequences from Mar-

shallese and non-Marshallese cases, the four clusters analyzed above are enriched among Marshal-

lese tips. To assess the impact of uneven sampling within these clusters on ancestral state inference,

we performed a subsampling analysis. For each cluster, we subsampled down the number of Mar-

shallese tips to be equal to the number of non-Marshallese tips, and reran the analysis as above.

While the original analysis used four subclades containing both Marshallese and non-Marshallese

tips, one of these subclades only has five tips. Subsampling this particular subtree would have

resulted in a subtree with only two tips, thus we excluded this clade from the subsampling analysis.

For this sensitivity analysis, the three subsampled data sets had the following tip composition: pri-

mary outbreak clade: 26 Marshallese and 26 non-Marshallese tips; 10-tip introduction: three Mar-

shallese and three non-Marshallese tips; 8-tip introduction: four Marshallese and four non-

Marshallese tips. We generated three randomly subsampled data sets, and for each one ran three

independent chains, with each chain run for 50 million steps, sampling every 500,000. For one of the

subsampled data sets, none of the chains converged after 20 days. In each of the remaining two sub-

sampled data sets, two out of three chains converged. We combined these converged chains using

LogCombiner, with the first 10% of each run discarded as burn-in. We then summarized these com-

bined output log and tree files, and inferred a maximum clade credibility tree using TreeAnnotator

with the mean heights option.

The analysis as described above assumes that each introduction into Washington State is an inde-

pendent observation of the same structured coalescent process, and that the data set represents a

random sample of the underlying population. Additionally, this approach requires a priori definition

of which sequences are part of the same Washington State transmission chain. Finally, the above

analysis could only make use of the four Washington introductions with both Marshallese and non-

Marshallese tips, and excludes other transmission chains. Because of these issues, we supplemented

the above approach with an additional analysis using the approximate structured coalescent

(Müller et al., 2017) in MASCOT (Müller et al., 2018). Using all of the Washington sequences, we

specified three demes: Marshallese in Washington, non-Marshallese in Washington, and outside of

Washington. To account for any transmission that happened outside of Washington State, the ‘out-

side of Washington’ deme acted as a ‘ghost deme’ from which we did not use any samples. The

effective population size of this ‘outside of Washington’ deme then describes the rate at which line-

ages between any location outside of Washington share a common ancestor. Including specific sam-

ples from outside of Washington would bias the inferred effective population size toward the

coalescent rates of the sampled locations, by incorporating local transmission dynamics of other

locations. We then estimated migration rates and effective population sizes for all three demes, but

fixed the migration rates such that the unsampled deme (‘outside of Washington’) could only act as
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a source population. This is motivated by not having observed obvious migration out of Washington

State in our previous analysis here. We ran this analysis for 10 million steps, sampling every 5000,

and discarded the first 10% of states as burn-in.
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D, De Maio N, Matschiner M, Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A,
Rasmussen D, Siveroni I, Suchard MA, et al. 2019. BEAST 2.5: An advanced software platform for Bayesian
evolutionary analysis. PLOS computational biology 15:e1006650. DOI: https://doi.org/10.1371/journal.pcbi.
1006650, PMID: 30958812

Cardemil CV, Dahl RM, James L, Wannemuehler K, Gary HE, Shah M, Marin M, Riley J, Feikin DR, Patel M,
Quinlisk P. 2017. Effectiveness of a third dose of MMR vaccine for mumps outbreak control. New England
Journal of Medicine 377:947–956. DOI: https://doi.org/10.1056/NEJMoa1703309, PMID: 28877026

CDCMMWR. 2019. Notifiable Diseases and Mortality Tables.
Center KE, Da Silva J, Hernandez AL, Vang K, Martin DW, Mazurek J, Lilo EA, Zimmerman NK, Krow-Lucal E,
Campbell EM, Cowins JV, Walker C, Dominguez KL, Gallo B, Gunn JKL, McCormick D, Cochran C, Smith MR,
Dillaha JA, James AE. 2020. Multidisciplinary Community-Based investigation of a COVID-19 outbreak among
marshallese and hispanic/Latino communities - Benton and Washington counties, Arkansas, March-June 2020.
MMWR. Morbidity and Mortality Weekly Report 69:1807–1811. DOI: https://doi.org/10.15585/mmwr.
mm6948a2, PMID: 33270609

Centers for Disease Control and Prevention. 2019a. Health Departments: How to Optimize Mumps Testing |
CDC. Guidance for Optimizing Mumps Testing.https://www.cdc.gov/mumps/health-departments/optimize-
testing.html

Centers for Disease Control and Prevention. 2019b. Epidemiology and Prevention of Vaccine-Preventable
Diseases, the Pink Book: Course Textbook. The Public Health Foundation.

Clemmons N, Hickman C, Lee A, Mona Marin M, Patel M. 2020. Manual for the Surveillance of Vaccine-
Preventable Diseases. Centers for Disease Control and Prevention.

Congress 108th United States. 2003. Compact of Free Association Amendments Act Of 2003.
Davidkin I, Jokinen S, Broman M, Leinikki P, Peltola H. 2008. Persistence of measles, mumps, and rubella
antibodies in an MMR-vaccinated cohort: a 20-year follow-up. The Journal of infectious diseases 197:950–956.
DOI: https://doi.org/10.1086/528993, PMID: 18419470

De Maio N, Wu CH, O’Reilly KM, Wilson D. 2015. New routes to phylogeography: a bayesian structured
coalescent approximation. PLOS Genetics 11:e1005421. DOI: https://doi.org/10.1371/journal.pgen.1005421,
PMID: 26267488

Donahue M, Schneider A, Ukegbu U, Shah M, Riley J, Weigel A, James L, Wittich K, Quinlisk P, Cardemil C.
2017. Notes from the field: complications of mumps during a university outbreak among students who had
received 2 doses of Measles-Mumps-Rubella vaccine - Iowa, July 2015-May 2016. MMWR. Morbidity and
Mortality Weekly Report 66:390–391. DOI: https://doi.org/10.15585/mmwr.mm6614a4, PMID: 28406886

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7.
Molecular Biology and Evolution 29:1969–1973. DOI: https://doi.org/10.1093/molbev/mss075

Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, Park DJ, Ladner JT, Arias A, Asogun D, Bielejec
F, Caddy SL, Cotten M, D’Ambrozio J, Dellicour S, Di Caro A, Diclaro JW, Duraffour S, Elmore MJ, Fakoli LS,
et al. 2017. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544:309–315.
DOI: https://doi.org/10.1038/nature22040, PMID: 28405027

Dudas G, Carvalho LM, Rambaut A, Bedford T. 2018. MERS-CoV spillover at the camel-human interface. eLife 7:
e31257. DOI: https://doi.org/10.7554/eLife.31257, PMID: 29336306

Duke MR. 2017. Neocolonialism and health care access among marshall islanders in the united states. Medical
Anthropology Quarterly 31:422–439. DOI: https://doi.org/10.1111/maq.12376, PMID: 28409861

Eick AA, Hu Z, Wang Z, Nevin RL. 2008. Incidence of mumps and immunity to measles, mumps and rubella
among US military recruits, 2000-2004. Vaccine 26:494–501. DOI: https://doi.org/10.1016/j.vaccine.2007.11.
035, PMID: 18155326

Embassy of the Republic of the Marshall Islands to the United States of America. 2021. Embassy of the
Republic of the Marshall Islands to the United States of America. Embassy of the Republic of the Marshall Islands
to the United States of America. http://www.rmiembassyus.org/index.php/about/marshall-islands/culture
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