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Constructing Compact Signatures for
Individual Fingerprinting of Brain
Connectomes
Vikram Ravindra*, Petros Drineas and Ananth Grama

Department of Computer Science, Purdue University, West Lafayette, IN, United States

Recent neuroimaging studies have shown that functional connectomes are unique to

individuals, i.e., two distinct fMRIs taken over different sessions of the same subject

are more similar in terms of their connectomes than those from two different subjects.

In this study, we present new results that identify specific parts of resting state and

task-specific connectomes that are responsible for the unique signatures. We show that

a very small part of the connectome can be used to derive features for discriminating

between individuals. A network of these features is shown to achieve excellent training

and test accuracy in matching imaging datasets. We show that these features are

statistically significant, robust to perturbations, invariant across populations, and are

localized to a small number of structural regions of the brain. Furthermore, we show that

for task-specific connectomes, the regions identified by our method are consistent with

their known functional characterization. We present a new matrix sampling technique to

derive computationally efficient and accurate methods for identifying the discriminating

sub-connectome and support all of our claims using state-of-the-art statistical tests and

computational techniques.

Keywords: fingerprinting, functional connectomics, matrix sampling, dimensionality reduction, randomized

numerical linear algebra

1. INTRODUCTION

A number of functional MRI studies focus on differences between sets of cohorts (e.g., healthy vs.
diseased). These studies characterize an invariant signal within each cohort and identify significant
changes in these signals across cohorts. Invariant signals within cohorts are designed to suppress
individual-level heterogeneity of the functional connectomes, and can be computed using methods
that range from simple averaging to sophisticated matching techniques, to identify statistically
significantly conserved components within the cohort. However, it has long been known that
structural and functional differences are observable within a cohort of patients (Rypma and
D’Esposito, 1999; Amunts et al., 2000; Newman et al., 2003; Mangin et al., 2004). Moreover, a
number of studies suggest that individual differences among healthy subjects reveal interesting,
potentially important patterns. For instance, IQ scores are shown to be positively correlated with
smaller path lengths (Li et al., 2009), and with higher degree of connectivity in the prefrontal cortex
(Cole et al., 2012).

Clinically observed functional and/or structural variability between individual brains typically
manifests in structural and functional connectomes. It has been shown that functional connectomes
of an individual, taken over multiple sessions, express higher degree of similarity than connectomes
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of different individuals (Mueller et al., 2013; Miranda-
Dominguez et al., 2014; Finn et al., 2015; Amico and Goñi,
2018; Byrge and Kennedy, 2019).

It has also been shown that restricting such analyses to
regions constituting well-known networks, such as fronto-
parietal networks, amplifies the individual-specificity (Finn
et al., 2015). This suggests that the signal corresponding to
identifiability is spatially selective in its expression. We refer
to this individual-specific signal as a signature. Such signatures
are persistent underlying signals that sustain over a period of
several days, while being robust to temporally local fluctuations
in brain activity.

In this paper, we present a technique for automatically
identifying interpretable individual-specific signatures in resting
and functional brain networks. Ourmethod finds a parsimonious
representation of functional connectomes by identifying a small
subset of features (which are subsequently mapped to localized
regions on the cortex). We show that this compact representation
accurately captures uniqueness of individuals, as reflected in
high accuracy of identification. Furthermore, we demonstrate
the statistical significance and robustness of our signatures,
by showing that the signatures correspond to regions of the
brain that are consistent across subjects. The strengths of our
feature selection method are: (i) Our method does not require
any prior knowledge of the functional aspects of the brain
other than parcellation; (ii) We achieve significant feature-set
reduction by selecting a small fraction of edges that represents
the entire connectome; (iii) Our method has well-characterized
performance guarantees, and can therefore potentially serve as
a generic feature-selection strategy for finding neuromarkers in
other cohort-level studies; and (iv) Our feature selection method
requires only one session of data, which makes it useful for
datasets without test-retest sessions.

2. METHODS AND MATERIALS

2.1. Dataset
The images used in this study are collected as part of the
Healthy Young Adult study in the WU-Minn Project (Essen
et al., 2013) by the Human Connectome Project Consortium. The
data includes 3T structural and functional MRI for 1,113 adults,
7T resting and task magnetoencephalography (MEG) from 184
subjects, and 3T and 7T diffusion data. Full details of the data can
be found in Essen et al. (2012).

The resting state functional MRI is acquired in two sessions,
on two separate days. The resting state data in each session
lasted ∼30 min [15 min for left right (L-R) and right left (R-
L) phase encoding]. The directions are those of the of the
magnetic gradient. Further details on selecting parameters for
MRI scanners can be found in the HCP reference manual (WU-
Minn, 2017). The spatial resolution was 2 × 2 × 2 mm3 and
temporal resolution (TR) of 720 ms. For a detailed description of
the acquisition protocol see Smith et al. (2013). In each session,
the resting state session was followed by tasks. On the first
day, the tasks included working memory, gambling, and motor;
the second day included language, social cognition, relational
processing, and emotional processing. The task functional MRI

data also have the L-R encoding and the R-L encoding. However,
the duration of each session varied considerably, ranging from
176 frames in emotion processing to 401 frames in working
memory, with TR of 5,520 ms. For a detailed description of the
protocol see Barch et al. (2013).

2.1.1. Pre-processing
The preprocessing steps follow the HCP minimum pre-
processing pipeline prescribed by Glasser et al. (2013) and Smith
et al. (2013). The HCP pre-processing steps include spatial
pre-processing and temporal pre-processing. In resting state
functional MRIs, we also perform global signal regression.

The pipeline includes procedures for removal of spatial
artifacts and distortion, head motion correction, and co-
registration to structural image and normalization to the
standard space. We perform spatial preprocessing, limiting
spatial smoothing only to the surface vertices, as described in
Smith et al. (2013). We perform temporal preprocessing with
a weak highpass filter (>2,000s full width at half maximum),
which removes slow drift. The artifact due to subject motion
was regressed out using 6 DOF (using FSL FLIRT). The
final registration to CIFTI coordinates is performed by the
fMRISurface pipeline. The quality control procedure for the
images is explained in Marcus et al. (2013). We do not
deviate from the standard pipeline1, so the data we use
can be recreated by running the three structural pipelines—
Pre-FreeSurfer, FreeSurfer, and Post-FreeSurfer and the two
functional pipelines—fMRIVolume and fMRISurface.

In the case of resting state functional MRI, we follow this
by global signal regression, a procedure that regresses out the
mean time series out of every time-series. Since resting state
analyses have shown that fluctuations at low frequencies are
due to hemodynamic responses to neural activation, we apply a
bandpass filter (0.008–0.1 Hz). We do not apply the bandpass
filter to task fMRIs since it is unclear what the best frequency
ranges are for different tasks, as described in Cole et al. (2014).

2.1.2. Brain Atlas
In our work, the cortical structures are parcellated in accordance
with the atlas of Glasser et al. (2016). This atlas consists of
360 regions (180 in each hemisphere), bound by sharp edges
on the basis of anatomy, function, and/or topology. Each of
the 180 regions are also classified into 22 larger regions in
Glasser et al. (2016), which allows for analysis at a coarser level,
if needed. We find that other parcellation schemes either have
too few regions, or are annotated on the basis of fewer samples.
In contrast, the boundaries in Glasser et al. (2016) are drawn
using resting state and task fMRI images from two groups of 210
subjects, all of which is part of the previously described Human
Connectome Project.

2.2. Methodology
2.2.1. Experimental Setup
The time series data is z-score normalized. Following this, it is
parcellated to yield a region × time-points matrix. The Pearson

1https://github.com/Washington-University/HCPpipelines.
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Correlation of all pairs of time series is then computed, resulting
in a region × region correlation matrix. This process is repeated
for both groups (defined below) of all subjects. Then, the upper
triangular matrix for the first group for all subjects is vectorized
and stacked next to each other into a subjects × feature matrix,
where a feature corresponds to an entry in the correlation matrix.
A similar matrix is constructed for the second group as well.

In the first set of experiments, where we use resting state
connectomes, the two groups have correlation matrices from
REST1 and REST2 sessions, respectively. In the experiment
that investigates identifiability of individuals while performing
different tasks, the first group consists of the first half of the
session (RL encoding) and the second group consists of the
last half of the session (LR encoding). In the final experiment
that focuses on task identifiability, the first group consists of
REST1 and the RL encodings of seven tasks, whereas the second
group consists of REST2 and the LR encodings of the same
seven tasks. Each group matrix is constructed by stacking the
vectorized correlation matrices. Thus, each data point in this
matrix corresponds to a subject and each feature is a measure of
coherence in activation between two regions. For simplicity, we
refer to the groupmatrices asG1 andG2 in every experiment. Our
task is to successfully match the functional connectomes (i.e., the
regions × regions Pearson Correlation matrices) belonging to a
subject across the two groups.

We first discuss the concept of row and column sampling as
a general means of feature selection and, in particular, leverage
score sampling. We then discuss the use of leverage scores to
select features for brain fingerprinting.

2.2.2. Row/Column Sampling
GivenmatrixA, an individual entry ai,j corresponds to the weight
of the ith edge of subject j. The problem of identifying the most
discriminating subset of features then translates to selecting non-
zeros from the correlation matrix (row-column pairs) that are
most descriptive in terms of individual signatures. In contrast to
conventional dimension reduction techniques, such as Singular
Value Decomposition (SVD), the ability to choose rows or
columns from a datamatrix directly translates to feature selection,
especially when features have physical meaning. Retaining such
features in the matrix sketch can make the underlying physical
phenomenon explainable, while also de-noising the data by
eliminating non-discriminating features and noise. Furthermore,
in contrast to methods that use within-subject and between-
subject metrics to reduce dimensions as in Byrge and Kennedy
(2019), we do not require data from both sessions to identify
important edges.

Given a matrix A ∈ R
m×n, one can use the following

randomized meta algorithm to create a sketch matrix Ã that
retains s (< m) rows.

function ROW_SAMPLE(A,s)
Let Ã be an empty matrix
for t = 1 to s do

Randomly sample a row according to the distribution P
Let Ait ,⋆ be the sampled row, with corresponding

probability pi

Set Ãt,⋆ = 1√
spi
Ait ,⋆

end for

return Ã and row indices
end function

The algorithm samples s rows of A in independent, identically
distributed trials according to Ps. The re-scaling of Ã ensures that
ÃTÃ is unbiased, i.e., E[(ÃTA)i,j] = (ATA)i,j,∀i ∈ {1 . . .m}, j ∈
{1 . . . n} (Drineas et al., 2006).

The key unspecified detail is the choice of distribution P. A
simple choice is to sample rows uniformly, however, this yields
poor results. An intuitive choice for the distribution relies on
the matrix A itself—assigning higher weights to more important
elements. A non-uniform distribution is based on l2 sampling,
which can be defined as:

pi =
||Ai,⋆||22∑
i ||Ai,⋆||22

=
||Ai,⋆||22
||Ai,⋆||F

. (1)

Using norm-squared sampling, Drineas et al. (2006) prove that:

E[||ATA− ÃTÃ||F] ≤
1
√
s
||A||2F . (2)

The bounds in Equation (2) imply that Ã can be used as a proxy
for A. However, this approximation introduces an additive error,
which depends on ||A||F . To achieve better bounds, one can
make use of the knowledge of column space of A. The associated
sampling technique is called leverage score sampling (Drineas
and Mahoney, 2016).

2.3. Leverage Score Sampling
Let A ∈ R

m×n, with m ≫ n. Let U ∈ R
m×n be the left singular

matrix spanning the column space of A. Then, UTU = I and
UUT = PA, which is an m-dimensional projection matrix onto
the span of A. Then, the probabilities pi are defined as:

pi =
||Ui,⋆||22∑
i ||Ui,⋆||22

=
1

n
(PA)i,i ∀i ∈ {1 . . .m}. (3)

The values of pis in Equation 3 are known as statistical leverage
scores. If we select O(k log k/ǫ2) rows, we get a relative error
bound as follows:

||A− AÃ†Ã||2ζ ≤ (1+ ǫ)||A− Ak||2ζ , (4)

where ζ ∈ {2, F}, ǫ ∈ [0, 1/2), Ak is the best rank-k
approximation and † represents the pseudo-inverse (Drineas
et al., 2008).

In our matrix of vectorized edge values, each row contains
values expressing functional connectivity markers between the
same pair of physical regions on the brain cortex. Hence,
leverage scores are indicative of relative importance of edges
in discriminating samples. While the randomized approach
discussed here helps in understanding the process, we find that
a deterministic approach performs well in practice. We call this
sketching process Principal Features Subspace Method.
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FIGURE 1 | Overview of our pipeline: The subjects are randomly partitioned into train and test sets in each of 1,000 repetitions. Training is performed with 10-fold

cross-validation within the train set. High leverage score features are selected using the train set and training performance is assessed using a validation subset (1-fold

of the train set). In each iteration, a different fold within the train set is held back for validation. Optimal features identified using this training procedure are then used to

match images across sessions of subjects in the test set. The pipeline for training process is in Figure 2.

2.3.1. Principal Features Subspace Method
As before, let A be the data matrix of connectomes, and U
be the orthonormal matrix that spans the column space of A.
Additionally, let t be the number of features that need to be
retained. An example of such a matrix U is constructed using left
singular vectors from a Singular Value Decomposition (SVD) of
A. We can then compute the leverage(l) scores of A as:

li = ||Ui,⋆||22, ∀i ∈ {1 . . .m}. (5)

We sort the leverage scores and retain the features corresponding
to the top t leverage scores. We call this subspace the principal
features subspace. In contrast to prior randomized approaches,
we select features in a deterministic manner; Cohen et al.
(2015) provide theoretical bounds for this selection process. The
main advantage of using leverage scores is that the features
representing high leverage (in the left-singular vector space)
correspond to highly representative (in other words, important)
features in the data space. We do not project the vectors in the
linear algebraic sense, but rather, we restrict the feature space by
selecting a small subset of highly expressive features. To this end,
our de-identification pipeline is not directly based on SVD, rather
it is based on use of leverage score sampling.

2.3.2. Our Approach
Starting from the matrix of vectorized correlation values G1, we
compute the left singular vectors using SVD. We compute the
leverage scores of the rows of G1 and retain features with high
leverage scores. We show that the task of predicting matching
columns of G1 and G2 can be efficiently achieved by restricting to
the small set of retained features. The ordering of edges according
to their leverage scores, if robust across different groups, is
indicative of a set of features that can accurately fingerprint
an individual’s functional connectome. In this case, for a given
parcellation scheme, and for a given measure of region-region
coherence, we need to apply SVD just once to determine the
relevant edges. We present results from our scheme applied
to 100 fMRI samples to demonstrate powerful new results on
the compactness and robustness of the sub-connectome coding
individual fingerprints.

2.4. Related Methods
There is significant recent work in characterizing population-
level differences from neuroimaging datasets. Given the focus of
our work on individual-level differences, we restrict ourselves to
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FIGURE 2 | Overview of the training pipeline: the first session of the train set is vectorized and stacked into the matrix G1,train. In each iteration, f features are selected

from the vectorized train set using leverage score sampling. Then, the feature space of the vectorized validation set (a subset of the train set) matrices is restricted to

the selected subset of features. The correlation between pairs of columns of the sub-sampled validation matrix is used to predict identity across sessions. In each

iteration, the size of the feature set is incremented upto a maximum of 100. The optimal feature set is the one with maximum prediction accuracy. This feature set is

then used in our experiments to predict identity of subjects in the test set.

TABLE 1 | Accuracy of principal features subspace method for different splits of

training and test samples.

Train/test split Train accuracy

(%, mean ± std)

Test accuracy

(%, mean ± std)

80/20 96.23± 2.24 93.11± 3.61

50/50 96.30± 2.59 92.94± 3.82

30/70 96.81± 3.07 90.23± 4.30

20/80 97.01± 3.22 87.60± 5.27

10/90 97.72± 2.65 81.86± 7.15

The results show consistently high train accuracy across a range of training set sizes. As

expected, training accuracy increases with smaller training sets; however, test accuracy

goes down as training set size is reduced, due to overfitting.

TABLE 2 | Performance of leverage-score based feature selection technique,

compared to selecting features uniformly at random.

Feature selection method Training

accuracy (%,

mean ± std)

Test accuracy

(%, mean ± std)

Leverage score 96.23± 2.24 93.11± 3.61

Random 54.62± 7.76 54.52± 7.52

The significantly higher test and training set accuracy demonstrates the performance of

our principal subspace feature selection method.

significant results in this space, and use them to motivate our
new results.

A simple linear model was proposed by Miranda-Dominguez
et al. (2014), wherein the activity of a given brain region are
described by the weighted sum of its functional neighboring

FIGURE 3 | Variation of test accuracy as a function of feature set size. The

rapid convergence in accuracy demonstrates that a small set of features

codes the discriminating signature.

regions. This individual-specific, model-based connectivity
matrix was shown to be capable of predicting the time-series
of each subject at a later time. Finn et al. (2015) divide the
identification task into two steps: whole brain and network
specific. In the first step, they perform identification on the
basis of the region-wise correlation matrix of the whole brain,
and report a success rate of ∼93%. Following this, they divide
the brain into eight functional networks: medial frontal, fronto-
parietal, default mode, subcortical-cerebellum, motor, visual
I, visual II, and visual association, on the basis of an atlas
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constructed from the Yale Dataset (268 nodes covering the
whole brain). Restricting analysis to each of these regions, they
perform the identification task. From this analysis, they find
that the networks medial frontal and fronto parietal carry most
discriminating features, yielding accuracies as high as 98%.
Similar results have also been reported by Mueller et al. (2013)
and Miranda-Dominguez et al. (2014). However, these results
require significant prior knowledge on composite of parcels
known to have functional/ structural coherence. The stability
of individual differences over time and the independence from
task associated states was studied by Gratton et al. (2018)
using high-quality, highly-sampled, and long-acquisition-time
dataset created by Gordon et al. (2017). They conclude that
functional networks are indeed suitable for measuring individual
differences, and can therefore be used in precision psychiatry or
personalized medicine.

Our effort takes a similar two-level approach, viewing
identification at the whole brain and network levels. Instead
of using prior knowledge, we show that the Principal Features
Subspace yields a comparable identification training accuracy of
∼96%. Using the features obtained in the training set on the
test set, we find that our test accuracy is around 93%, which is
significantly higher than that from Finn et al. (2015). In contrast
to Finn et al., we restrict the analysis in the second step to
the regions that are computationally identified from our first
step. The regions obtained from our first step are in fact largely
consistent with those used by Finn et al. in their second step,
in that we find regions in the parietal and frontal cortex being
over-represented in our top nodes (nine out of 12 belong to
fronto-parietal regions). However, the network identified by our
method is significantly smaller than the region-specific network
of Finn et al., and is shown to be robust, statistically significant,
and invariant on test subjects. Restricting ourselves to 24 parcels
(which may belong to different networks), we report an accuracy
of∼96%.

There have been recent attempts aimed at identifying
discriminating edges, using the so-called differential power
introduced by Finn et al. and improved on by Byrge and Kennedy
(2019). Finn et al. define differential power as follows: given
the set of connectomes (C) of all sessions (S ∈ {1, . . . , nsessions})
of all subjects (P ∈ {1, . . . , nsubjects}), the following quantity is
calculated for each edge e, and for all pairs of subjects φi,j(e) =
vec(Ck

i,j)(e))× vec(Ck′
i,j)(e),∀i, j ∈ P; k, k′ ∈ S;C ∈ C. Here, vec()

vectorizes the matrix C. An edge is considered to be expressive if
φii > φij, or φii > φji, i.e., similarity across sessions for a subject
is higher than similarity across subjects. Then, the probability
of an edge e being important for a subject i is defined as

P(e)i ∝
∑

i
11[φii>φij]+11[φii>φji]

O(n2
subjects

)
,∀i, j ∈ P . Finally, the differential

power of an edge over a population is given by: DP(e) =∑
i− ln Pi(e). Building on this definition, Byrge et al. define

differential power as follows: first, they compute across-subject
variability as the mean (across sessions) of the standard deviation
of the functional connectome value for every feature across
subjects within a given session, and within-subject variability
as the mean (across subjects) of the standard deviation of the
functional connectome value for every feature across sessions

within each subject. The features with highest variability ratio
(ratio of across- and within-subject variability) are considered
most expressive. Byrge et al. compute variability in terms of both
first and second order moments, which work well in practice.
The main difference in the aims of Finn et al. and Byrge et al.
is that while the former used two sessions of resting-state and
task-based images to correctly identify pairs of connectomes
belonging to the same subject, the latter is test-retest study that
focuses on resting data. In comparison to Byrge et al., our
approach has two distinct advantages. First, our principal features
subspace method uses the concept of leverage scores, which has
strong theoretical guarantees (Drineas et al., 2006; Papailiopoulos
et al., 2014; Cohen et al., 2015; Drineas and Mahoney, 2016).
Second, our approach does not require any labels in order
to find discriminating edges. This significantly generalizes the
applicability of our method, since most studies do not have
multiple scans of a subject. Since acquisition protocols may vary
from study to study, it is not always possible to use the features
from HCP in other studies, where it may be necessary to find
subject-level discriminating patterns. Our setup simply requires
two sets of images, with the guarantee that each subject has one
scan in each set. We use only one set to find discriminative edges
and the second set to establish the efficacy of our approach. In
this context, the applicability of differential power is unclear.

Column/ row sampling using randomized techniques has
significant benefits, in addition to de-noising and avoiding
overfitting. Other commonly used de-noising techniques
transform the data matrix into a combination of linearly
independent (orthogonal) components, using methods, such
as Principal Component Analysis (PCA) or Singular Value
Decomposition (SVD). De-noising can be achieved by discarding
the components corresponding to noise, and working with a low
rank approximation of the matrix, as explored in context of brain
fingerprinting by Amico and Goñi (2018).

Using the “unrelated” subset of HCP subjects, Amico
and Goñi (2018) report that using the original data matrix
(simply computing correlations with known samples and
selecting the most correlated subject for identification) as a
fingerprint yielded an accuracy of around 87%. The process
of de-noising using low rank approximations yields better
results—Amico and Goñi (2018) report an accuracy of 91%
for brain fingerprinting resting state fMRIs. Along the lines
of Amico and Goñi (2018), Ferguson et al. (2017) also
explore the relationship between spectral decompositions and
identifiability. They find the correlation between the top
singular vector space and various task metrics. Moreover,
they find spatial patterns of functional synchrony across
brain regions in rank-1 approximations of connectomes built
by the spectral decompositions of the regions × regions
correlation matrices.

In a related work, Airan et al. (2016) discuss various factors
related to acquisition protocols that affect identifiability, such as
length of acquisition, sampling frequency, time course extraction,
region of interest parcellation, and thresholding of connectivity-
derived network graphs. They report that there is a tradeoff
between sampling frequency and image acquisition time, and that
3–4min worth of images suffice to accurately identify individuals.
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FIGURE 4 | High confidence edges that encode resting-state signature in the human connectome. The connectivity map shows that the signature is strongly

expressed in the prefrontal cortex and the parietal cortex. For illustrative purposes, we show edges when at least one terminal node has a degree of 30 (These

visualizations were created using BioImage Suite https://www.nitrc.org/projects/bioimagesuite/).

As discussed earlier, the advantage of the principal features
subspacemethod is that it provides a small set of regions, thereby
de-noising data, while also making the connectivity matrix much
smaller. It also identifies the signature as a set of biologically
interpretable features.

3. RESULTS

We characterize the uniqueness of the functional connectome
of an individual in terms of its accuracy, underlying features,
and associated task-specificity. We define the innate uniqueness
property as identifiability. We define a signature as a pattern
that encodes identifiability. In this effort, we isolate small regions
in the human cortex that strongly express these signatures.
In this context, we use the terms signatures and fingerprints
interchangeably. We present detailed experiments to characterize
the accuracy of these signatures in terms of their ability to identify
individuals, as well as the task they are performing.

We used the functional MRI images of the unrelated subset
of subjects (54 females, 46 males, mean age = 29.1 ± 3.7
years), acquired as part of the WU-Minn Project by the Human
Connectome Project (HCP) Consortium. Please refer to the
Online Methods for more details regarding the dataset and
preprocessing steps. In each our experiments, we use two groups
(G1 and G2) of connectomes (please see Methods). Each group
has exactly one data point per subject. Our task is to correctly
identify pairs of columns of G1 and G2 belonging to the same
subject. We define accuracy of identification as the percentage of
instances where individuals are correctly matched across the two
groups, G1 and G2. Note that a match is identified as the highest
correlation of an individual in G2 over all individuals in G1.

3.1. A Small Set of Features Encode
Individual Signatures
Our first set of experiments is designed to demonstrate our
first result, that a small number of features encode resting-
state signatures that are largely unique to individuals. This is in
contrast to prior techniques that do not identify either structural
or functional features associated with individual signatures;
rather they demonstrate the existence of such signatures in the
aggregate datasets.

To demonstrate this result, we use the group matrix G1 to
identify features corresponding to the top 100 leverage scores
(from among over 64K scores). We show later that accuracy
of identification saturates at <100 features. Then, pairwise
correlation scores are calculated between data points of the
two groups in this restricted feature-space. The purpose of this
experiment is to demonstrate that two Functional Connectomes
of the same subject are more similar than two Functional
Connectomes belonging to different subjects using only this small
feature set.

To ensure robustness, we repeat this experiment for 1,000
different (random) subsets of subjects. In each repetition, we
randomly shuffle the subjects into train and test sets. The training
procedure is performed with 10-fold cross validation as shown
in Figures 1, 2. We cycle through the folds, holding back a
different subset of the train set as validation set in each iteration.
The features are selected on the train-subset and prediction
accuracy is calculated on the validation set. To show that the
features generalize well to the remaining population, we predict
identity on the hold-out test set, using the restricted feature
space. Table 1 presents accuracy for different sizes of train/test
splits. The results are averaged over all folds and over 1,000
repetitions. We note from the table that the accuracies obtained
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TABLE 3 | Top brain regions associated with discriminating features for

resting-state connectomes.

Area number Area notation Region

141 Temporo-Parieto-Occipital Junction 3 Parietal

11 Premotor Eye Field Premotor

95 Intraparietal dorsal Parietal

85 Area Anterior 9-46v Prefrontal

86 Area 9-46v Prefrontal

97 Inferior 6-8 transitional area Prefrontal

146 Intra Parietal 0 Parietal

48 Lateral Intra Parietal Ventral Parietal

89 Area Anterior 10p Prefrontal

87 Area 9 anterior Prefrontal

137 PHT Lateral temporal

79 IFJa Inferior frontal

We observe that most of the signature expressing regions are in the prefrontal and the

parietal cortex.

in the reduced space are comparable to those obtained using
the full correlation matrices, or by using a low rank matrix
approximation—indicating that our small set of features captures
essentially all of the distinguishability in the data. For the
rest of our experiments, we use an 80/20 split, but repeat the
cross-validation procedure to ensure statistical robustness of our
results. The overall pipeline and the training procedure are shown
in Figures 1, 2.

To characterize the statistical significance of the selected
features, we repeat the experiment with the same number of
features chosen uniformly at random 106 times. The average
accuracy was much lower (∼55%, see Table 2). None of these
instances yielded accuracy values higher that for our leverage-
score based feature selection. This suggests high statistical
significance of our identified features (empirical p-value< 10−6).

3.2. The Feature Set Is Robust Across
Individuals
Our first set of experiments identified a set of features
from individuals in G1, and used these features to draw
correspondence (identification) between the two groups. Note
that in these experiments, the identification of signatures and
identification of subjects is on the same set of individuals. In
our second set of experiments, we show that this feature-set
is invariant across individuals. Specifically, we identify features
using one set of subjects (features with highest leverage scores in
the training set), and use these features to draw correspondences
between a distinct set of subjects (the test set) across the two
groups. The result of this experiment is presented in Table 2.
The high test-set accuracy indicates that features relevant for
the training set are also discriminative for the test set (p-value:
< 10−6). This suggests an anatomical and/or physiological basis
for the features selected.

We further highlight the implication of this result: it is possible
to apply a computational procedure to extract features from
training and test sets. The computational procedure may be

TABLE 4 | Comparison of training and test accuracy for various methods.

Principal components Training

accuracy (%,

mean ± std)

Test accuracy

(%, mean ± std)

All [same as Finn et al. (2015)] 88.65± 1.76 88.98± 1.72

2:end 94.30± 1.35 71.76± 8.76

11:end 96.74± 1.00 69.61± 8.94

21:end 95.03± 1.90 69.44± 8.99

31:end 71.97± 6.08 68.95± 9.07

41:end 72.77± 1.74 65.70± 9.59

Principal features subspace 96.23± 2.24 93.11± 3.61

Numbers in the first row use the entire matrix; the next five rows use a subset of the

principal components; the last row corresponds to our method. Our method achieves

almost optimal training set accuracy and significantly better test set accuracy compared

to competing methods.

FIGURE 5 | Prediction accuracy of individuals performing tasks.

a complex function defined over all features. This is in fact
the case with prior methods. In contrast, what our experiment
shows is that no such computational procedure is required—
rather, a robust selection of sample-invariant features is highly
discriminative and accurate.

3.3. The Size of the Discriminating Feature
Set Is Compact
Our first set of experiments demonstrated that a small set of 100
features is robust and statistically significant in its discriminative
power. We now seek to determine the smallest such set that
can code individual signatures with high accuracy. We design
an experiment in which the number of features is successively
increased (in order of decreasing leverage scores) and the test
accuracy is measured at each step. The result of this experiment
is presented in Figure 3. We note that the accuracy essentially
plateaus using 61 features at 93%. The maximum accuracy
(95.5%) is achieved using 95 features. Finally, we also note
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that restricting the feature-space to the single top leverage-score
feature is not expressive in terms of prediction accuracy. This
is expected, as single features are not expressive by themselves.
Rather, a small subset of features is responsible for encoding the
signature—a fact that we explore further in our next result.

It is important to note that this experiment relies on a leverage
score ordering of the features. It is indeed possible that an
alternate ordering may yield a smaller feature set. However, our
results on the suitability of leverage scores for feature selection,
combined with the rapid plateauing of accuracy, strongly suggest
that a feature set comprised of 61–95 features (from among
over 64K features) is enough to code individual signatures with
high accuracy.

3.4. A Small Number of Structural Regions
Encode the Signature
Our previous experiments used entries in the correlation matrix
(edges in correlation network among regions of the brain)
as features. We now investigate whether a small number of
structural features (regions in the brain) is capable of coding
individual signatures with high discriminating power.

In this experiment, we compute the top 100 features with
the highest leverage scores for a randomly selected subset of 80
subjects. We repeat this procedure 1,000 times. We then extract
the high confidence features using a hyper-geometric p-value
cutoff of 10−20 which gives a set of 302 features. The results
are shown in Figure 4. We observe that the prefrontal cortex
and the parietal regions strongly encode the signature. This is in
agreement with Finn et al. (2015), who showed that the fronto-
parietal network has the most discriminating power. However,
in contrast to previous methods, we are able to make this
observation solely by analyzing the resting state connectomes of
one session in the training set, as opposed to other methods (such
as the on due to Finn et al., 2015) which require connectomes
from both sessions to identify the implicated regions.

In order to find the regions based on our parcellation scheme,
we select the regions that are over-represented in the top features
across all 1,000 tests (hypergeometric p-value < 10−20). This
process resulted in 12 high-confidence regions, which, as we
show, encode the signature. To do this, we restricted ourselves
to work with the 24 × 24 connectomes, corresponding to
both hemispheres of the previously identified regions. We then
constructed the vectorized representation of this smaller matrix
for the test subjects and found the accuracy to be 94.05 (±1.22).
In comparison, identifiability accuracy for 12 randomly chosen
regions was 41.47 (±12.25, for p-value < 10−6). The regions
in this set are listed in Table 3. Overall, the signature expressing
regions occupy about 4.5% of the cortex.

Structurally, five of the 12 regions (namely Area Anterior 9-
46v, Area 9-46v, Inferior 6-8 transitional area, Area Anterior
10p, and Area 9 anterior) belong to the Dorsolateral Prefrontal
Cortex. Furthermore, Intraparietal dorsal, Intraparietal 0, and
Lateral Intra Parietal Ventral belong to the Parietal Cortex (see
Supplementary Material in Glasser et al., 2016). This shows that
regions coding the signature are physiologically localized.

3.5. Our Method Outperforms State of the
Art Methods in Terms of Test Accuracy
In this set of experiments, we compare the accuracy of our
method with other state-of-the-art techniques. Finn et al. (2015)
compute all pairwise Pearson correlation coefficients, where
each data point is represented by all elements of the upper
diagonal of the time-series correlation matrix. We randomly
choose 80 out of 100 subjects and compute pairwise similarity;
the accuracy of Finn et al.’s method is 88.65 (±1.76) averaged
over 1,000 trials. Amico and Goñi (2018) first denoise the
data by retaining a subset of the principal components. As
before, we randomly choose 80 subjects and compute the
training set accuracy (see Table 4). We observe that removing
the top few principal components improves accuracy, since
these components correspond to signals that are common to
all subjects, as noted in Amico and Goñi (2018). The test set
accuracy is computed by removing the top principal components
of the training dataset from the test dataset. This reveals that
the common signal of the training dataset is an artifact of those
particular subjects, and not a pattern that provides significant
insights about the functional behavior of the brain. In all cases,
our method yields comparable training set accuracy, significantly
higher test set accuracy, while, importantly, relying on a small set
of structurally and functionally interpretable features.

3.6. Individuals Performing Tasks Can Be
Distinguished
In this experiment, we demonstrate that our method for finding
discriminating edges extends to the case of task-based functional
networks. For each task, we construct the two group matrices
and partition subjects into training and test sets as described
before.We compute leverage scores separately for each task using
the respective training subsets, restrict the feature space to top
leverage scores, and report predictions on the test set in the same
manner as in the resting state experiments. The results (averaged
over 1,000 trials) are shown in Figure 5. The performance of our
approach is comparable to using the full correlation matrix in all
but two tasks, namely MOTOR and WM. This indicates that our
method recognizes features that are important for most tasks. As
before, we localize the features to physical regions on the brain.
In order to do this, we only use features whose leverage scores
are consistently sufficiently high to remain in the reduced feature
space across all 1,000 trials (hyper-geometric p-value < 10−20).

We further discuss the results for each task. In the
LANGUAGE task, the statistically significant regions identified
by our method include the Inferior Frontal Cortex and
surrounding regions (Orbital and Frontal Cortex and
Dorsolateral Prefrontal Cortex). They also include regions
in the Anterior Cingulate and Medial Prefrontal Cortex, as well
as areas that surround the Superior Temporal Cortex (the Medial
and Lateral Temporal Cortex). These results are consistent with
the regions of interest for LANGUAGE, identified by Barch
et al. (2013). Furthermore, the task involves auditory inputs, and
requires communication via pressing a button. This explains the
Premotor Cortex and the Auditory Association Cortex being
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FIGURE 6 | High confidence edges that encode signature while performing the language task of HCP. The regions with high edge density are in good agreement with

the regions of interest (ROIs) for language (Barch et al., 2013). For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

FIGURE 7 | High confidence edges that encode signature while performing the emotion processing task of HCP. The regions with high edge density are in good

agreement with the ROIs for emotion processing (Barch et al., 2013). For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

recognized as regions of interest by our approach. The high
confidence edges for the task are shown in Figure 6.

In EMOTION, the regions implicated in the signature are
found in the Prefrontal Cortex and neighboring regions (Inferior
Frontal Cortex, Orbital and Polar Frontal Cortex), as well as
areas surrounding the Insula (Lateral and Temporal Parietal
Cortex). These results are consistent with the results of Barch
et al. (2013), except for the fact that we do not identify the Medial
Temporal Cortex as a region of interest. The connectivity graph
for EMOTION is shown in Figure 7.

In GAMBLING, we find the expected regions of interest
in the Prefrontal cortex, as well as the Orbito-frontal cortex.

The other area of interest is the Sub-cortical Striatum,
which is not included in our parcellation scheme. In this
experiment, the subjects are shown visual stimuli and are
required to communicate their decision by pressing a button
(Figure 8). This explains the fact that the regions in Visual
and Motor Cortex are being recognized as potential regions
of interest.

The results for SOCIAL tasks are shown in Figure 9: we
identify all relevant regions of interest (Temporal Parietal
Junction and Medial Prefrontal Cortex, along with the
visual cortex and the motor cortex). In the RELATIONAL
task, we identify regions in the prefrontal cortex, but
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FIGURE 8 | High confidence edges that encode signature while performing the gambling task of HCP. The regions with high edge density are in good agreement with

the ROIs for gambling (Barch et al., 2013). For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

FIGURE 9 | High confidence edges that encode signature while performing the social processing task of HCP. The regions with high edge density are in good

agreement with the ROIs for social processing. For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

also in the parietal cortex, as shown in Figure 10. In the
MOTOR task (Figure 11), we do not identify some regions
of interest (Somatosensory and Motor cortex). This explains
the relatively poor prediction accuracy for this task, and
WM (Figure 12).

While the regions obtained by our method broadly agree
with the regions that are expected to be activated during
respective tasks, we note that a general pipeline of tasks
for fMRI would factor in additional information, such as
presence/absence of various stimuli, duration of each block,
and performance metrics associated with the tasks performed.

The connectivity profiles of each of the tasks are sufficiently
distinct, suggesting that we can identify tasks, which is indeed
our main conclusion.

3.7. Tasks Are Identifiable With High
Accuracy
In this final experiment, we identify the tasks performed by an
individual. For each subject, we create two group matrices. The
first group matrix contains the LR encoding of all tasks and the
second group matrix contains the corresponding RL encoding.
Here, a match is successful if the same tasks across the two groups
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FIGURE 10 | High confidence edges that encode signature while performing the relational processing task of HCP. The regions with high edge density are in good

agreement with the ROIs for relational processing. For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

FIGURE 11 | High confidence edges that encode signature while performing the language task of HCP. Our method does not find the regions implicated by Barch

et al. (2013) in this case. For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

are more similar to each other than with any other task. As
before, we split the subjects randomly into train and test sets
of size 80 and 20, respectively. For each subject in the train set,
we find the features corresponding to the top leverage scores.
This gives us 80 sets of features. We find the set of statistically
significant features for the entire training set using a hyper-
geometric p-value test (threshold 10−50) to identify recurring
features across all subjects. These statistically significant features
are used to restrict the feature space in the test set. The accuracy,
in terms of correctly identified tasks in the test set, averaged

across 1,000 trials was 91.93 (±1.34%). In contrast, the same
experiment using the entire connectome yielded accuracy of
84.95 (±2.2%).

4. DISCUSSION

In this paper, we present a novel matrix sampling method to
answer critical questions related to individual and task-specific
signatures in the human brain connectome.We show that a small
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FIGURE 12 | High confidence edges that encode signature while performing the working memory task of HCP. Our method does not find the regions implicated by

Barch et al. (2013) in this case. For illustrative purposes, we show edges when at least one terminal node has a degree of 30.

set of features in a functional connectome codes for the identity
of an individual. Furthermore, we show that these features
(edges in the connectome) are robust, statistically significant,
and invariant across individuals. The regions corresponding to
these features are consistent with existing literature—both for
resting-state and task, supporting the physiological basis for
our method.

The core contribution of our method lies in the
fact that it can predict relevant features, without
requiring multiple scans. In doing so, it generalizes
the application of brain signatures beyond the HCP
dataset. Specifically, it can be used in studies where
the goal is to find individual differences in a cohort.
Furthermore, since the method is built on a sound theoretical
foundation, its computational and statistical underpinnings
are well-characterized.

The success of leverage scores in picking relevant features for
brain signatures suggests that it can also be used in conventional
fMRI studies, where the aim is to find differences between cases
and controls. The key distinction between the two setups is
that the former requires unsupervised feature selection, whereas
the latter requires supervised feature selection. We note that
this necessitates new sampling techniques, along with associated
theoretical guarantees.

We also identify a few limitations of our study, which provide
avenues for future research: (i) our work only uses the HCP
dataset. Future studies may use other datasets and different
acquisition protocols to further establish the robustness of our
methods; (ii) it is unclear as to what is the optimal spectral range
to consider (i.e., which columns of U must we use to compute
Leverage scores). This choice can have an impact on the selected
features. While our current work uses a default selection, there

is potential for further improvement by refining the selection
procedure; (iii) the stability of signatures is related to the session
time. In this context, it is useful to determine the minimum
session time required to find stable signatures; and (iv) certain
tasks (MOTOR and WM) are associated with poor prediction
accuracy. Further study is required to ascertain the cause of this
loss of accuracy, and methods to improve it.
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