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Abstract: Transforming CO2 into value-added chemicals has been an important subject in recent years.
The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains
a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks
(COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their
unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF,
was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic
liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing
building unit. Ionization of the benzimidazole framework was then achieved through quaternization
with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting
ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction
with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional
(1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute
to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times
without significant loss of its catalytic activity.

Keywords: covalent organic framework; ionic liquid; carbon dioxide; catalysis; cyclic carbonates

1. Introduction

Covalent organic frameworks (COFs) are an emerging class of porous crystalline poly-
mers formed through the linkage of organic building units via strong covalent bonds [1–4].
They feature a large surface area, highly ordered porosity, designable topological structure
and easy modification, making them intriguing materials for various applications, such
as catalysis [5–11], gas adsorption/separation [12–16], energy storage [17–19] and envi-
ronmental remediation [20–24]. In the catalysis field, the flexible regulation of the pore
environment (i.e., pore size, shape and size distribution) and large numbers of structural
topologies offer more possibilities for creating new patterns of catalytic reactivity. In ad-
dition, one-dimensional (1D) open channels found in COFs enable the rapid diffusion of
substances to promote catalytic reactions. In contrast to traditional porous materials such as
activated carbon and zeolites, well-defined catalytic active sites can be spatially separated
within the framework, and the number of catalytic sites can be controlled precisely in the
desired manner [25,26]. Furthermore, due to the organic nature of COFs, they can be easily
modified through either a bottom-up strategy or a post-synthetic modification strategy. As
such, the use of COFs as catalysts or catalyst carriers has developed rapidly over recent
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years. A variety of catalytic active moieties involving metal ions or nanoparticles, as well
as a variety of organocatalysts, have been successfully immobilized onto the skeletons of
COFs; the resulting COFs exhibited good catalytic performance in many reactions, such as
the Heck reaction [27], the Michael addition reaction [28], the Henry reaction [29], Suzuki–
Miyaura coupling [6] and the Diels–Alder reaction [30]. In addition, COFs have been used
as a multifunctional catalyst for cascade reactions, such as the Heck-epoxidation tandem
reaction [31], the oxidation-Knoevenagel cascade reaction [32] and the addition-oxidation
cascade reaction [33].

The greenhouse effect is an important cause of global warming; among various green-
house gases, CO2 is the most frequently implicated in global warming, but is also the most
abundant carbon feedstock [34]. In recent years, considerable efforts have been devoted
to transforming CO2 into useful chemicals. Among various value-added chemicals, cyclic
carbonates are an important class of chemical products that have been widely used as polar
aprotic solvents, electrolytes for lithium-ion batteries, monomers in polymeric materials and
fine-chemical intermediates [35–37]. To this end, various catalysts have been developed for
the highly effective transformation of CO2 into cyclic carbonates, including Schiff bases [38],
Salen complexes [39] and metalloporphyrins [40]. Moreover, ionic liquids, including am-
monium [41,42], phosphonium [43], imidazolium [44,45] and pyridinium salts [46], have
been successfully applied to catalyze the cycloaddition of CO2 to epoxides. However, as
homogeneous catalysts, ionic liquids are difficult to separate from the reaction system,
which limits their practical application on a large scale. For this reason, ionic liquids have
been immobilized onto different supports, such as porous silicas [47,48], polymers [49] and
metal-organic frameworks used as heterogeneous catalysts for easy product separation [50].

The immobilization of ionic liquids on COFs would combine the unique properties
of COFs, such as large surface area, controlled porosity, a 1D open-channel structure and
the high catalytic activity of ionic liquids, in one material [51–53].In addition, confining
ionic liquids within a special pore environment may afford chemical reactions with shape-,
size-, chemo- or enantio-selectivity. In order to further explore the potential of ionic
liquids immobilized on COFs in heterogeneous catalysis, we here describe a post-synthetic
strategy for the immobilization of ionic liquids on the channel walls of a 2D COF, IM4F-
Py-COF. The resulting ionic liquid-containing COF (BMIM4F-Py-COF) exhibited excellent
catalytic performance regarding the cycloaddition of CO2 to epoxides. Furthermore, good
recyclability was observed for the ionic liquid-immobilized COF catalyst.

2. Experimental
2.1. Materials

The building units 4,4′,4′′,4′′′-(Pyrene-1,3,6,8-tetrayl) tetraaniline (PyTTA), 5,6-bis(4-
formylbenzyl)-1-methyl-1H-benzimidazole (IM) and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′′-terphenyl]-
4,4′-dicarbaldehyde (4F) were synthesized in accordance with the reported procedures [54,55].
All starting materials and solvents, unless otherwise specified, were obtained from com-
mercial resources and used without further purification.

2.2. Synthesis of IM4F-Py-COF

IM4F-Py-COF was synthesized following the previously reported protocol [56]. In
a typical procedure, PyTTA (21.67 mg, 0.04 mmol), 4F (14.32 mg, 0.04 mmol) and IM
(13.76 mg, 0.04 mmol), as well as 2 mL of 1,2-dichlorobenzene, were charged into a 10 mL
glass ampule vessel. The mixture was sonicated for 10 min, and 0.2 mL of 6.0 M acetic
acid was rapidly added. The vessel was flash-frozen in liquid nitrogen and degassed by
three freeze–pump–thaw cycles. The internal pressure of the vessel was decreased to below
5 Pa and the vessel was rapidly flame-sealed. The reaction was carried out at 120 ◦C for
3 days. The precipitate was separated and washed thoroughly with anhydrous THF and
acetone, successively, and dried at 100 ◦C overnight under vacuum to produce a yellow
powder in a 78% yield. Elemental analysis: for C82H48F4N6: Calcd. C, 82.52%; H, 4.03%; N,
7.04%. Found: C, 76.11%; H, 4.75%; N, 6.05%.
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2.3. Synthesis of BMIM4F-Py-COF

The ionization of IM4F-Py-COF into BMIM4F-Py-COF was achieved through a quater-
nization process. To a 50 mL round-bottom flask were added 50 mg of IM4F-Py-COF, 5 mL
of 1-bromobutane and 20 mL of acetonitrile. The reaction was heated under reflux at 80 ◦C
for 24 h. After cooling to room temperature, the precipitate was collected by filtration and
washed thoroughly with anhydrous ethanol and acetone, successively. The powder was
dried at 100 ◦C overnight under vacuum to give a dark yellow product in a 95% yield.

2.4. General Procedures for Cycloaddition of CO2 with Epoxides

The reactions were carried out in a 25 mL sealed Teflon-lined autoclave. Firstly,
3.8 mmol epoxide and 20 mg BMIM4F-Py-COF were charged into the reactor without
solvent. The air in the autoclave was then removed by a CO2 purge. The autoclave was
pressurized up to a desired pressure (generally 4.0 MPa) with CO2 and the temperature was
raised to 110 ◦C. The reaction was conducted for 12 h. After the reaction, a small amount
of the resultant reaction mixture was sampled from the autoclave for nuclear magnetic
resonance (NMR) analysis in order to quantitatively evaluate the conversion of epoxide.
The crude product was filtered and purified using column chromatography. The isolated
yield was calculated based on the weight of the obtained product.

2.5. Characterization

Power X-ray diffraction (PXRD) measurements were recorded on a PANalytical X’Pert
model Pro Multipurpose Diffractometer (Davis, CA, USA) using Cu Kα radiation at 40 kV
and 40 mA. The signals were collected from 2θ of 2.5–40◦ at 0.03◦ step scan with exposure
time of 10 s per step. Nitrogen sorption isotherms were measured volumetrically at 77 K
using a Quantachrome Autosorb-iQ2 analyzer (Quantachrome Instruments, Boynton Beach,
FL, USA)with ultra-high-purity gases. The fresh samples were activated at 100 ◦C for 15 h
under high vacuum prior to analysis. The Brunauer–Emmett–Teller (BET) model was used
to determine the specific surface areas using desorption branches over P/P0 of 0.01–0.05. In
all isotherm plots, closed circles describe adsorption data points and open circles are used to
represent desorption data points. The pore size distribution was evaluated by the nonlocal
density function theory (NLDFT) method. 1H and nuclear magnetic resonance (NMR)
spectra were recorded by a Bruker Advance III 400 MHz NMR spectrometer (Bruker BioSpin
Corporation, Fällanden, Switzerland). Gas chromatography (GC, Agilent 7890A, Agilent,
Palo Alto, CA, USA) equipped with a capillary column (HP-5, 30 m × 0.25 mm) using
a flame ionization detector was carried out. The Br− content in the COFs was measured
by ion chromatography, which was carried out with a Dionex ICS 1100 instrument with
suppressed conductivity detection. Elemental analysis was performed using an organic
elemental analyzer (vario MACRO cube, Elementar, Langenselbold, Germany). Fourier-
transform infrared (FT-IR) spectra were recorded using KBr pellets on a Bruker model
TENSOR 27 spectrophotometer. Thermogravimetric analysis (TGA, STA449F3, NETZSCH,
Selb, Germany) was performed by heating from room temperature to 800 ◦C at a rate of
10 ◦C min−1 with a N2 flow rate of 20 mL min−1.

3. Results and Discussion

The IM4F-Py-COF precursor was first prepared through the condensation reaction
of four-branched 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl) tetraaniline (PyTTA) and linear 5,6-
bis(4-formylbenzyl)-1-methyl-1H-benzimidazole (IM) and 2′3′5′6′-tetrafluoro-[1,1′:4′,1′′-
terphenyl]-4,4′-dicarbaldehyde (4F) at a molar ratio of 1:1:1 [56]. The fluoro-containing
building unit 4F was introduced into the COF to enhance the interlayer interaction that
favors the formation of high crystallization and large porosity in COFs [57]. Ionization was
achieved through the quaternization reaction with 1-bromobutane to give an ionic COF
product, BMIM4F-Py-COF (Scheme 1).
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Scheme 1. Synthesis procedure of BMIM4F-Py-COF.

The crystallinity of the IM4F-Py-COF was characterized by powder X-ray diffraction
(PXRD), as shown in Figure 1. IM4F-Py-COF exhibited several strong diffraction peaks,
observed at 2.8◦, 3.8◦, 5.5◦, 8.2◦, 10.9◦, 13.7◦ and 23.2◦, which can be attributed to the (110),
(020), (220), (330), (400), (550) and (001) facets, respectively. The crystalline structure of the
COF was analyzed based on the PXRD pattern together with the computational simulation.
Given the connectivity and structure of the building blocks, an eclipsed AA stacking
model and a staggered AB model were considered. It was found that the AA stacking
model reproduced the PXRD pattern well (Figure 1, black, red and blue curves). The final
lattice parameters were extracted as a = 49.83 Å, b = 42.59 Å, c = 3.93 Å and α = 89.50◦,
β = 88.71◦, γ = 90.06◦ after Pawley refinement (Table S1), confirming the peak assignment,
as evidenced by the negligible difference (Figure 1, magenta curve). We excluded the
possibility of a staggered AB model because the simulated PXRD pattern did not match the
observed data (Figure 1, green curve). After the ionization, the produced BMIM4F-Py-COF
showed an identical PXRD pattern to that of the precursor IM4F-Py-COF, suggesting that
both COFs had similar crystal structures (Figure S1).
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The formation of an imine-linked COF was further confirmed by an FT-IR spectrum
(Figure 2). A new peak observed at 1622 cm−1 for IM4F-Py-COF and BMIM4F-Py-COF was
ascribed to the characteristic peak of the imine (–C=N–) group. In addition, the solid-state
13C cross-polarization/magic-angle spinning (CP/MAS) NMR spectrum of IM4F-Py-COF
and BMIM4F-Py-COF demonstrated a signal at 150.0 ppm (Figure S2), which was assigned
to the carbon atoms of imine linkages, further confirming the imine linkage of the COFs.
The ionization of IM4F-Py-COF into BMIM4F-Py-COF was confirmed by the appearance
of a new peak at 2956 cm−1 in BMIM4F-Py-COF (Figure 2), which was ascribed to the
characteristic stretching of –CH2–, indicating the successful grafting of n-butyl groups onto
the skeleton of the IM4F-Py-COF. Excessive ionization of the COF skeleton would destroy
the crystalline structure of the COF, so the quaternization reaction time was set for 24 h.
The bromide content in the BMIM4F-Py-COF was measured to be 2.5 wt% (i.e., 0.4 mol%),
which means that 42% imidazole moiety was grafted with 1-bromobutane.
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The porosity of both COFs was evaluated using nitrogen adsorption–desorption
isotherms measured at 77 K. The BET surface areas were estimated to be 1307 m2 g−1,
the pore width was calculated to be 3.4 nm and the pore volume was estimated to be
1.09 cm3 g−1 for IM4F-Py-COF (Figure 3a). After the modification, the BET surface area,
the pore width and the pore volume were slightly decreased to 865 m2 g−1, 3.2 nm and
1.06 cm3 g−1, respectively (Figure 3b), which was ascribed to the introduction of n-butyl
within the pores of the IM4F-Py-COF.

The morphology of both COFs was characterized by field-emission scanning electron
microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM).
FE-SEM images revealed that IM4F-Py-COF and BMIM4F-Py-COF possessed a lamellar
structure several tens of microns in size and with a thickness of hundreds of nanometers
(Figure S3). HR-TEM images showed that both COFs had a highly ordered structure,
and open channels can be directly observed in Figure 4. Domains oriented along the
ab facets perpendicular to the viewing direction showed regular rhombic pores for both
COFs (Figure 4a, insert). The results demonstrated the high quality of the COF crystallites.
The thermal stabilities of both COFs were also investigated using thermogravimetric
analysis (TGA). After modification, the thermal stability of the COF was slightly decreased,
although the thermal decomposition temperatures of both COFs were still higher than
400 ◦C (Figure S4), suggesting their good thermal behavior.
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Figure 3. N2 sorption isotherms and pore size distribution (insert) of IM4F-Py-COF (a) and 
BMIM4F-Py-COF (b). 
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for both COFs (Figure 4a, insert). The results demonstrated the high quality of the COF 
crystallites. The thermal stabilities of both COFs were also investigated using thermo-
gravimetric analysis (TGA). After modification, the thermal stability of the COF was 
slightly decreased, although the thermal decomposition temperatures of both COFs were 
still higher than 400 °C (Figure S4), suggesting their good thermal behavior. 

 
Figure 4. FE-TEM images of (a) IM4F-Py-COF and (b) BMIM4F-Py-COF. The inset in Figure 4a 
shows an enlarged image. 

Figure 4. FE-TEM images of (a) IM4F-Py-COF and (b) BMIM4F-Py-COF. The inset in Figure 4a shows
an enlarged image.

The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in order
to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction mixture was
charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and reacted at 110 ◦C
for 12 h. Although we aimed to carry out this experiment under milder conditions from
an academic perspective, the optimal reaction condition is 4.0–5.0 MPa CO2 in practice, due
to both material supply and product output issues. Therefore, the CO2 pressure was set at
the preferred 4.0 MPa in this work. The model reaction produced (chloromethyl)ethylene
carbonate in a 97% yield without the use of any solvents (Table 1, entry 1), suggesting
an outstanding catalytic performance of BMIM4F-Py-COF. When the amount of BMIM4F-
Py-COF catalyst was reduced to half, the yield decreased to 88% (Table 1, entry 2). The
effect of temperature and pressure on the product yield was also investigated. In order to
compare with our previously reported result [58], the reaction time was set at 24 h here.
At this stage, when the temperature was increased from 110 to 120 ◦C, the BMIM4F-Py-
COF demonstrated much better catalytic activity. Even when the pressure of CO2 was
decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene carbonate was still
higher than 94% (Table 1, entries 3–6), which is comparable with our previous result [58].
When the reaction time was 12 h, a yield of 91% was observed (Table 1, entry 7), revealing
the outstanding catalytic performance of BMIM4F-Py-COF. When the reaction temperature
was decreased from 110 to 90 ◦C, the yield decreased remarkably from 97% to 49% (Table 1,
entry 8), suggesting that temperature has a dramatic effect on the yield, in accordance
with previously reported results [49,59,60]. Decreasing CO2 pressure from 4.0 to 3.0 MPa
(110 ◦C) also led to a decreased yield, from 97% to 77% (Table 1, entry 9). The effect of
reaction time on the yield was further studied. When the reaction time was shortened from
12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 92% and 87%, respectively (Table 1,
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entry 1 and entries 10–12). When IM4F-Py-COF was used to replace BMIM4F-Py-COF,
a yield of only 25% yield was obtained (Table 1, entry 13), suggesting that the reaction was
catalyzed by imidazolium bromide active moiety on the BMIM4F-Py-COF.

Table 1. Influence of various experimental conditions on cycloaddition reaction a.
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carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 1.0 120 24 94 571
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 1.0 120 12 91 553
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 4.0 90 12 49 298
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 3.0 110 12 77 467
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 4.0 110 10 94 571
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 4.0 110 8 92 558
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

BMIM4F-Py-COF 4.0 110 6 87 528
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The cycloaddition of CO2 to epichlorohydrin was selected as a model reaction in 
order to establish the activity of the BMIM4F-Py-COF catalyst (Table 1). The reaction 
mixture was charged in a reactor, which was pressurized with CO2 to 4.0 MPa, and re-
acted at 110 °C for 12 h. Although we aimed to carry out this experiment under milder 
conditions from an academic perspective, the optimal reaction condition is 4.0–5.0 MPa 
CO2 in practice, due to both material supply and product output issues. Therefore, the 
CO2 pressure was set at the preferred 4.0 MPa in this work. The model reaction produced 
(chloromethyl)ethylene carbonate in a 97% yield without the use of any solvents (Table 1, 
entry 1), suggesting an outstanding catalytic performance of BMIM4F-Py-COF. When the 
amount of BMIM4F-Py-COF catalyst was reduced to half, the yield decreased to 88% 
(Table 1, entry 2). The effect of temperature and pressure on the product yield was also 
investigated. In order to compare with our previously reported result [58], the reaction 
time was set at 24 h here. At this stage, when the temperature was increased from 110 to 
120 °C, the BMIM4F-Py-COF demonstrated much better catalytic activity. Even when the 
pressure of CO2 was decreased from 4.0 to 1.0 MPa, the yield of (chloromethyl)ethylene 
carbonate was still higher than 94% (Table 1, entries 3–6), which is comparable with our 
previous result [58]. When the reaction time was 12 h, a yield of 91% was observed (Table 
1, entry 7), revealing the outstanding catalytic performance of BMIM4F-Py-COF. When 
the reaction temperature was decreased from 110 to 90 °C, the yield decreased remarka-
bly from 97% to 49% (Table 1, entry 8), suggesting that temperature has a dramatic effect 
on the yield, in accordance with previously reported results [49,59,60]. Decreasing CO2 
pressure from 4.0 to 3.0 MPa (110 °C) also led to a decreased yield, from 97% to 77% (Ta-
ble 1, entry 9). The effect of reaction time on the yield was further studied. When the re-
action time was shortened from 12 to 10, 8 and 6 h, the yield decreased from 97% to 94%, 
92% and 87%, respectively (Table 1, entry 1 and entries 10–12). When IM4F-Py-COF was 
used to replace BMIM4F-Py-COF, a yield of only 25% yield was obtained (Table 1, entry 
13), suggesting that the reaction was catalyzed by imidazolium bromide active moiety 
on the BMIM4F-Py-COF. 

Table 1. Influence of various experimental conditions on cycloaddition reaction a. 

 

 

Entry Substrate Catalyst 
Pressure Temperature Time Yield b 

TON c 
(MPa) (°C) (h) (%) 

1  BMIM4F-Py-COF 4.0 110 12 97 589 

2 d  BMIM4F-Py-COF 4.0 110 12 88 1068 
3  BMIM4F-Py-COF 4.0 120 24 99 601 
4  BMIM4F-Py-COF 3.0 120 24 99 601 
5  BMIM4F-Py-COF 2.0 120 24 97 589 
6  BMIM4F-Py-COF 1.0 120 24 94 571 
7  BMIM4F-Py-COF 1.0 120 12 91 553 

8  BMIM4F-Py-COF 4.0 90 12 49 298 

9  BMIM4F-Py-COF 3.0 110 12 77 467 

10  BMIM4F-Py-COF 4.0 110 10 94 571 

11  BMIM4F-Py-COF 4.0 110 8 92 558 

12  BMIM4F-Py-COF 4.0 110 6 87 528 

13  IM4F-Py-COF 4.0 110 12 25 152 

IM4F-Py-COF 4.0 110 12 25 152

a Reaction conditions: epoxide (3.8 mmol), BMIM4F-Py-COF (20 mg, ion content: 0.006 mmol), no additional
solvent. b Product yield was analyzed using gas chromatography (GC). c TON: moles of synthesized cyclic
carbonate per mole of imidazolium salt. d 10 mg BMIM4F-Py-COF was used as a catalyst.

The catalytic activity of BMIM4F-Py-COF in the cycloaddition of CO2 to different
epoxides was investigated under identical conditions (Table 2). When propylene oxide was
used as an epoxide, a yield as high as 100% was observed (Table 2, entry 1), which is even
higher than that of epichlorohydrin (Table 2, entry 2), and is also consistent with previous
reports [61–65].In addition, the cycloaddition of CO2 to 1,2-epoxyhexane, 1,2-epoxyoctane,
butyl glycidyl ether, 3,4-epoxy-1-butene and styrene oxide was also observed (Table 2,
entry 3–7). The yield was 97%, 87%, 85%, 88% and 80%, respectively. From the results, it
seems that BMIM4F-Py-COF was more effective for small-size substrates [49,59–65]. We
believe that the high catalytic activity of the ionic liquid, the large surface area and the
1D channel walls of the COF may contribute to the excellent catalytic ability of BMIM4F-
Py-COF. Although it may seem counter-intuitive to compare the catalytic performance of
BMIM4F-Py-COF with other reports because the cycloaddition reactions involve several
reaction conditions (e.g., reaction temperature, pressure of CO2, solvent, reaction time and
dosage of catalyst), we have nonetheless listed a summary of the previously reported cat-
alytic performances of the cycloaddition of CO2 to epichlorohydrin (Table S2). In line with
the data listed in Table S2, we believe that BMIM4F-Py-COF is a valuable heterogeneous
catalyst for cycloaddition reactions, especially considering that the reactions were carried
out under solvent-free and co-catalyst-free conditions.
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observed (Table 2, entry 3–7). The yield was 97%, 87%, 85%, 88% and 80%, respectively. 
From the results, it seems that BMIM4F-Py-COF was more effective for small-size sub-
strates [49,59–65]. We believe that the high catalytic activity of the ionic liquid, the large 
surface area and the 1D channel walls of the COF may contribute to the excellent cata-
lytic ability of BMIM4F-Py-COF. Although it may seem counter-intuitive to compare the 
catalytic performance of BMIM4F-Py-COF with other reports because the cycloaddition 
reactions involve several reaction conditions (e.g., reaction temperature, pressure of CO2, 
solvent, reaction time and dosage of catalyst), we have nonetheless listed a summary of 
the previously reported catalytic performances of the cycloaddition of CO2 to epichlo-
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solvent, reaction time and dosage of catalyst), we have nonetheless listed a summary of 
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rohydrin (Table S2). In line with the data listed in Table S2, we believe that 
BMIM4F-Py-COF is a valuable heterogeneous catalyst for cycloaddition reactions, espe-
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observed (Table 2, entry 3–7). The yield was 97%, 87%, 85%, 88% and 80%, respectively. 
From the results, it seems that BMIM4F-Py-COF was more effective for small-size sub-
strates [49,59–65]. We believe that the high catalytic activity of the ionic liquid, the large 
surface area and the 1D channel walls of the COF may contribute to the excellent cata-
lytic ability of BMIM4F-Py-COF. Although it may seem counter-intuitive to compare the 
catalytic performance of BMIM4F-Py-COF with other reports because the cycloaddition 
reactions involve several reaction conditions (e.g., reaction temperature, pressure of CO2, 
solvent, reaction time and dosage of catalyst), we have nonetheless listed a summary of 
the previously reported catalytic performances of the cycloaddition of CO2 to epichlo-
rohydrin (Table S2). In line with the data listed in Table S2, we believe that 
BMIM4F-Py-COF is a valuable heterogeneous catalyst for cycloaddition reactions, espe-
cially considering that the reactions were carried out under solvent-free and 
co-catalyst-free conditions. 
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We consider that the reaction is initiated by binding the O atom of the epoxides with 
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a Reaction conditions: epoxide (3.8 mmol), BMIM4F-Py-COF (20 mg, ion content: 0.006 mmol), no 
additional solvent. b Product yield was analyzed using gas chromatography (GC). c TON: moles of 
synthesized cyclic carbonate per mole of imidazolium salt. d 10 mg BMIM4F-Py-COF was used as a 
catalyst. 
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epoxides was investigated under identical conditions (Table 2). When propylene oxide 
was used as an epoxide, a yield as high as 100% was observed (Table 2, entry 1), which is 
even higher than that of epichlorohydrin (Table 2, entry 2), and is also consistent with 
previous reports [61–65].In addition, the cycloaddition of CO2 to 1,2-epoxyhexane, 
1,2-epoxyoctane, butyl glycidyl ether, 3,4-epoxy-1-butene and styrene oxide was also 
observed (Table 2, entry 3–7). The yield was 97%, 87%, 85%, 88% and 80%, respectively. 
From the results, it seems that BMIM4F-Py-COF was more effective for small-size sub-
strates [49,59–65]. We believe that the high catalytic activity of the ionic liquid, the large 
surface area and the 1D channel walls of the COF may contribute to the excellent cata-
lytic ability of BMIM4F-Py-COF. Although it may seem counter-intuitive to compare the 
catalytic performance of BMIM4F-Py-COF with other reports because the cycloaddition 
reactions involve several reaction conditions (e.g., reaction temperature, pressure of CO2, 
solvent, reaction time and dosage of catalyst), we have nonetheless listed a summary of 
the previously reported catalytic performances of the cycloaddition of CO2 to epichlo-
rohydrin (Table S2). In line with the data listed in Table S2, we believe that 
BMIM4F-Py-COF is a valuable heterogeneous catalyst for cycloaddition reactions, espe-
cially considering that the reactions were carried out under solvent-free and 
co-catalyst-free conditions. 
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a Reaction conditions: epoxide (3.8 mmol), BMIM4F-Py-COF (20 mg, ion content: 0.006 mmol), no 
additional solvent. b Product yield was analyzed using gas chromatography (GC). c TON: moles of 
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epoxides was investigated under identical conditions (Table 2). When propylene oxide 
was used as an epoxide, a yield as high as 100% was observed (Table 2, entry 1), which is 
even higher than that of epichlorohydrin (Table 2, entry 2), and is also consistent with 
previous reports [61–65].In addition, the cycloaddition of CO2 to 1,2-epoxyhexane, 
1,2-epoxyoctane, butyl glycidyl ether, 3,4-epoxy-1-butene and styrene oxide was also 
observed (Table 2, entry 3–7). The yield was 97%, 87%, 85%, 88% and 80%, respectively. 
From the results, it seems that BMIM4F-Py-COF was more effective for small-size sub-
strates [49,59–65]. We believe that the high catalytic activity of the ionic liquid, the large 
surface area and the 1D channel walls of the COF may contribute to the excellent cata-
lytic ability of BMIM4F-Py-COF. Although it may seem counter-intuitive to compare the 
catalytic performance of BMIM4F-Py-COF with other reports because the cycloaddition 
reactions involve several reaction conditions (e.g., reaction temperature, pressure of CO2, 
solvent, reaction time and dosage of catalyst), we have nonetheless listed a summary of 
the previously reported catalytic performances of the cycloaddition of CO2 to epichlo-
rohydrin (Table S2). In line with the data listed in Table S2, we believe that 
BMIM4F-Py-COF is a valuable heterogeneous catalyst for cycloaddition reactions, espe-
cially considering that the reactions were carried out under solvent-free and 
co-catalyst-free conditions. 
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a Reaction conditions: epoxide (3.8 mmol), BMIM4F-Py-COF (20 mg, ion content: 0.006 mmol), no additional
solvent. b Product yield was analyzed using gas chromatography (GC). c TON: moles of synthesized cyclic
carbonate per mole of imidazolium salt.

We consider that the reaction is initiated by binding the O atom of the epoxides with
the acidic C2-proton of the imidazolium cation, through which process the C-O bond of the
epoxides is weakened. Subsequently, the Br− attacks the less-hindered carbon atom of the
coordinated epoxide to open the epoxy ring. Subsequently, CO2 interacts with the oxygen
anion of the opened epoxy ring to form an alkylcarbonate anion, after which a ring closure
step gives the cyclic carbonate products (Figure 5) [60–66].
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The heterogeneity of the BMIM4F-Py-COF catalyst was investigated by removing the
catalyst by centrifugation during an ongoing reaction. Without the catalyst, the conversion
stopped, and no significant product formation could be observed. The reusability of the
BMIM4F-Py-COF and reproducibility of catalytic performance were investigated based
on the experimental results of repeated cyclic tests. In each cycle, BMIM4F-Py-COF was
removed by centrifugation and then rinsed with epichlorohydrin. After drying, the catalyst
was reused for the next run. The yields of cyclic carbonates in the first four consecutive runs
are shown in Figure 6. The results indicated that the catalytic activity of BMIM4F-Py-COF
could be retained for up to five cycloaddition series. After five runs, no obvious change was
found for the PXRD pattern of BMIM4F-Py-COF before and after the catalysis (Figure S5).
In addition, no change was observed for the FT-IR spectrum of BMIM4F-Py-COF after
five runs (Figure S6). These results reveal that the BMIM4F-Py-COF can thus be considered
a renewable and stable catalyst for the cycloaddition of CO2 to epoxides.
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4. Conclusions

In summary, an ionic BMIM4F-Py-COF was successfully synthesized by grafting
an ionic liquid precursor onto the skeleton of a two-dimensional covalent organic frame-
work (2D COF), followed by the ionization of the precursor through the quaternization
reaction. The resulting BMIM4F-Py-COF was used as a heterogeneous catalyst for the
cycloaddition of CO2 to epoxides. It was shown that this ionized porous COF showed
good catalytic activity even in a solvent- and co-catalyst-free environment. Furthermore,
the BMIM4F-Py-COF was continually recycled five times after easy separation without
decreasing its activity or selectivity under equivalent reaction conditions. The high catalytic
activity of the ionic liquid, a large surface area and the 1D channel walls of the COF were
considered to contribute to the excellent catalytic performance of BMIM4F-Py-COF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196204/s1, Figure S1: PXRD pattern of BMIM4F-
Py-COF. Experimental pattern (black) and AA-stacking (blue); Figure S2: Solid-state 13C NMR
spectra of IM4F-Py-COF (blue) and BMIM4F-Py-COF (black); Figure S3: FE-SEM images of IM4F-
Py-COF (a,b) and BMIM4F-Py-COF (c,d); Figure S4: Thermogravimetric analysis of IM4F-Py-COF
(blue) and BMIM4F-Py-COF (black); Figure S5: Comparison of PXRD pattern of BMIM4F-Py-COF
before (black) and after catalysis (red). The insert indicates an enlarged PXRD pattern; Figure S6:
Comparison of FT-IR spectroscopy of BMIM4F-Py-COF before (black) and after catalysis (red);
Table S1: Fractional atomic coordinates for the unit cell of IM4F-Py-COF; References citation of [55,56].
Table S2: Comparison with various metal-free catalysts in the performance of the cycloaddition of
CO2 to epichlorohydrin. References [58,67–87] are cited in the supplementary materials.
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