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Diffuse glioma is a highly heterogeneous central nervous system tumor that is refractory to conventional
therapy. Residual glioma cells escape from surgery and chemoradiotherapy, leading to lethal recurrence.
Understanding the molecular mechanism of this recurrence process is critical to the development of suc-
cessful therapies. Here, we analyzed whole-exome sequencing (WES) data of 97 paired primary and
recurrent samples from 46 patients with glioma via a uniform pipeline. Clonality and phylogenetic anal-
yses revealed that branching evolution was widespread in the recurrent process of gliomas. Recurrent
tumors continued to evolve independently with chemoradiotherapy and harbored multiple recurrence-
selected genetic alterations, such as amplification of PPFIBP1, PDE4DIP, and KRAS, deletion of TNFRSF14,
DCC, CDKN2A, and MSH6, and mutations in ATRX, ARID1A, KEL, TP53, MSH6, and KMT2B. Meanwhile, trun-
cal variants within partial driver genes were identified among primary and recurrent gliomas, suggesting
that they might be ideal therapeutic targets. Intriguingly, the immunogenicity of recurrent gliomas did
not increase significantly compared to the primary tumors. Genomic analysis of recurrent gliomas pro-
vided an opportunity to identify potentially clinically informative alterations not detected in clinically
sampled primary tumors.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Accumulating evidence suggests that cancer occurs via an accu-
mulation of somatic genomic alterations in the process of clonal
evolution. These genomic aberrations arise randomly but create
an opportunity for the acquisition of selective advantage and gen-
erate intra-tumor heterogeneity (ITH). Such ITH allows cancer cells
to resist treatment, eventually resulting in tumor metastasis and
recurrence.

Compared to other tumors, diffuse gliomas are a heterogeneous
collection of the most common malignant brain tumors and
patients have a poor prognosis [1]. Despite significant improve-
ments in systemic therapies, recurrence around the surgical cavity
develops in most types of glioma [2,3]. Nevertheless, no consensus
on the standard treatment for recurrent or progressive glioma has
yet been established. Paradoxically, comprehensive genomic
sequencing studies over the past two decades have achieved
molecular characterization of gliomagenesis, including activating
or inactivating alterations in phosphoinositide 3-kinase (PI3K),
receptor tyrosine kinase (RTK), and mitogen-activated protein
kinase (MAPK) pathways as well as IDH1/2, TP53, TERT [4], ATRX,
1p/19-codeletion, deletion of chromosome 10 and amplification of
chromosome 7 [5,6]. However, previous studies have focused
mainly on untreated tumors, and studies of recurrent gliomas
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Table 1
Demographics and clinicopathologic characteristics of patients in our study.

INCB
(N = 38)

SYSUCC
(N = 59)

Sex (%) Female 12 (31.6) 21 (35.6)
Male 26 (68.4) 38 (64.4)

Age at diagnosis
(years)

Mean (SD) 55.0
(10.2)

43.6 (14.9)

Pathological
diagnosis (%)

Glioblastoma,IDH-
wildtype

36 (94.7) 39 (66.1)

Astrocytoma,IDH-mutant 2 (5.3) 14 (23.7)
Oligodendroglioma,IDH-
mutant,
1p/19q-codeleted

0 4 (6.8)

Unknown 0 2 (3.4)
Radiotherapy (%) Yes 19 (100.0) 24 (77.4)

No 0 7 (22.6)
Chemotherapy (%) Yes 19 (100.0) 20 (64.5)

No 0 11 (35.5)
Grades (%) 4 38 (100.0) 38 (66.7)

2 0 8 (14.0)
3 0 11 (19.3)

Normal control (%) Yes 38 (100.0) 49 (83.1)
No 0 10 (16.9)
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remain limited. This is mainly due to the difficulty in achieving
adequate tissue at recurrence or the time of death. Understanding
the process of tumor recurrence is a prerequisite for the develop-
ment of effective treatments for recurrent tumors. To date, geno-
mic landscape analyses of longitudinal samples have
demonstrated that recurrent tumors display variable degrees of
genetic diversity [7–9]. The genetic alterations in the RB and
AKT-mTOR pathways were confirmed to be involved in malignant
progression. Distally recurred glioblastoma multiforme (GBM) dis-
plays high levels of genetic diversity [10]. The Glioma Longitudinal
Analysis (GLASS) Consortium pooled datasets at institutions world-
wide and reconstructed the evolutionary trajectories of 222
patients with glioma to help to understand treatment failures
and tumor progression [9]. However, an understanding of the evo-
lutionary history of tumor recurrence and the timing of mutational
processes involved in tumor evolution remains limited. The rela-
tionship between the process of recurrence, immunogenicity, and
chemoradiotherapy is also unclear.

In the present study, we analyzed theWES data of 97 paired pri-
mary and recurrent glioma samples from 46 patients using a uni-
form bioinformatics pipeline. We used these data to determine
evolutionary trajectories of recurrence. We also revealed how
mutational processes vary over time during the course of recur-
rence and provide a more comprehensive understanding of the
clonality, mutation signatures, and immunogenicity of recurrent
gliomas.
2. Materials and methods

2.1. WES of paired primary and recurrent gliomas

Twenty-seven of the 46 patients with primary and recurrent
paired gliomas were recruited from the Sun Yat-sen University
Cancer Center (SYSUCC) (Guangzhou, China) with written
informed consent. The study was approved by the Ethics Commit-
tee of SYSUCC (B2020-314-01). All specimens were verified as glio-
mas by experienced pathologists and reviewed to determine the
histological grade. Corresponding tumor tissues and blood were
selected for DNA isolation. Each patient was matched with a corre-
sponding normal blood sample and used as a control. Sequencing
libraries were generated using the SureSelect Human All Exon V6
kit (Agilent Technologies, CA, USA) for sequencing on the Illumina
Hiseq platform. The remaining 19 glioma patients from the INCB
cohort originated from the Besta Brain Tumor Biobank and data
were downloaded from European Nucleotide Archive (ENA,
PRJNA320312) [7]. Complete clinical characteristics of all
sequenced samples are provided in Table1 and Supplementary
Table 1.
2.2. Somatic variant identification

After quality control using fastp (v.0.20.1) [11], paired reads
were mapped to the reference human genome (UCSC hg19) by
BWA-MEM (v.0.7.17) with default parameters [12]. Aligned reads
were further processed with GATK (v.4.1.4) following the guideli-
nes for best practice [13]. SNVs were called from paired tumor
and blood control sequencing data by MuTect (v.1.1.5) [14]. Vari-
ant sites with fewer than 10 total reads or three variant reads in
the tumor sample were removed. Further filtering was performed
using Varscan (v2.4.2) with default parameters to remove SNVs
with low average base quality, low average mapping quality, high
average mismatch quality, and strand bias of variant reads [15].
Somatic insertions and deletions (InDels) were called using Strelka
(v.2.9.2) with default parameters [16]. For 5 patients with no
matching normal tissue available, we called SNVs from tumor
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and normal reference generated from 5 pooled unrelated normal
blood control. These unrelated normal blood samples were
sequenced using the same protocol. Each raw data of blood sample
was downsampled and then pooled. The detailed analysis process
can be found in previous studies [17]. These samples only were
used for mutation burden analysis. InDel calling was not per-
formed for tumors without matching normal tissue. SNVs and
InDels were annotated with ANNOVAR [18]. Tumor mutation bur-
den (TMB) was determined according to the number of somatic,
coding base substitutions, and short insertions and deletions per
megabase of the examined tumor genome.

2.3. Identification of putative driver mutations

To identify putative driver mutations, all non-silent variants
were compared with potential driver genes derived from intOGen
(https://www.intogen.org) or the Cancer Gene Census (https://can-
cer.sanger.ac.uk/census). Next, non-silent variants located in
potential driver genes were classified as putative driver mutations
if they satisfied one of the following criteria: (1) The function of the
mutation was evaluated as ‘‘deleterious” by least one tool includ-
ing SIFT [19], LRT [20], MutationTaster [21], Polyphen v2 [22],
FATHMM [23], or PROVEAN [24]; (2) Identified as nonsense muta-
tion, splicing point mutations and InDels in driver genes.

2.4. DNA somatic copy number alteration calling

Sequenza (v2.1.2) was used to estimate tumor purity and ploidy
from paired tumor-normal WES data and to calculate allele-
specific copy number profiles [25]. Only autosomes were used in
the copy number alteration analysis. Samples with excessive noise
and low tumor purity (P137694F/S, P176723F/S, P197462F/S,
P247302F/S, P318050F/S, P398678S, P243757T, R011F, and
R017S) were excluded. GISTIC (v.2.0.23) was used to identify sig-
nificantly amplified and deleted regions in our dataset. Peaks with
q-value < 0.05 were selected as significant results [26].

2.5. Phylogenetic tree construction

First, a binary matrix was constructed to indicate the presence
or absence of each SNV/InDel. The phylogenetic tree for each
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patient was then constructed by the R package phangorn (v2.5.5)
using the maximum parsimony method [27].

2.6. Mutational signature analysis

The R package Palimpsest (v2.0.0) was used to determine
whether de novo mutation signatures represent new mutational
processes or the previously described COSMIC signatures and to
assign which signature gave rise to each mutation [28].

2.7. Cancer cell fraction estimation and clonality analysis

Excluding the samples with low tumor purity (n = 4), samples
without matched blood controls (n = 10), and necrosis samples
(n = 2), the cancer cell fraction of each SNV was estimated by inte-
grating the Sequenza-derived integer copy number and tumor pur-
ity estimates with the variant allele frequency (VAF) as described
by McGranahan et al. [29]. To determine the clonality of the muta-
tion in each sample – that is, whether the mutation occurs in all or
a fraction of the tumor cells – SNVs were classified as either clonal
or subclonal mutations based on the 95% confidence interval (CI) of
the cancer cell fraction (CCF). SNVs were defined as clonal if the
95% CI overlapped with one, and otherwise as subclonal. If InDels
and somatic copy number alterations (SCNAs) were present in all
samples of a patient, we defined this tumor as clonal, otherwise
as subclonal.

2.8. Identification of somatic mutation immunogenicity

OptiType (v1.3.3) was used to produce accurate HLA class I typ-
ing predictions [30]. The tumor specific neoantigens were pre-
dicted using pVACseq (v.4.0.10, https://github.com/griffithlab/
pVAC-Seq) [31]. In brief, all non-silent somatic SNVs and InDels
were annotated using the variant effect predictor (VEP) from
Ensembl (https://asia.ensembl.org/info/docs/tools/vep/index.html)
and generating a list of peptides ranging nine amino acids in length
with the mutated residues represented in each position. With
patient-specific germline HLA class I typing, MHC class I binding
affinity of both wild-type and mutant peptides were predicted by
NetMHCpan (v4.1) [32,33]. Neoantigens were identified as those
with a predicted mutant peptide binding score � 500 nM. All the
downstream analyses were based on the inferred neoantigens
and their corresponding wild-type peptides. After filtering neoanti-
gens with predicted mutant peptide binding score > 500 nM, pep-
tides were then further analyzed for quality based on differential
agretopicity index (DAI), TCR recognition potential, and clonality.
TCR recognition potential for each neoantigen was calculated
based on a previous study [33,34]. Given a neoantigen, the TCR
recognition potential was the probability that a neoantigen was
recognized by the TCR repertoire and calculated by alignment with
a set of epitopes from IEDB database. High TCR recognition was set
to an TCR recognition potential > 0.9 [33]. The DAI was calculated
based on MHC-I affinity of wild-type (WTA) and mutant (MA) pep-
tides arising from the same mutation [35]. Based on neoantigens
and CCF, we classified neoantigens as clonal (present in all tumor
cells) and subclonal (present only in a subset) neoantigens. All non-
synonymous SNVs and InDels were annotated as either in a region
of copy number loss or not. Then, copy number loss-related
neoantigens were counted. Lastly, we determined the origin of
the corresponding neoantigen based on the origin of the mutation.

2.9. RNA-seq and immune deconvolution analysis

Raw RNA-seq reads from 26 primary or recurrent gliomas in the
INCB cohort were downloaded from the European Nucleotide
Archive (ENA, PRJNA320312). RNA-seq data of R017 and R018 were
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excluded from the downstream analysis due to the absence of
paired primary samples. For the RNA-seq data of the remaining
24 samples, Salmon (v1.2.0) was used to quantify the expression
of transcripts [36]. The TPM-normalized data were used in the
immune deconvolution analysis by TIMER2.0 [37].
2.10. Statistical analysis

Statistical analyses were performed using R v4.0.2. Categorical
variables were evaluated using v2 tests. Continuous variables were
evaluated using two-sided paired Wilcoxon signed-rank tests, or
Wilcoxon rank-sum testing. For box plots, the box indicated the
interquartile range (IQR), the middle line indicated the median,
whiskers indicated the highest and lowest values within
1.5 � IQR from the box. All tests were two-sided, and P-
values < 0.05 were considered statistically significant.
3. Results

3.1. Genomic characterization of paired primary and recurrent gliomas

We performed WES of 97 glioma tissues and 41 blood samples
(including 38 previously reported glioma tissues and 19 blood
samples). A total of 41 patients had primary tumors, recurrent
tumors, and matched blood samples, whereas tumor tissues alone
were available for the other five patients (Supplementary Fig. 1A).
On average, 64.14% of coding bases in the exome were covered by
�100� vhigh-quality reads (Supplementary Table 2). All samples
were processed within a uniform bioinformatics pipeline to iden-
tify SNVs, InDels, and CNAs. In total, we detected 10,884 missense
mutations, 548 nonsense mutations, and 553 frameshift mutations
in protein-coding sequences. According to the 2021 WHO classifi-
cation criteria for CNS tumors and the results of whole exome
sequencing, there were 11 IDH mutant gliomas in this study,
including 9 astrocytomas and 2 oligodendrogliomas, and the
remaining IDH wild-type samples were all GBM. For patients
P258689 and P432157, the pathology of the recurrent tissue was
diagnosed as necrosis and gliosis, and these two cases were not
retained for downstream analysis.

Excluding the three tumor samples with hypermutation (R007,
R010, P270959) and five tumor samples without matching normal
control available, the mutation burden of the recurrent GBM and
IDH mutant glioma was not significantly higher than that of the
primary counterpart (Fig. 1A, P = 0.050/0.053/0.18). According to
previous studies [38], primary and recurrent hypermutation sam-
ples of P270959 were cases of de novo hypermutation (MSH6/
F958Lfs*5), while R007 and R010 were post-treatment hypermuta-
tion (R007: MSH6/G841E/R792X/S198N; R010: MSH6/G300E/
W917X). Consistent with the previous study [39], the number of
small deletions acquired in recurrent radiotherapy-treated GBM
was significantly higher than that of paired primary samples
(Fig. 1B, P = 0.033). In total, 764 putative drivers SNVs/InDels were
identified. Among them, some putative driver genes showed high
concordance in the paired glioma samples (Fig. 1C). For instance,
somatic mutations in TP53, IDH1, ATRX, PIK3CA, and EGFR showed
concordance in the paired gliomas of most patients. The percent-
ages of primary glioma-private or recurrent-private SNVs/InDels
were highly variable across 46 patients (Fig. 1D), indicating varying
degrees of genetic similarity between the primary and recurrent
tumors. Among 764 putative driver mutations, those in TP53,
IDH1, PTEN, ATRX, KMT2C, CDKN2A, and CDKN2C were shared by
primary and recurrent gliomas (Fig. 1D). NOTCH2, KMT2B, CIC,
and KMD5A tended to be private to the primary or recurrent glioma
and thus, likely occurred following the acquisition of glioma initi-
ation events (Fig. 1E). Pathway enrichment analysis showed that
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Fig. 1. The landscape of driver mutations in paired primary and recurrent gliomas. (A) The boxplots depicted the mutation burden between primary and TMZ-untreated/
TMZ-treated/ glioma samples. A two-sided paired t-test was applied for statistical testing. (B) The boxplots depicted the small-deletion burden between primary and TMZ-
untreated/TMZ-treated/radiated GBM samples. A two-sided paired t-test was applied for statistical testing. (C) Oncoprint of functional driver mutations in 97 glioma samples.
The upper stacked bar plots illustrate the total number of SNVs and indels in each sample. (D) The proportion of SNVs/indels that are shared, primary-private, or recurrent-
private. (E) Ternary plot of mutation counts of driver genes in shared, primary-private, and recurrent-private mutation. (F) Recurrent-private driver mutations were used for
pathway enrichment analysis. The Y-axis label represents the pathway, and X-axis label represents the gene term ratio (gene term ratio = gene numbers annotated in this
pathway term/all gene numbers annotated in this pathway term). The bubble size represented the number of genes enriched in the pathway, and color showed the �log(q-
value) of the enriched pathway. RT: Radiotherapy; TMZ: Temozolomide; Pri: Primary gliomas; Rec: Recurrent gliomas.
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recurrent-private driver genes of IDH mutant gliomas were
enriched in Notch signaling pathway, stem cell regulation-related
pathway and chromatin modification, while GBM was enriched
in PI3K-Akt, Ras, MAPK, Hippo signaling pathway, stem cell
regulation-related pathway (Fig. 1F).

In addition, the overall copy number landscape was highly con-
cordant between the primary and recurrent gliomas. Copy gain of
chromosome 7 and loss of chromosome 10 were the most frequent
events due to the inclusion of a high proportion of glioblastomas in
our cohort (Fig. 2A and Supplementary Fig. 1B). However, several
previously confirmed oncogenes and tumor suppressor genes were
more frequently amplified or deleted in recurrent tumors com-
pared to paired primary tumors, including CDKN2A, KRAS, and
MSH6 (Fig. 2B). The Focal-level and arm-level copy number burden
were also similar between primary and recurrent gliomas, regard-
less of IDH mutation (Fig. 2C). In addition, ploidy and tumor purity
2238
were comparable between the primary glioma and recurrent pairs
(Supplementary Fig. 1C).

We next evaluated the clonality of mutations in paired primary
tumors and recurrences. In total, 21,237 clonal mutations (me-
dian = 87) were detected in 81 samples. These mutations might
have been acquired before or during the most recent complete
selective sweep, which describes the process by which a new
mutation emerges with high fitness and outcompetes all other sub-
clones in the tumor. Therefore, clonal mutations included passen-
ger mutations that preceded tumor initiation and the driver
mutations present in each selective sweep. In addition, 12,861 sub-
clonal SNVs were detected in the samples mentioned above (me-
dian = 56). These subclonal SNVs exist in only a small fraction of
glioma cells, indicating these mutations might be a later event in
gliomagenesis. In addition, the number of subclonal SNVs in
TMZ-treated samples did not show a significant increase compared



Fig. 2. Copy number alteration (CNA) analysis. (A) The percentage of somatic CNAs for primary gliomas and recurrent across 22 chromosomes, with gains in purple and losses
in green. (B) The frequency of somatic CNAs in putative driver genes in paired primary gliomas and recurrent. (C) Box plots and paired lines depicting focal and broad CNA
load in primary and matched recurrent samples across two subtypes. Wilcoxon signed-rank test P values were indicated. (D) Comparison of clonal and subclonal SNVs burden
in primary and recurrent gliomas across two subtypes. A two-sided Wilcoxon rank-sum test was applied for statistical testing. (E) The proportion of the clonal (green) and
subclonal (violet) SNVs of each selected driver gene in primary, and recurrent gliomas. The size of each pie indicated the mutation frequency of driver genes ordered by their
mean CCF of SNVs. RT: Radiotherapy; TMZ: Temozolomide; Pri: Primary gliomas; Rec: Recurrent gliomas. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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to the primary samples (Fig. 2D). In IDH mutant gliomas, the high
incidence of clonal mutation of TP53, IDH1, ATRX, CHD4, NOTCH1,
and IRS4 in both primary and recurrent samples (Fig. 2E). In
GBM, a large proportion of PTEN, LRP1B, ENPEP, PIK3CA, TP53, and
GRIN2A mutations were clonal mutations in both primary and
recurrent samples. These results implied that these mutations
were early events in gliomagenesis.

These observations suggested that recurrent gliomas harbor
variable degrees of genetic relatedness to the primary samples.
Shared clonal variants (truncal) mutations within driver genes
might be ideal targets for drug development and precision medi-
cine strategies.
3.2. Selected events driving glioma recurrence

Taking advantage of the longitudinal samples in our cohort, we
searched for recurrence-selected genetic features as defined previ-
ously [40] (Fig. 3A). Our results suggested that tumor cells select
for a number of specific genomic alterations during recurrence.
In IDH mutant gliomas, this included amplification of PPFIBP1
and KRAS, deletion of TNFRSF14, CDKN2A, andMSH6, and mutations
in ATRX, ARID1A, and KEL. In GBM, mutations in TP53, MSH6, and
KMT2B, amplification of PDE4DIP, and deletion of DCC were
selected in recurrent samples. These results implied that these
genomic alterations were potentially important in driving glioma
recurrence (Fig. 3B). Especially in our cohort, all cases of IDH-
mut astrocytoma that underwent malignant progression to GBM
harbored an acquired deletion of CDKN2A in recurrences (Fig. 3C).
This result was consistent with 2021 WHO classification of CNS
tumors and previous studies [9,41], which have defined CDKN2A
deletion as a marker for high-grade astrocytoma. Furthermore,
we collected two additional longitudinal datasets, including GLASS
and MSKCC dataset. Among GBMs in the GLASS dataset, the pro-
portion of mutation in MSH6, KMT2B, ANK1, TP53, and FAT4 in
recurrent tumors was significantly higher than that in primary
samples (Supplementary Fig. 2A). Among IDH-mut gliomas in the
MSKCC and GLASS dataset, the proportion of deletions of CDKN2A
in recurrent tumors was significantly higher than that in primary
glioma samples (Fig. 3B and Supplementary Fig. 2B). In addition,
the proportion of deletions of MSH6, amplification of KRAS, and
mutation in ARID1A and AFDN in recurrent tumors was also signif-
icantly higher than that in primary glioma samples in the GLASS
dataset. (Supplementary Fig. 2B). However, the remaining genomic
alterations, such as amplification of ABCB1 and deletion of DCC,
were found only in our cohort. These results implied the potential
importance of these molecular features to drive recurrence.

Corroborating previous studies [7], all primary tumor and
recurrent samples were consistent with a branched evolution pat-
tern, where both the primary tumor and the recurrence shared a
common ancestor but continued to evolve separately. Among
them, four primary/recurrence pairs with malignant progression
to GBM shared an average of 17% of the mutations, suggesting a
higher genetic divergence. Three of these shared a clonal driver
mutation in IDH1, highlighting the critical role of IDH1 mutations
in the initiation of gliomas (Fig. 3C and Supplementary Fig. 2C).
In P238571, the primary tumor and recurrences derived from ini-
tial cells possessed IDH1 R132H, TP53 R141H, and ATRX mutations.
Fig. 3. Evolution patterns of recurrence in gliomas. (A) Schematic illustration for the d
stacked bar plots showing the proportions of recurrence-selected alterations that occu
between primary and recurrent IDH-mut gliomas in MSKCC. (C-D) Genetic divergence bet
all SNVs identified at the primary tumor (x-axis) and recurrence (y-axis). The dot represe
in each plot, light red = gain; red = Amplification; light blue = loss; blue = Deletion. Phylog
or absence, for which canonical glioma drivers genes are labeled. (E) Phylogenetic t
Radiotherapy; TMZ: Temozolomide; Pri: Primary gliomas; Rec: Recurrent gliomas. (For in
the web version of this article.)
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Moreover, the recurrent tumor contained nonsense mutation sites
in ATRX that were distinct from the primary tumor (Fig. 3C, middle
panel), suggesting this convergent process occurred through strong
selection for dysfunction of this gene. In addition, recurrence in the
remaining cases without malignant progression also showed dif-
ferent levels of genetic divergence compared with primary tumor
(Fig. 3D and Supplementary Fig. 3C). The phenomenon might be
due to the fact that recurrent tumors could originate from one sub-
population that branched off early during tumorigenesis or much
later. Furthermore, three multiple recurrent cases were used to
provide a more comprehensive view of the recurrent process. For
cases P243757 and P286189, the first recurrent tumors originated
from one subclone that branched off early during gliomagenesis.
The second recurrence also branched off from the first recurrent
tumor at an earlier evolutionary stage. For P305087, the second
recurrence branched off from the initial tumor at an earlier evolu-
tionary stage than the cells seeding the first recurrence (Fig. 3E).
These data indicated that the recurrence could arise from the dom-
inant clone in the primary tumor, leading to genetic similarity or
one subpopulation that branches off early in the clonal evolution
of the primary tumor.
3.3. Temporal changes in mutational signatures

Mutational signatures are characteristic combinations of muta-
tion types arising from both endogenous and external processes.
Thus, the repertoire of somatic mutations could reflect the muta-
tion processes or biological features associated with tumor evolu-
tion. To explore whether these mutational processes vary during
tumor evolution, we identified five robust mutation signatures
(1, 11, 15, 5, and 6) in all samples (Fig. 4A). Reflecting the age of
the patient at diagnosis, signature 1/5 was ubiquitous in all glioma
samples and dominated the shared mutations (Fig. 4B). Signature
11 was strongly enriched in recurrent-private mutations in TMZ-
treated GBM samples, especially in samples with hypermutation
(Fig. 4A-B). However, not all post-TMZ-treated samples harbored
the activity of signature 11. Signatures 6 and 15, associated with
defective DNA mismatch repair (MMR), were not always accompa-
nied by deleterious mutations in the MMR pathway-related genes,
suggesting the existence of other forms of deactivation, such as
DNA methylation. In accordance with our previous results, cases
with hypermutation harbored signatures 6, 15, and 11. Further-
more, the mutation profiles of these hypermutated samples
showed that de novo hypermutated gliomas harbored mutation
signatures 6 and 1, implicating MMR deficiency as the cause of
hypermutation (Fig. 4C, upper panel). In contrast, mutation signa-
ture 11 was enriched in post-treatment hypermutated gliomas
(Fig. 4C, middle and lower panel). To determine the origin of the
driver mutations, we estimated the probability that SNVs were
derived from each mutation process (Fig. 4D-E). In samples with
hypermutation, the origin of driver mutations was focused mainly
on signature 11 (Fig. 4E, left panel; SBS11: 89.51%; SBS1: 2.3%;
SBS6: 8.18%). In contrast, the driver gene variants of samples with-
out hypermutation consisted mainly of age-related signatures
(Fig. 4D and E, right panel; SBS1: 40%/30.26%; SBS5: 60%/55.26%).
Remarkably, our results also indicated that some MMR-related
efinition of selected, maintained, or unselected alterations in recurrences. (B) The
rred in more than two primary-recurrence pairs. Proportions of CDKN2A deletion
ween primary and recurrent tumors. Two-dimensional density plot based on CCFs of
nted the driver genes. Chromosomal copy-number plots for paired glioma samples;
enetic trees were generated by maximum parsimony based on mutational presence
rees depicted the evolution patterns in samples with multiple recurrences. RT:
terpretation of the references to color in this figure legend, the reader is referred to



Fig. 4. Mutation signature analysis. (A) The distribution of each mutation signature in 97 glioma samples. The upper panel showed the mutation counts attributed to different
signatures. The middle panel showed the percent. The lower panel showed the somatic mutation of the MMR encoding genes and clinical information. (B) Stacked bar plot
showing the proportion of each mutation signature that was shared, primary-private or recurrent-private. The difference between the spectra for three groups across all cases
was assessed using a v2 test. C. 96-trinucleotide-motif plot of all single base substitutions (SBSs) in hypermutated cases. The pie plot showed the proportion of various
mutational signatures. (D-E) Distribution of mutational signatures associated with driver gene mutations. The bar plots showed the cumulative probabilities of each driver
gene mutation being due to each mutational process. The pie charts showed the percentage of mutations signatures across all driver gene mutations. (F-G) Comparison of
subclonal(later)-to-clonal(earlier) mutation fold change caused by each mutation signature between GBMs and IDH mutant gliomas. Each sample was represented as a dot.
RT: Radiotherapy; TMZ: Temozolomide; Pri: Primary gliomas; Rec: Recurrent gliomas.
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variants were caused by TMZ treatment (R007:MSH6 S198N,MSH6
G841E; R010: G300E, W917X).

In addition, the mutational processes were temporally dynamic
within tumors. Previous studies demonstrated that clonal muta-
tions represented relatively early events in tumor evolution, occur-
ring before or at the time of tumor initiation, whereas subclonal
mutations represent later events [29]. Thus, we classified SNVs in
each sample as early (clonal) or late (subclonal). We then calcu-
lated the enrichment of subclonal mutations in SNVs contributed
by each mutation signature. Signature 1 tended to appear earlier
than the other mutation signatures, suggesting that a large propor-
tion of early mutations represent non-cancer-specific mutational
processes. In GBM samples, the SNVs induced by TMZ treatment
were enriched in late variants (Fig. 4H). Together, these results
suggested that TMZ-associated mutation tended to occur later
and might play a key role in fostering subclonal expansions during
the recurrence process.

3.4. Immunogenicity of paired primary and recurrent gliomas

Mutations not only provide fitness through the activating cru-
cial driver events or causing loss of tumor suppressor genes during
evolution, but also generate neoantigens, which in turn produce an
immune response against cancer cells. To compare the immuno-
genicity of primary and recurrent gliomas, we used the sequences
of neopeptides caused by all SNVs/InDels to predict the quantity of
the neoantigen. Excluding paired cases with hypermutation (n = 3),
the quantity of neoantigen produced by recurrent tumors did not
increase significantly compared to that produced by the primary
tumors, regardless TMZ treatment or not (Fig. 5A; Wilcoxon test,
P = 0.12/0.18/0.12). The number of neoantigens produced by
post-treatment hypermutated recurrences increased more than
in paired primary tumors (Supplementary Fig. 3A). In addition,
the number of neoantigens in primary gliomas was positively cor-
related with the number of neoantigens of recurrent gliomas
(Fig. 5B; R = 0.45/0.78, P = 0.012/0.066). To further identify the
antitumor potential of these neoantigens and improve the true
positive rate of neoantigen predictions, we used three previously
described parameters, differential agretopicity index (DAI), TCR
recognition, and clonality of the neoantigens, to evaluate the qual-
ity of neoantigens. The results showed no significant differences in
the proportion of high TCR recognition (v2 test, P = 1.00/1.00/0.7
8/0.20) and DAI (Wilcoxon test, P = 0.44/0.88/0.17) between the
primary and recurrent gliomas (Fig. 5C-D and Supplementary
Fig. 3B-C). Based on previous studies showing that clonal neoanti-
gens induce stronger antitumor immunity, we compared the clon-
ality of neoantigens in primary and recurrent gliomas using CCF.
Compared to primary tumors, post-TMZ-treated recurrent GBMs
and recurrent tumors of IDH mutant gliomas exhibited a signifi-
cantly higher proportion of subclonal neoantigens (Fig. 5E; v2 test,
P = 0.001/0.001/ 0.009; Supplementary Fig. 3D). However, this
trend was not significant in the de novo hypermutation samples
and TMZ-untreated recurrent samples (Fig. 5E; v2 test, P = 0.125;
Supplementary Fig. 3D). Furthermore, the abundance of T cell infil-
tration was similar between primary and recurrent gliomas (Sup-
plementary Fig. 3E; Wilcoxon test, P = 0.51/0.8). Taken together,
these results indicated that the quantity and quality of neoantigens
were similar among primary and recurrent gliomas. The extent of
copy number loss-related neoantigens was then quantified.
Although the CNV burden of primary and recurrent GBMs was sim-
ilar (Fig. 2C), we found that the proportion of CNV loss-related
neoantigens in post-TMZ-treated recurrent GBMs and de novo
hypermutation samples were significantly higher than that in pri-
mary tumors (Fig. 5F; v2 test, P = 0.002/0.001). Furthermore, we
analyzed the quantity and immunogenicity of neoantigens caused
by various mutation processes that were activated during tumor
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evolution. Our results showed that neoantigens were derived
mainly from age-related processes (SBS1 and SBS5) or TMZ treat-
ment (SBS11), especially in recurrent samples of R007 and R010
(Fig. 5G). Compared with other mutational processes, defective
DNA mismatch repair (SBS15) was associated with a higher pro-
portion of highly immunogenic neoantigens (Fig. 5H; v2 test,
P = 0.001). Conversely, TMZ-related signature 11 produced a lower
proportion of high-quality neoantigens and a higher proportion of
subclonal neoantigens (Supplementary Fig. 3G-H; v2 test, P = 0.26).
Overall, these results suggested that the immunogenicity of
neoantigens produced by various mutational processes was not
concordant with the process of glioma development. TMZ-
induced mutations increased the total number of neoantigens,
but did not necessarily activate an effective antitumor response,
which might be due to the subclonal nature of neoantigens.
4. Discussion

In this study, we performed a systematic analysis of WES data of
paired primary glioma and recurrence samples. We found that
recurrent gliomas displayed variable degrees of genetic similarity
to the initial gliomas and acquired unique characteristics. The evo-
lutionary phylogenetic trees of longitudinal samples from SYSUCC
cohort revealed that recurrence could arise from the dominant
clone in the primary tumor leading to genetic similarity or clone
branched off early in the clonal evolution process of the primary
tumor, which brought a new perspective into therapy develop-
ment. In accordance with a previous study [9,43], primary and
recurrent tumors shared gliomagenesis-related variants, including
mutations in TP53, IDH1, PTEN, ATRX, PIK3CA, loss of chromosome
10, and gain of chromosome 7. In IDH mutant gliomas, clonal
mutations of TP53, IDH1, ATRX, CHD4, NOTCH1, and IRS4 were
shared in primary and recurrent samples. In GBM, PTEN, LRP1B,
ENPEP, PIK3CA, TP53, and GRIN2A mutations were clonal mutations
in both primary and recurrent samples. These results implied that
these variants were early events in gliomagenesis. In addition to
the previously reported RB and AKT-mTOR signaling pathways
[10], recurrent-private variants were also involved in the Notch
signaling pathway, stem cell regulation-related pathway, chro-
matin modification, Ras, MAPK, Hippo signaling pathway, and stem
cell regulation-related pathway Consistent with this, accumulating
evidence suggests that Notch signaling suppresses differentiation
and maintains stem-like properties, contributing to glioblastoma
tumorigenesis and treatment resistance [42]. We also identified
several genetic alterations with the potential to drive IDH mutant
gliomas or GBMs recurrences, including amplification of PPFIBP1,
KRAS, and PDE4DIP, deletion of TNFRSF14, CDKN2A, DCC and
MSH6, and mutations in ATRX, ARID1A, KEL, TP53, ANK1, FAT4,
MSH6, and KMT2B. In the GLASS dataset, the proportion of muta-
tion inMSH6, KMT2B, ANK1, TP53, FAT4, ARID1A, and AFDN, deletion
of MSH6 and CDKN2A, amplification of KRAS in recurrent tumors
was also significantly higher than that in primary samples. The
other genomic alterations, such as amplification of ABCB1 and
deletion of DCC, were only present in our cohort. These results
showed that recurrent mechanisms of glioma were diverse.

In line with previous studies [9,44], recurrences in our cohort
were broadly classified as branched evolution. The branched recur-
rence pattern suggested that current treatment reduced the phys-
ical burden and clonal diversity of the tumor tissue, and
recurrence-initiating glioma cells emerged from the residual sub-
clones that survived therapy and originated from cells that
branched off early during tumorigenesis or much later. Moreover,
the de novo SNVs/InDels introduced by TMZ and radiation treat-
ments complicated these recurrence processes, especially in the
inactivation of the MMR pathway. Thus, the extent of genomic



Fig. 5. Characteristics of neoantigens among primary and recurrent glioma. (A) Box plot and and paired lines showing comparison of the number of neoantigens between
primary and recurrent samples. Wilcoxon signed-rank test P values were indicated. (B) Scatter plot showing the relationship between the number of neoantigens of primary
and recurrent gliomas. Spearman’s rank correlation coefficient and P values were indicated. (C) Box plot and and paired lines showing comparison of mean DAI of neoantigen
between primary and recurrent gliomas across two subtypes. (D) Percent stacked bar chart showing the proportion of high the TCR recognition. (E) The proportion of
neoantigens arising from clonal or subclonal mutations was shown in primary and recurrent gliomas. (F) Percent stacked bar chart showing the different proportions of copy
number loss related neoantigen among primary and recurrent gliomas. (G) Number and distribution of neoantigens produced by different mutational processes. (H)
Comparison of TCR recognition probability and clonality of neoantigens produced in different mutational processes. Statistical tests used can be found in materials and
methods. HM: Hypermutation RT: Radiotherapy; TMZ: Temozolomide; Pri: Primary gliomas; Rec: Recurrent gliomas.
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alterations in recurrent tumors is related not only to tumor hetero-
geneity but also to previous treatment. Treatments based on the
analysis of the primary gliomas do not provide accurate guidance
information for determining the most appropriate treatment for
recurrent gliomas, especially earlier branch recurrences. Shared
clonal mutations were ideal therapeutic targets, especially for per-
sonalized cancer vaccines. An IDH1(R132H)-specific peptide vac-
2244
cine has been shown to be effective in a phase I trial against
IDH1(R132H) gliomas [45]. In our study, we also observed that
there was no significant increase in immunogenicity of IDHmutant
gliomas or GBMs in terms of the quantity and quality of neoanti-
gens. Although TMZ induced more de novo mutations, TMZ
induced a smaller proportion of high-quality neoantigens than
other mutagenic factors. This might partly explain the previously
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described phenomenon that hypermutated gliomas are character-
ized by a lack of prominent T cell infiltration. It can be speculated
that these results explain the heterogeneity of immune checkpoint
blockade responses of hypermutated gliomas, although this needs
further verification. However, these results highlight the impor-
tance of considering the benefits of TMZ, including antitumor
effects and the potential risk of inducing de novo mutations.

Some limitations of the present study should be noted. First, our
study did not include multiregional sampling, and phylogenetic
relationships were limited by the breadth of sampling and
sequencing depth. Second, we used WES to characterize the
genetic alterations of the primary and recurrent gliomas; however,
we could not detect non-coding and structure variants. Third, the
absence of molecular biology experimental validation was also
one of the limitations of our study. Lastly, our study lacked other
omics data as a supplement. Beyond genome evolution, cancers
can also evolve through epigenetic modifications, which interact
closely with the changing tumor microenvironment [46].
5. Conclusions

In summary, our study highlights the importance of studying
the patterns of glioma recurrence and the impact of chemoradio-
therapy on the intratumoral heterogeneity of recurrent gliomas.
Future studies of paired primary and recurrent gliomas with
multi-regional sampling and single-cell sequencing are required
to further elucidate these processes.
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