Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Redetermination of tamarugite, $\mathbf{N a A l}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathbf{6 H} \mathbf{H}_{2} \mathrm{O}$

Kurt Mereiter

Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria

Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Received 4 September 2013; accepted 10 September 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{Al}-\mathrm{O})=0.001 \AA$; R factor $=0.025 ; \omega R$ factor $=0.061$; data-to-parameter ratio $=17.1$.

The crystal structure of tamarugite [sodium aluminium bis(sulfate) hexahydrate] was redetermined from a single crystal from Mina Alcaparossa, near Cerritos Bayos, southwest of Calama, Chile. In contrast to the previous work [Robinson \& Fang (1969). Am. Mineral. 54, 19-30], all non-H atoms were refined with anisotropic displacement parameters and H -atoms were located by difference Fourier methods and refined from X-ray diffraction data. The structure is built up from nearly regular $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedra and infinite double-stranded chains $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ that extend parallel to [001]. The Na^{+}cation has a strongly distorted octahedral coordination by sulfate O atoms $[\mathrm{Na}-\mathrm{O}=2.2709$ (11) 2.5117 (12) \AA], of which five are furnished by the chainbuilding sulfate group $\mathrm{S}_{2} \mathrm{O}_{4}$ and one by the non-bridging sulfate group $\mathrm{S}_{1} \mathrm{O}_{4}$. The $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ chain features an unusual centrosymmetric group formed by two NaO_{6} octahedra and two $\mathrm{S}_{2} \mathrm{O}_{4}$ tetrahedra sharing five adjacent edges, one between two NaO_{6} octahedra and two each between the resulting double octahedron and two $\mathrm{S} 2 \mathrm{O}_{4}$ tetrahedra. These groups are then linked into a double-stranded chain via corner-sharing between NaO_{6} octahedra and $\mathrm{S}_{2} \mathrm{O}_{4}$ tetrahedra. The S 1 O 4 group, attached to Na in the terminal position, completes the chains. The $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedron $(\langle\mathrm{Al}-\mathrm{O}\rangle$ $=1.885(11) \AA$) donates 12 comparatively strong hydrogen bonds $(\mathrm{O} \cdots \mathrm{O}=2.6665(14)-2.7971(15) \AA)$ to the sulfate O atoms of three neighbouring $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ chains, helping to connect them in three dimensions, but with a prevalence parallel to (010), the cleavage plane of the mineral. Compared with the previous work on tamarugite, the bond precision of $\mathrm{Al}-\mathrm{O}$ bond lengths as an example improved from 0.024 to 0.001 Å.

Related literature

For the previous structure determination of tamarugite, see: Robinson \& Fang (1969). For mineralogical data of tamar-
ugite, see: Anthony et al. (2003). For the mineralogy of three sulfate deposits of northern Chile including Mina Alcaparrosa, see: Bandy (1938). For the recently described new sulfate mineral alcaparrosite, see: Kampf et al. (2012). For crystal structures of the related aluminium sulfate hydrates mendozite $\left[\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}\right]$, sodium alum $\left[\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right]$, alunogen $\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 17 \mathrm{H}_{2} \mathrm{O}\right]$ and apjohnite $\left[\mathrm{MnAl}_{2}\left(\mathrm{SO}_{4}\right)_{4} \cdot-\right.$ $22 \mathrm{H}_{2} \mathrm{O}$], see: Fang \& Robinson (1972); Cromer et al. (1967); Menchetti \& Sabelli $(1974,1976)$.

Experimental

Crystal data

$\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$V=1136.57(10) \AA^{3}$
$M_{r}=350.19$
Monoclinic, $P 2_{k} / a$
$a=7.3847$ (3) A
$b=25.2814(15) \AA$
$c=6.1097$ (3) \AA
$\beta=94.85$ (2) ${ }^{\circ}$

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\min }=0.74, T_{\max }=0.88$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.061$
$S=1.14$
3316 reflections

194 parameters
H-atom parameters constrained
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.48 \times 0.25 \times 0.20 \mathrm{~mm}$

17967 measured reflections 3316 independent reflections 2826 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$
$\Delta \rho_{\text {max }}=0.48$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Table 1
Selected bond lengths (Å).

$\mathrm{Na}-\mathrm{O} 6$	$2.2709(11)$	$\mathrm{Al}-\mathrm{O} 9 W$	$1.8904(10)$
$\mathrm{Na}-\mathrm{O} 3$	$2.3389(12)$	$\mathrm{Al}-\mathrm{O} 14 W$	$1.9054(11)$
$\mathrm{Na}-\mathrm{OB}^{\mathrm{i}}$	$2.4153(12)$	$\mathrm{S} 1-\mathrm{O} 3$	$1.4671(10)$
$\mathrm{Na}-\mathrm{O}^{\text {ii }}$	$2.4814(12)$	$\mathrm{S} 1-\mathrm{O} 2$	$1.4738(10)$
$\mathrm{Na}-\mathrm{O}^{\mathrm{ii}}$	$2.5020(11)$	$\mathrm{S} 1-\mathrm{O} 1$	$1.4759(10)$
$\mathrm{Na}-\mathrm{O} 7^{\mathrm{i}}$	$2.5117(12)$	$\mathrm{S} 1-\mathrm{O} 4$	$1.4825(10)$
$\mathrm{Al}-\mathrm{O} 10 W$	$1.8755(10)$	$\mathrm{S} 2-\mathrm{O} 8$	$1.4653(10)$
$\mathrm{Al}-\mathrm{O} 13 W$	$1.8776(11)$	$\mathrm{S} 2-\mathrm{O} 6$	$1.4723(10)$
$\mathrm{Al}-\mathrm{O} 11 W$	$1.8816(10)$	$\mathrm{S} 2-\mathrm{O} 5$	$1.4814(10)$
$\mathrm{Al}-\mathrm{O} 12 W$	$1.8816(10)$	$\mathrm{S} 2-\mathrm{O} 7$	$1.4826(10)$

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9 W-\mathrm{H} 94 \cdots \mathrm{O} 2^{\text {iii }}$	0.80	2.00	2.7971 (15)	173
$\mathrm{O} 9 W-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.80	1.83	2.6282 (14)	178
$\mathrm{O} 10 W-\mathrm{H} 10 A \cdots \mathrm{O}^{\text {ii }}$	0.80	1.87	2.6665 (14)	173
$\mathrm{O} 10 W-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O}^{\text {iii }}$	0.80	1.78	2.5697 (14)	169
$\mathrm{O} 11 W-\mathrm{H} 11 A \cdots \mathrm{O} 7$	0.80	1.83	2.6315 (14)	176
$\mathrm{O} 11 W-\mathrm{H} 11 B \cdots \mathrm{O}$	0.80	1.93	2.7236 (14)	175
$\mathrm{O} 12 W-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\text {iii }}$	0.80	1.89	2.6787 (14)	171
$\mathrm{O} 12 W-\mathrm{H} 12 B \cdots \mathrm{O}^{\text {v }}$	0.80	1.84	2.6330 (14)	169
$\mathrm{O} 13 W-\mathrm{H} 13 A \cdots \mathrm{O} 1^{\text {vi }}$	0.80	1.86	2.6474 (14)	169
$\mathrm{O} 13 W-\mathrm{H} 13 B \cdots \mathrm{O} 1^{\text {vii }}$	0.80	1.88	2.6698 (14)	171
$\mathrm{O} 14 W-\mathrm{H} 14 A \cdots \mathrm{O}^{\text {viii }}$	0.80	2.18	2.7478 (15)	129
$\mathrm{O} 14 W-\mathrm{H} 14 B \cdots \mathrm{O} 8^{\text {iii }}$	0.80	1.96	2.7100 (17)	156

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x-1, y, z$; (iv) $x-\frac{1}{2},-y+\frac{1}{2}, z$; (v)
$x-1, y, z+1$; (vi) $x, y, z+1$; (vii) $x-\frac{1}{2},-y+\frac{1}{2}, z+1$; (viii) $-x+1,-y,-z+2$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PJ2005).

References

Anthony, J. W., Bideaux, R. A., Bladh, K. W. \& Nichols, M. C. (2003). Handbook of Mineralogy, Vol. V, Borates, Carbonates, Sulfates. Tucson: Mineral Data Publishing.
Bandy, M. C. (1938). Am. Mineral. 23, 669-760.
Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cromer, D. T., Kay, M. I. \& Larson, A. C. (1967). Acta Cryst. 22, 182-187.
Fang, J. H. \& Robinson, P. D. (1972). Am. Mineral. 57, 1081-1088.
Kampf, A. R., Mills, S. J., Housley, R. M. \& Williams, P. A. (2012). Mineral. Mag. 76, 851-861.
Menchetti, S. \& Sabelli, C. (1974). Tschermaks Miner. Petr. Mitt. 21, 164-178.
Menchetti, S. \& Sabelli, C. (1976). Mineral. Mag. 40, 599-608.
Robinson, P. D. \& Fang, J. H. (1969). Am. Mineral. 55, 19-30.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2013). E69, i63-i64 [doi:10.1107/S1600536813025154]

Redetermination of tamarugite, $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathbf{6 H} \mathbf{2} \mathbf{O}$

Kurt Mereiter

1. Comment

Tamarugite, $\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, is a secondary sulfate mineral which has been found in acidic environments generated by oxidation of sulfides like pyrite in the presence of alkali-rich aluminous rocks as Na and Al source. Classic occurrences of tamarugite are sulfate-rich weathering zones of sulfide ore deposits in the Atacama desert, Chile (Bandy, 1938). Other occurrences concern fumaroles, acid mine drainage, and burning coal dumps (Anthony et al., 2003). The mineral was first described from an occurrence in the Pampa del Tamarugal, Chile, from where it inherited its name (Anthony et al., 2003). The crystal structure of tamarugite was reported by Robinson \& Fang (1969) as part of studies on the structural chemistry of salt hydrate minerals of Al^{3+} and Fe^{3+}. Using diffraction data measured with a Buerger automated diffractometer (Weissenberg geometry, $\mathrm{Cu} \mathrm{K} \alpha$ radiation), they obtained $R[F]=0.073$ on $744 F_{h k l}$ with isotropic displacement parameters. They stated that hydrogen atom positions derived from stereochemical considerations were included in this refinement, but did neither report their coordinates nor corresponding geometric parameters.
The present structure redetermination was initiated when during an examination of sulfate mineral specimens from "Alcaparossa" (Mina Alcaparrosa near Cerritos Bayos, southwest of Calama, Chile; see Bandy, 1938) colourless crystals of good quality were encountered that turned out to be tamarugite. Unit cell setting and atom positions reported by Robinson \& Fang (1969) were maintained in the present study. A comparison of previous (Robinson \& Fang, 1969) and present structural data of tamarugite showed a fair agreement after taking into account that e.s.d.s for atomic coordinates were previously ca 20 times bigger than now, where standard deviations of the $\mathrm{Na}, \mathrm{Al}, \mathrm{S}-\mathrm{O}$ bond lengths are about 0.001 \AA. The largest difference between the two structures was $0.044 \AA$ for the bond S2-O5 (Table 1). The differences between previous and present non-hydrogen atom positions are $0.018 \AA$ on average and $0.054 \AA$ for O 5 .
The crystal structure of tamarugite is built up from nearly regular $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedra and an infinite two-strand chain of the composition $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ extending along [001] (Fig. 1). Na is coordinated by six sulfate oxygen atoms with $\mathrm{Na}-\mathrm{O}$ distances between 2.2709 (11) and 2.5117 (12) \AA, mean value $2.42 \AA(\sigma=0.10 \AA)$. Five of these six $\mathrm{Na}-\mathrm{O}$ bonds are to the sulfate group $\mathrm{S} 2 \mathrm{O}_{4}$ and only $\mathrm{Na}-\mathrm{O}$ bond to the sulfate group $\mathrm{S} 1 \mathrm{O}_{4}$. The coordination figure about Na can be described as a strongly distorted octahedron with cis bond angles between 57.26 (3) and 116.48 (4), and with trans bond angles between 135.96 (4) and $161.83(5)^{\circ}$. This distortion is mostly due to the presence of a compact centrosymmetric group of two NaO_{6} octahedra and two $\mathrm{S}_{2} \mathrm{O}_{4}$ groups joined via five edge-sharing polyhedral links, one between two NaO_{6} octahedra and four between these two NaO_{6} octahedra and two adjacent SO_{4} tetrahedra (Fig. 1). Two corner-sharing links between NaO_{6} and $\mathrm{S}_{2} \mathrm{O}_{4}$ polyhedra via O_{6} expand this group into a two-stranded chain, to which at terminal position the $\mathrm{S1O}_{4}$ tetrahedron is attached via O 3 . The two independent sulfate groups SiO_{4} and $\mathrm{S}_{2} \mathrm{O}_{4}$ form relatively regular tetrahedra with $\mathrm{S}-\mathrm{O}$ bond length in the range $1.4653(10)-1.4825(10) \AA$ and a mean bond length of $\mathrm{S}-\mathrm{O}=1.475$ (7) \AA. The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ bond angles vary only over a narrow range of $3.3^{\circ}\left(107.34(6)-110.61(6)^{\circ}\right)$. Six of the eight sulfate oxygen atoms are involved in two external bonds, either two hydrogen bonds ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4$), or one $\mathrm{Na}-$ O and one hydrogen bond ($\mathrm{O} 3, \mathrm{O} 6, \mathrm{O}$). O 5 is involved in one $\mathrm{Na}-\mathrm{O}$ and two hydrogen bonds, and O 7 in two $\mathrm{Na}-\mathrm{O}$
and one hydrogen bonds. The $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedron has a mean bond length of $\langle\mathrm{Al}-\mathrm{O}\rangle=1.885$ (11) \AA, in good accord with the aluminium sulfate hydrates mendozite $\left(\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}\right)$, sodium alum $\left(\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}\right)$, alunogen $\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 17 \mathrm{H}_{2} \mathrm{O}\right)$, and apjohnite (a Mn analogue of pickeringite, $\left.\mathrm{MgAl}_{2}\left(\mathrm{SO}_{4}\right)_{4} .22 \mathrm{H}_{2} \mathrm{O}\right)$ (Fang \& Robinson, 1972; Cromer et al., 1967; Menchetti \& Sabelli, 1974, 1976). It is fairly regular by having cis bond angles of 85.98 (5) - 93.76 (6) ${ }^{\circ}$ and trans bond angles of $173.97(5)-177.69(5)^{\circ}$. The $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedron donates twelve comparatively strong hydrogen bonds with $\mathrm{O} \cdots \mathrm{O}=2.6665(14)-2.7971(15) \AA$ to the sulfate oxygen atoms of three neighbouring $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ chains (Table 2). Eleven hydrogen bonds are largely linear having $\mathrm{H} \cdots \mathrm{O}=1.78-2.00 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=156-178^{\circ}$ (Table 2). Only the hydrogen bond $\mathrm{O} 14 \mathrm{~W}-\mathrm{H} 14 \mathrm{~A} \cdots \mathrm{O} 5^{\text {viii }}$ is strongly bent due to the arrangement of the acceptor oxgen atom. It has therefore an outlying geometry with $\mathrm{H} \cdots \mathrm{O}=2.18 \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=129^{\circ}$. The next nearest oxygen neighbour of $\mathrm{H} 14 \mathrm{~A}, \mathrm{O} 3^{\mathrm{iii}}$ with $\mathrm{H} 14 \mathrm{~A} \cdots \mathrm{O} 3^{\text {iii }}=2.65 \AA$, is not regarded as significantly bonded and therefore was not included in Table 2. The packing diagrams shown in Figs. 2 and 3 include all hydrogen bonds of the structure. Fig. 2 shows that each $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is hydrogen bonded with three $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ chains. Ten of the twelve different hydrogen bonds help to establish layers parallel to (010) with the composition $\left\{\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]_{2}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\right\}$ and the range $-1 / 4<y<1 / 4,1 / 4<y<3 / 4$, etc. At $y \simeq 1 / 4$ and $3 / 4$ these layers are mutually linked via only two of the twelve different hydrogen bonds, $\mathrm{O} 9 \mathrm{~W}-\mathrm{H} 9 \mathrm{~b} \cdots \mathrm{O} 4^{\mathrm{v}}$ and $\mathrm{O} 13 \mathrm{~W}-\mathrm{H} 13 b^{\cdots \mathrm{O}} 1^{\text {vii }}$ (Figs. 2 and 3). These structural features agree with the preferentially tabular habit of crystals of tamarugite and their perfect cleavage on (010) (Anthony et al., 2003). For structural relationships between tamarugite $\left(\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$, mendozite $\left(\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 11 \mathrm{H}_{2} \mathrm{O}\right.$; contains trans$\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)_{2}$ groups and $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra), and sodium alum $\left(\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O}\right.$; contains $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ and $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra), the reader is referred to Fang \& Robinson (1972).

2. Experimental

Tamarugite used in this study was on a specimen of copiapite and pickeringite from "Alcaparossa, Chile", this is Mina Alcaparrosa near Cerritos Bayos, southwest of Calama, Chile, a location that furnished many well crystallized Fe^{3+} sulfate hydrates (Bandy, 1938) and is type locality for the minerals paracoquimbite, parabutlerite and the new species alcaparrosite $\left(\mathrm{K}_{3} \mathrm{Ti}^{4+} \mathrm{Fe}^{3+}\left(\mathrm{SO}_{4}\right)_{4} \mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$; Kampf et al., 2012).

3. Refinement

All hydrogen atoms were clearly visible in a difference Fourier synthesis and refined satisfactorily without restraints. For the final calculations all water molecules were idealized to have $\mathrm{O}-\mathrm{H}=0.80 \AA$ and $\mathrm{H}-\mathrm{O}-\mathrm{H}=108.0^{\circ}$ and were subsequently refined as rigid groups using AFIX 6 of program SHELXL97 (Sheldrick, 2008) with $U_{\text {iso }}(\mathrm{H})$ unrestrained. This refinement method may be considered as an approach to describe the electron density distribution of a water molecule as a fixed aspheric entity that may optionally include idealized nuclear H positions for subsequent geometric calculations.

Computing details

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figure 1
View of the two building blocks of tamarugite, the $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ octahedron and a segment of an infinite double-strand chain $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ extending along [001]. Thermal displacement ellipsoids are shown at the 50% probability level. Symmetry operators: none x, y, z; (i) $1-x,-y,-z$; (ii) $x, y,-1+z$; (iii) $1-x,-y, 1-z$.

Figure 2

The crystal structure of tamarugite in a projection along [001], the direction of the $\left[\mathrm{Na}\left(\mathrm{SO}_{4}\right)_{2}\right]^{3-}$ chains. Hydrogen bonds are shown as blue lines. Only the atoms of the asymmetric unit are labeled.

Figure 3
The crystal structure of tamarugite in a projection along [100]. Hydrogen bonds are shown as blue lines. Only the atoms of the asymmetric unit are labeled.

Sodium aluminium bis(sulfate) hexahydrate

Crystal data

$\mathrm{NaAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=350.19$
Monoclinic, $P 2_{1} / a$
Hall symbol: -P 2yab
$a=7.3847$ (3) \AA
$b=25.2814(15) \AA$
$c=6.1097$ (3) \AA
$\beta=94.85$ (2) ${ }^{\circ}$
$V=1136.57(10) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.74, T_{\text {max }}=0.88$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.061$
$S=1.14$
3316 reflections
194 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=720$
$D_{\mathrm{x}}=2.047 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=2.5-30.0^{\circ}$
$\mu=0.66 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, colourless
$0.48 \times 0.25 \times 0.20 \mathrm{~mm}$

17967 measured reflections
3316 independent reflections
2826 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=30.1^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-10 \rightarrow 10$
$k=-35 \rightarrow 35$
$l=-8 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0304 P)^{2}+0.149 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.48$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0154 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Na	$0.61674(8)$	$0.05252(2)$	$0.19574(9)$	$0.02332(13)$
Al	$0.14270(5)$	$0.145043(15)$	$0.67813(6)$	$0.01380(9)$
S1	$0.64309(4)$	$0.183070(12)$	$0.20951(5)$	$0.01517(8)$
S2	$0.70759(4)$	$0.020635(12)$	$0.75101(5)$	$0.01550(8)$
O1	$0.56130(13)$	$0.22057(4)$	$0.04440(16)$	$0.0243(2)$
O2	$0.81572(14)$	$0.16235(5)$	$0.13994(16)$	$0.0289(2)$
O3	$0.51612(15)$	$0.13940(4)$	$0.23679(18)$	$0.0278(2)$
O4	$0.68102(15)$	$0.21088(4)$	$0.42206(16)$	$0.0265(2)$
O5	$0.70649(14)$	$-0.03788(4)$	$0.73854(17)$	$0.0236(2)$
O6	$0.75440(14)$	$0.04265(4)$	$0.53995(15)$	$0.0264(2)$
O7	$0.52218(13)$	$0.03764(4)$	$0.79589(16)$	$0.0223(2)$
O8	$0.83689(14)$	$0.03868(4)$	$0.93065(16)$	$0.0253(2)$
O9W	$0.12417(13)$	$0.18649(4)$	$0.41967(15)$	$0.01999(19)$
H9A	0.0410	0.1799	0.3314	$0.036(5)^{*}$
H9B	0.1394	0.2178	0.4205	$0.060(7)^{*}$
O10W	$0.06021(14)$	$0.08844(4)$	$0.49795(18)$	$0.0246(2)$
H10A	0.1292	0.0712	0.4331	$0.040(6)^{*}$
H10B	-0.0271	0.0706	0.5143	$0.048(6)^{*}$
O11W	$0.38482(13)$	$0.12715(4)$	$0.63708(16)$	$0.01946(19)$
H11A	0.4237	0.0992	0.6801	$0.042(6)^{*}$
H11B	0.4225	0.1328	0.5204	$0.040(6)^{*}$
O12W	$-0.09652(13)$	$0.16350(4)$	$0.73114(15)$	$0.0214(2)$
H12A	-0.1675	0.1793	0.6492	$0.045(6)^{*}$
H12B	-0.1363	0.1624	0.8489	$0.047(6)^{*}$
O13W	$0.23469(14)$	$0.20302(4)$	$0.84445(17)$	$0.0256(2)$
H13A	0.3364	0.2044	0.9006	$0.046(6)^{*}$
H13B	0.1744	0.2237	0.9058	$0.047(6)^{*}$
O14W	$0.13788(16)$	$0.09989(5)$	$0.92728(18)$	$0.0325(3)$
H14A	0.2199	0.0995	$0.073(8)^{*}$	
H14B	0.0685	0.0768	0.9525	$0.18(2)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na	$0.0259(3)$	$0.0258(3)$	$0.0184(3)$	$0.0010(2)$	$0.0027(2)$	$-0.0016(2)$
Al	$0.01271(17)$	$0.01541(17)$	$0.01329(17)$	$0.00230(13)$	$0.00115(12)$	$0.00043(13)$
S 1	$0.01638(14)$	$0.01529(14)$	$0.01387(14)$	$0.00107(10)$	$0.00146(10)$	$0.00165(10)$

supplementary materials

S2	$0.01550(14)$	$0.01615(14)$	$0.01499(14)$	$0.00061(11)$	$0.00212(10)$	$0.00103(10)$
O1	$0.0220(5)$	$0.0237(5)$	$0.0256(5)$	$-0.0051(4)$	$-0.0067(4)$	$0.0106(4)$
O2	$0.0211(5)$	$0.0454(7)$	$0.0203(5)$	$0.0096(4)$	$0.0034(4)$	$-0.0031(4)$
O3	$0.0329(6)$	$0.0194(5)$	$0.0319(5)$	$-0.0057(4)$	$0.0081(4)$	$0.0045(4)$
O4	$0.0352(6)$	$0.0237(5)$	$0.0193(5)$	$0.0096(4)$	$-0.0046(4)$	$-0.0045(4)$
O5	$0.0261(5)$	$0.0171(4)$	$0.0283(5)$	$0.0034(4)$	$0.0063(4)$	$-0.0015(4)$
O6	$0.0256(5)$	$0.0366(6)$	$0.0171(5)$	$-0.0108(4)$	$0.0021(4)$	$0.0051(4)$
O7	$0.0183(4)$	$0.0212(5)$	$0.0278(5)$	$0.0055(4)$	$0.0044(4)$	$0.0043(4)$
O8	$0.0227(5)$	$0.0335(6)$	$0.0192(5)$	$-0.0048(4)$	$-0.0018(4)$	$-0.0011(4)$
O9W	$0.0221(5)$	$0.0184(5)$	$0.0188(5)$	$-0.0015(4)$	$-0.0020(4)$	$0.0039(3)$
O10W	$0.0216(5)$	$0.0194(5)$	$0.0344(6)$	$-0.0046(4)$	$0.0113(4)$	$-0.0084(4)$
O11W	$0.0171(4)$	$0.0198(5)$	$0.0222(5)$	$0.0050(3)$	$0.0056(4)$	$0.0032(4)$
O12W	$0.0164(4)$	$0.0321(5)$	$0.0160(4)$	$0.0080(4)$	$0.0024(3)$	$0.0024(4)$
O13W	$0.0164(5)$	$0.0289(5)$	$0.0305(5)$	$0.0057(4)$	$-0.0050(4)$	$-0.0138(4)$
O14W	$0.0282(6)$	$0.0436(7)$	$0.0260(5)$	$0.0095(5)$	$0.0041(4)$	$0.0168(5)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Na}-\mathrm{O} 6$	2.2709 (11)	S2-O5	1.4814 (10)
$\mathrm{Na}-\mathrm{O} 3$	2.3389 (12)	S2-07	1.4826 (10)
$\mathrm{Na}-\mathrm{O} 8^{\text {i }}$	2.4153 (12)	$\mathrm{O} 5-\mathrm{Na}{ }^{\text {ii }}$	2.4814 (12)
$\mathrm{Na}-\mathrm{O} 5^{\text {ii }}$	2.4814 (12)	$\mathrm{O} 7-\mathrm{Na}^{\text {ii }}$	2.5020 (11)
$\mathrm{Na}-\mathrm{O}^{\text {ii }}$	2.5020 (11)	$\mathrm{O} 7-\mathrm{Na}^{\text {iii }}$	2.5117 (12)
$\mathrm{Na}-\mathrm{O}^{\text {i }}$	2.5117 (12)	O8-Na ${ }^{\text {iii }}$	2.4153 (12)
Al-O10W	1.8755 (10)	O9W—H9A	0.80
$\mathrm{Al}-\mathrm{O} 13 \mathrm{~W}$	1.8776 (11)	O9W—H9B	0.80
$\mathrm{Al}-\mathrm{O} 11 \mathrm{~W}$	1.8816 (10)	O10W-H10A	0.80
$\mathrm{Al}-\mathrm{O} 12 \mathrm{~W}$	1.8816 (10)	O10W-H10B	0.80
$\mathrm{Al}-\mathrm{O} 9 \mathrm{~W}$	1.8904 (10)	O11W-H11A	0.80
$\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	1.9054 (11)	O11W-H11B	0.80
S1-O3	1.4671 (10)	O12W-H12A	0.80
S1-O2	1.4738 (10)	O12W-H12B	0.80
S1-O1	1.4759 (10)	O13W-H13A	0.80
S1-04	1.4825 (10)	O13W-H13B	0.80
S2-08	1.4653 (10)	O14W-H14A	0.80
S2-O6	1.4723 (10)	O14W-H14B	0.80
$\mathrm{O} 6-\mathrm{Na}-\mathrm{O} 3$	97.20 (4)	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 4$	108.50 (6)
$\mathrm{O} 6-\mathrm{Na}-\mathrm{O} 8^{\text {i }}$	109.33 (4)	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 4$	109.27 (6)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O}^{\text {i }}$	116.48 (4)	O8-S2-06	110.61 (6)
$\mathrm{O} 6-\mathrm{Na}-\mathrm{O} 5^{\mathrm{ii}}$	101.25 (4)	O8-S2-O5	110.48 (6)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 5^{\text {ii }}$	78.70 (4)	O6-S2-O5	109.46 (6)
$\mathrm{O} 8-\mathrm{Na}-\mathrm{O} 5^{\text {ii }}$	142.95 (4)	O8-S2-O7	108.94 (6)
$\mathrm{O} 6-\mathrm{Na}-\mathrm{O} 7{ }^{\text {ii }}$	91.90 (4)	O6-S2-07	109.95 (6)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 7^{\text {ii }}$	135.96 (4)	O5-S2-07	107.34 (6)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 7^{\mathrm{ii}}$	100.49 (4)	$\mathrm{S} 1-\mathrm{O} 3-\mathrm{Na}$	118.86 (6)
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 7^{\text {ii }}$	57.26 (3)	$\mathrm{S} 2-\mathrm{O} 5-\mathrm{Na}^{\text {ii }}$	98.15 (5)
$\mathrm{O} 6-\mathrm{Na}-\mathrm{O} 7^{\text {i }}$	161.83 (5)	$\mathrm{S} 2-\mathrm{O} 6-\mathrm{Na}$	137.12 (6)
$\mathrm{O} 3-\mathrm{Na}-\mathrm{O} 7^{\text {i }}$	100.38 (4)	$\mathrm{S} 2-\mathrm{O} 7-\mathrm{Na}^{\mathrm{ii}}$	97.25 (5)
$\mathrm{O} 8^{\mathrm{i}}-\mathrm{Na}-\mathrm{O} 7^{\text {i }}$	58.24 (3)	$\mathrm{S} 2-\mathrm{O} 7-\mathrm{Na}^{\text {iii }}$	92.19 (5)

$\mathrm{O}^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 7^{\mathrm{i}}$	$86.73(4)$
$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Na}-\mathrm{O} 7^{\mathrm{i}}$	$78.62(4)$
$\mathrm{O} 10 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 13 \mathrm{~W}$	$176.35(5)$
$\mathrm{O} 10 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 11 \mathrm{~W}$	$90.20(5)$
$\mathrm{O} 13 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 11 \mathrm{~W}$	$87.45(5)$
$\mathrm{O} 10 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 12 \mathrm{~W}$	$91.56(5)$
$\mathrm{O} 13 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 12 \mathrm{~W}$	$90.87(5)$
$\mathrm{O} 11 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 12 \mathrm{~W}$	$177.69(5)$
$\mathrm{O} 10 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 9 \mathrm{~W}$	$86.31(5)$
$\mathrm{O} 13 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 9 \mathrm{~W}$	$90.96(5)$
$\mathrm{O} 11 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 9 \mathrm{~W}$	$91.40(5)$
$\mathrm{O} 12 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 9 \mathrm{~W}$	$90.21(5)$
$\mathrm{O} 10 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	$89.13(6)$
$\mathrm{O} 13 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	$93.76(6)$
$\mathrm{O} 11 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	$92.56(5)$
$\mathrm{O} 12 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	$85.98(5)$
$\mathrm{O} 9 \mathrm{~W}-\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}$	$173.97(5)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	$110.00(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	$109.42(6)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$110.20(6)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$	$109.43(6)$

Na ${ }^{\text {iii }}$-O7- $\mathrm{Na}^{\text {iii }}$	101.38 (4)
S2-O8-Na ${ }^{\text {iii }}$	96.57 (5)
Al-O9W-H9A	116.5
Al-O9W-H9B	122.9
H9A-O9W-H9B	108.0
Al-O10W-H10A	121.1
Al-O10W-H10B	125.6
H10A-O10W-H10B	108.0
Al-O11W-H11A	119.2
Al-O11W-H11B	118.8
H11A-O11W-H11B	108.0
$\mathrm{Al}-\mathrm{O} 12 \mathrm{~W}-\mathrm{H} 12 \mathrm{~A}$	126.2
Al-O12W-H12B	124.6
H12A-O12W-H12B	108.0
$\mathrm{Al}-\mathrm{O} 13 \mathrm{~W}-\mathrm{H} 13 \mathrm{~A}$	123.4
Al-O13W-H13B	125.0
H13A-O13W-H13B	108.0
$\mathrm{Al}-\mathrm{O} 14 \mathrm{~W}-\mathrm{H} 14 \mathrm{~A}$	121.3
Al-O14W-H14B	130.3
H14A-O14W-H14B	108.0

Symmetry codes: (i) $x, y, z-1$; (ii) $-x+1,-y,-z+1$; (iii) $x, y, z+1$.

Hydrogen-bond geometry ($\stackrel{A}{ },{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9 W-\mathrm{H} 9 A \cdots \mathrm{O} 2^{\mathrm{iv}}$	0.80	2.00	2.7971 (15)	173
$\mathrm{O} 9 W-\mathrm{H} 98 \cdots{ }^{\text {¢ }}{ }^{\text {v }}$	0.80	1.83	2.6282 (14)	178
$\mathrm{O} 10 W-\mathrm{H} 10 A \cdots \mathrm{O} 5^{\text {ii }}$	0.80	1.87	2.6665 (14)	173
$\mathrm{O} 10 W-\mathrm{H} 10 B \cdots \mathrm{O}^{\text {iv }}$	0.80	1.78	2.5697 (14)	169
$\mathrm{O} 11 W-\mathrm{H} 11 A \cdots \mathrm{O} 7$	0.80	1.83	2.6315 (14)	176
$\mathrm{O} 11 W-\mathrm{H} 11 B \cdots \mathrm{O} 3$	0.80	1.93	2.7236 (14)	175
$\mathrm{O} 12 W-\mathrm{H} 12 A \cdots \mathrm{O} 4^{\mathrm{iv}}$	0.80	1.89	2.6787 (14)	171
$\mathrm{O} 12 W-\mathrm{H} 12 B \cdots \mathrm{O} 2{ }^{\text {vi }}$	0.80	1.84	2.6330 (14)	169
$\mathrm{O} 13 W-\mathrm{H} 13 A \cdots \mathrm{O} 1^{\text {iii }}$	0.80	1.86	2.6474 (14)	169
$\mathrm{O} 13 W-\mathrm{H} 13 B \cdots \mathrm{O} 1^{\text {vii }}$	0.80	1.88	2.6698 (14)	171
$\mathrm{O} 14 W-\mathrm{H} 14 A^{\cdots} \mathrm{O}^{\text {viii }}$	0.80	2.18	2.7478 (15)	129
$\mathrm{O} 14 W-\mathrm{H} 14 B \cdots \mathrm{O} 8^{\text {iv }}$	0.80	1.96	2.7100 (17)	156

Symmetry codes: (ii) $-x+1,-y,-z+1$; (iii) $x, y, z+1$; (iv) $x-1, y, z$; (v) $x-1 / 2,-y+1 / 2, z$; (vi) $x-1, y, z+1$; (vii) $x-1 / 2,-y+1 / 2, z+1$; (viii) $-x+1,-y,-z+2$.

