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Abstract

Pericardial fat is a localized fat depot associated with coronary artery calcium and myocardial infarction. We hypothesized
that genetic loci would be associated with pericardial fat independent of other body fat depots. Pericardial fat was
quantified in 5,487 individuals of European ancestry from the Framingham Heart Study (FHS) and the Multi-Ethnic Study of
Atherosclerosis (MESA). Genotyping was performed using standard arrays and imputed to ,2.5 million Hapmap SNPs. Each
study performed a genome-wide association analysis of pericardial fat adjusted for age, sex, weight, and height. A weighted
z-score meta-analysis was conducted, and validation was obtained in an additional 3,602 multi-ethnic individuals from the
MESA study. We identified a genome-wide significant signal in our primary meta-analysis at rs10198628 near TRIB2 (MAF
0.49, p = 2.7610-08). This SNP was not associated with visceral fat (p = 0.17) or body mass index (p = 0.38), although we
observed direction-consistent, nominal significance with visceral fat adjusted for BMI (p = 0.01) in the Framingham Heart
Study. Our findings were robust among African ancestry (n = 1,442, p = 0.001), Hispanic (n = 1,399, p = 0.004), and Chinese
(n = 761, p = 0.007) participants from the MESA study, with a combined p-value of 5.4E-14. We observed TRIB2 gene
expression in the pericardial fat of mice. rs10198628 near TRIB2 is associated with pericardial fat but not measures of
generalized or visceral adiposity, reinforcing the concept that there are unique genetic underpinnings to ectopic fat
distribution.

Citation: Fox CS, White CC, Lohman K, Heard-Costa N, Cohen P, et al. (2012) Genome-Wide Association of Pericardial Fat Identifies a Unique Locus for Ectopic
Fat. PLoS Genet 8(5): e1002705. doi:10.1371/journal.pgen.1002705

Editor: Michael Snyder, Stanford University School of Medicine, United States of America

Received November 29, 2011; Accepted March 27, 2012; Published May 10, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: Framingham Heart Study: This research was conducted in part using data and resources from the Framingham Heart Study of the National Heart, Lung,
and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The analyses reflect intellectual input and resource development
from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was partially supported by the
National Heart, Lung, and Blood Institute’s Framingham Heart Study (Contract No. N01-HC-25195) and its contract with Affymetrix for genotyping services
(Contract No. N02-HL-6-4278). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment
of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. MESA Study: MESA and the MESA SHARe project are
conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support is provided by grants R01-
HL-085323 and R01-HL-071205 and by contracts N01 HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165,
N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, and RR-024156. MESA SNP Health Association Resource (SHARe): Funding for SHARe genotyping
was provided by NHLBI Contract N02-HL-6-4278. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: foxca@nhlbi.nih.gov (CSF); yoliu@wfubmc.edu (YL)

Introduction

Obesity is a heterogeneous condition, and its attendant

metabolic sequelae may not be adequately captured by using

traditional metrics of generalized adiposity [1]. In part, this is

because different fat depots may be associated with differential

metabolic risk. For example, visceral abdominal fat is thought to

be a unique pathogenic fat depot [2,3].
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Ectopic fat depots, defined as fat depots in non-classical

locations [4], may mediate vascular disease due to their local

toxic effect on nearby anatomic structures. We and others have

shown that pericardial fat, defined as fat surrounding the heart and

attendant structures, but not visceral fat, is associated with

coronary artery calcification and coronary heart disease [5,6].

The hypothesized local toxic effect of pericardial fat is supported

by experimental research demonstrating perivascular inflamma-

tion [7] and smooth muscle cell proliferation [8].

Prior studies have shown that measures of generalized adiposity,

including body mass index, are heritable [9]. In addition, more

recent work has demonstrated that markers of body fat distribu-

tion, including waist-hip-ratio [10], subcutaneous and abdominal

visceral fat [3], and fatty liver [11] also have a heritable

component. Recent large scale genome-wide association studies

(GWAS) have identified genomic loci for indices of body fat

distribution that are independent of BMI [11–13], further

supporting the concept that unique genetic variants exist that

are associated with ectopic fat depots. To explore this further, we

conducted a GWAS of pericardial fat to determine whether

genetic loci are associated with the propensity to store fat around

the heart.

Results

Study Sample Characteristics
The study sample characteristics are shown in Table 1 and

Table S1. The mean age ranged from 55 years in the Framingham

Heart Study to 62 years in MESA. In the MESA cohort, mean

pericardial fat differed significantly between race/ethnicity groups.

Compared to European Americans, mean pericardial fat was

significantly lower in African Americans (P = 1.1E-38) and

Chinese Americans (P = 4.8E-11), and was higher in Hispanic

Americans (p = 0.02).

Heritability Analyses and Genetic Correlations
The heritability (h2) of pericardial fat in the Framingham Heart

Study was 50%. Upon additional adjustment for height and

weight, the h2 was 52%.

We also calculated genetic correlations between pericardial fat,

visceral fat (VAT), and BMI in the Framingham Heart Study.

Genetic correlations between pericardial fat and VAT were 0.57;

between pericardial fat and BMI 0.41, and between VAT and

BMI 0.75. In all cases, we confirmed that there are genes that are

associated with pair-wise comparisons of all three traits (all p-

values,1.7*10E-15 for overlapping genetic correlations), although

our results also suggest that not all genes are shared (all p-

values,1.4*10E-22 for non-overlapping genetic correlations).

GWAS Results of Meta-Analysis of the Framingham Heart
Study and the MESA Study

The quantile-quantile plot (Figure S1) of GWAS of 5487

individuals of European ancestry demonstrated deviation from the

null with no evidence of population stratification (lambda 0.99).

The Manhattan plot (Figure S2) shows a genome-wide significant

locus on chromosome 2 (p = 2.7E-08). The lead SNP (MAF 0.49)

is rs10198628 located ,80 kb upstream from the TRIB2 gene. Per

copy of the A allele, pericardial fat volumes were 4.4 cm3 lower in

the Framingham Heart Study and 3.6 cm3 lower in MESA. All

SNPs with p-values,1E-04 are shown in Table S2. We observed

no evidence for a sex interaction for rs10198628 (p = 0.33). The

variance of pericardial fat explained by the lead SNP in the

Framingham Heart Study was 0.5% and 0.3% in MESA.

Stage 2 Validation
We performed validation in a multi-ethnic sample of African

ancestry (n = 1442, b= 3.31, p = 0.001), Hispanic (n = 1399,

b= 3.62, p = 0.004), and Chinese (n = 761, b= 4.56, p = 0.007)

participants from the MESA study, with a combined Stage 1 and

Stage 2 p-value of 5.4E-14 (Figure 1A and Figure 1B).

Associations with Other Fat Depots
To assess whether rs10198628 is specific to pericardial fat, we

assessed its associations with other fat depots (Table 2). We

observed no association with body mass index from the GIANT

consortium (p = 0.38) [14] or with visceral or subcutaneous fat

from the Framingham Heart Study (p = 0.17 and 0.34, respec-

Table 1. Study sample characteristics.

Study n Women % (n) Age (years) BMI (kg/m2) Pericardial Fat (cm3)

Framingham Heart Study 3100 48 55.4(11.8) 27.8(5.3) 113.6(44.7)

MESA study

European Ancestry 2519 52 (1317) 62.7 (10.2) 27.7 (5.1) 85.3 (46.2)

African Ancestry 1609 54 (868) 62.3 (10.1) 30.1 (5.9) 68.0 (34.6)

Chinese 768 51 (390) 62.4 (10.4) 24.0 (3.3) 74.1 (31.6)

Hispanic 1445 52 (746) 61.4 (10.3) 29.4 (5.1) 88.6 (43.7)

Data shown as mean (standard deviation) unless otherwise indicated.
doi:10.1371/journal.pgen.1002705.t001

Author Summary

Pericardial fat is a localized fat depot associated with
coronary artery calcium and myocardial infarction. To test
whether genetic loci are associated with pericardial fat
independent of other body fat depots, we measured
pericardial fat in 5,487 individuals of European ancestry.
After performing an unbiased screen using genome-wide
association, we identified a genome-wide significant signal
in our primary meta-analysis at rs10198628 near TRIB2
(MAF 0.49, p = 2.7610-08). This SNP was not associated with
visceral fat (p = 0.17) or body mass index (p = 0.38). Our
findings were robust among multi-ethnic participants from
the MESA study, with a combined p-value of 5.4E-14. We
observed TRIB2 gene expression in the pericardial fat of
mice. rs10198628 near TRIB2 is associated with pericardial
fat but not measures of generalized or visceral adiposity,
reinforcing the concept that there are unique genetic
underpinnings to ectopic fat distribution.

Pericardial Fat GWAS
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tively). We observed nominal direction-consistent associations with

waist-hip-ratio adjusted for body mass index from the GIANT

consortium (p = 0.01) [12] and with visceral fat adjusted for body

mass index in the Framingham Heart Study (p = 0.01).

Associations of Previously Published Loci for Body Fat
Distribution and BMI with Pericardial Fat

We tested whether previously published SNPs in association

with waist-hip-ratio adjusted for BMI [12] and BMI [14] are

associated with pericardial fat in our meta-analysis dataset (Tables

S4 and S5). Among the 14 well-validated SNPs for body fat

distribution, we observed direction-consistent associations with

CPEB4, a gene involved in cell survival [15]. Among SNPs

associated with BMI, we observed nominal direction-consistent

associations with FTO; no other associations were observed.

Associations with Subclinical Atherosclerosis and
Cardiovascular Disease Traits

Because of the proposed locally toxic effect of pericardial fat and

cardiovascular disease outcomes, we evaluated the association of

rs10198628 with several CVD phenotypes. We observed nominal,

Figure 1. Regional association plots of rs10198628 in MESA ancestry populations. European, African (A), Chinese, and Hispanic ancestry
population (B).
doi:10.1371/journal.pgen.1002705.g001

Table 2. Results for rs10198628 across body composition and
atherosclerosis traits in the Framingham Heart Study
(n = 3,158) and the GIANT Consortium (n = 77,157 to 133,828)
modeled per copy of the A allele.

Trait Source n Beta* P-value

Subcutaneous adipose tissue FHS 3182 20.025 0.34

Visceral adipose tissue FHS 3158 20.036 0.17

Visceral adipose tissue adj BMI FHS 3146 20.065 0.010

Visceral/Subcutaneous fat ratio FHS 3158 20.019 0.47

Body mass index GIANT 123854 neg 0.38

Waist hip ratio adjusted BMI GIANT 77157 neg 0.01

Height GIANT 133828 neg 0.61

Carotid intimal medial thickness MESA 2505 20.051 0.04

Coronary Artery Calcium MESA 2527 0.056 0.25

Coronary Heart Disease CARDIoGRAM 819292 1.01 0.37

*Odds ratio presented for CARDIoGRAM.
doi:10.1371/journal.pgen.1002705.t002

Pericardial Fat GWAS
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direction-consistent associations with carotid intimal medial

thickness from the MESA individuals of European ancestry

(n = 2505, p = 0.04), but we observed no association with

myocardial infarction from the CARDIoGRAM consortium

(p = 0.37, OR 1.01 [95% CI 0.985–1.04], n = 81929) [16] or with

coronary artery calcification from the MESA study (p = 0.25,

n = 2527).

Association of Validated Coronary Heart Disease SNPs in
the Pericardial Fat GWAS

We performed a look-up of 25 validated SNPs for coronary

heart disease from the CARDIoGRAM consortium (Table S3)

[16], and found that rs12190287 at TCF21 was associated with

pericardial fat in a direction-consistent fashion (p = 0.0019). No

additional SNPs met the bonferroni corrected p-value threshold of

p,0.002 (0.05/25).

Gene Expression
We queried available human gene expression genetics data (see

Methods) and identified eQTL associations with TRB2 in omental

adipose (rs890069, 1.79e-9) [42] and two independent subcutane-

ous adipose samples (rs4669887, 3.62e-9; rs12616457, 1.28e-6)

[41,42]. All of these variants are in LD with our lead SNP

rs10198628 (rs890069, rs4669887, rs1261657 have r2 0.38, 0.38

and 0.51 with rs10198629, respectively).

Next, we tested for gene expression in multiple subcutaneous

(inguinal, axillary, and gluteal) and visceral (epididymal, retroper-

itoneal, mesenteric, omental) adipose depots as well as classical

brown, pericardial, and perivascular adipose tissue which were

dissected from high-fat fed male mice. mRNA expression levels of

the adipocyte markers aP2 and PPARc2 were comparable across

all adipose depots. Trib2 was expressed in pericardial adipose

tissue, as well as all of the other adipose depots surveyed (Figure

S3). Expression in pericardial adipose tissue was comparable to

that in other adipose depots. Lipin 1 is another annotated gene

near our lead SNP. It was also expressed in pericardial adipose

tissue, as well as all other depots surveyed. Furthermore,

expression in pericardial adipose tissue was comparable to that

in other adipose depots.

Discussion

Principal Findings
We have identified a SNP near the TRIB2 locus that is

associated with pericardial fat but not with body mass index or

visceral abdominal fat. This SNP is also associated with pericardial

fat in a multi-ethnic sample consisting of individuals of European,

African, Hispanic, and Chinese ancestry. Finally, we identified a

nearby eQTL, suggesting the potential for altered gene expression

associated with our top SNP, or a correlated variant.

An important question of our work is whether rs10198628 is

uniquely associated with pericardial fat, or merely represents a

manifestation of generalized adiposity. Our results suggest that this

SNP is unique in its association with pericardial fat, given its strong

association with pericardial fat in our stage 1 and stage 2 analysis.

In contrast, this SNP was not associated with visceral abdominal

fat, an ectopic fat depot that is correlated with pericardial fat.

Further, we observed no association with our lead SNP and body

mass index in more than 100,000 individuals from the GIANT

consortium. We note that we observed nominal significance with

our lead SNP with VAT-adjusted-for-BMI and waist-hip-ratio-

adjusted for BMI, traits representing fat distribution.

Gene expression analysis in mice showed that Trb2 is expressed

in all adipose depots. Expression was not enriched in any depot.

Confirmation that Trb2 is expressed in adipose tissue supports a

functional role for this gene product in this tissue. Future studies

are needed to investigate the specific function of Trb2 in adipose

tissue, and in particular in pericardial fat. Finally, although our

lead SNP is closest to Trb2, it is also possible that this is part of a

regulatory region for another gene.

In the Context of the Current Literature
Prior genome-wide association studies have primarily used

easily-obtainable anthropometric measurements to estimate body

fat distribution [12,13]. While these studies benefit from concom-

itant enhanced power, the lack of detailed phenotyping renders the

precise meaning of the measurement uncertain. In the current

study, we have made use of well-validated measurements of

pericardial fat that have been previously associated with coronary

artery calcium [5,17], myocardial infarction [6,18], measurements

of left ventricular structure and function [19], and carotid intimal

medial thickness [20]. In this context, we sought to examine our

lead SNP with coronary calcium, coronary heart disease, and

carotid intimal medial thickness. Given the modest epidemiologic

associations that have been observed in concert with the relatively

small genetic effect sizes that are typical of GWAS, it is not

surprising that we observed only nominal associations with carotid

intimal medial thickness.

Our findings are also notable for some enrichment of association

with a SNP in TCF21, previously identified in association with

coronary heart disease in CARDIoGRAM [16]. TCF21 encodes a

transcription factor of the basic helix-loop-helix family and is a

molecular marker of white adipose tissue [21]. TCF21 is expressed

in the epicardium of the developing zebrafish, and is associated with

perivascular cells but not cardiomyocytes [22]. This is relevant given

the anatomic location of pericardial fat and thus rendering it a form

of perivascular fat surrounding the coronary arteries.

Potential Mechanisms
Our lead SNP is located about 80 kb downstream from TRIB2.

TRIB2 is the tribbles homolog 2 gene, part of the Tribbles gene

family. TRIB2 expression has been shown to be elevated in lung

cancer, and has been found to induce apoptosis through

downregulation of the transcription factor CCAAT/enhancer-

binding protein alpha (C/EBPa) [23]. Via this mechanism, TRIB2

may also suppress adipocyte differentiation via AKt inhibition and

C/EBPa degradation [24]. TRIB2 has also been associated with

hematologic abnormalities including acute myelogenous leukemia

[25]. TRIB2 has also been shown to be a regulator of the

inflammatory activity of monocytes [26], suggesting a possible

mechanism by which it may link low density lipoprotein

cholesterol to plaque formation. TRB1 and TRB3 have both been

linked to obesity and related phenotypes, with TRIB1 gene

expression linked to adipose tissue inflammation [27] and TRB3

gene expression associated with insulin resistance [28].

Our lead SNP also lies near the LPIN1 gene, a compelling

candidate gene that has previously been identified in association

with lipodystrophy syndromes [29]. While it is tempting to implicate

this gene in our association analyses, it is notable that only rare, not

common variants have been detected in human populations in

association with lipodystrophic phenotypes [30]. In addition, our

best SNP in the LIPN1 gene has a p-value = 0.03, rendering it less

likely. Finally, our lead SNP is ,1 MB from LPIN1.

Strengths and Limitations
Strengths of our study include the well-characterized pericardial

fat data present in both the Framingham Heart Study and the

MESA Study. An additional strength is the extension of our

Pericardial Fat GWAS
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findings to multi-ethnic populations, underscoring the generaliz-

ability of this finding. Typical of GWAS, we have identified an

associated locus, but the causal variant and gene remains

unidentified. Limitations include the relatively modest sample size

of our study, leading to relatively low power to detect small effects.

While our finding that rs12190287 at TCF21 was associated with

pericardial fat in a direction-consistent fashion, we are unable to

perform a formal mediation analysis.

Implications
These findings support the concept that unique genetic variants

exist in association with different ectopic fat depots. These findings

are important because they suggest that different ectopic fat depots

may each have their own unique genetic signature that is

independent of generalized adiposity. Future work should focus

on identifying the molecular mechanisms that link these genomic

loci to ectopic fat depots, as this could ultimately lead to the

identification of novel pathways and new therapeutic targets.

Conclusions
A SNP near TRIB2 is associated with pericardial fat but not

measures of generalized or visceral adiposity, reinforcing the

concept that there are unique genetic underpinnings to ectopic fat

distribution.

Methods

Phenotype Definition
Pericardial fat was measured on CT using protocols determined

by the participating studies, as described in the Study-Specific

Methods. Sex-specific residuals were created, with adjustment for

age, height, and weight, as well as principal components derived

from genotypes denoting population stratification where necessary.

Heritability Analyses
Heritability of pericardial fat was calculated in the Framingham

Heart Study using standard methods. Sex-and-cohort specific

residuals were created and then pooled for analysis using variance

components analysis (SOLAR) [31].

Genetic Correlations with Other Adiposity Traits
We used SOLAR [31] to calculate pair-wise genetic correlations

between pericardial fat, visceral fat, and BMI in the Framingham

Heart Study. We used residuals adjusted for age and sex. We

tested two separate hypotheses: RhoG = 0 is the test for

overlapping genetic correlations, whereas RhoG = 1 is the test

for non-overlapping genetic correlations.

Discovery Analyses
Table S1 and the study specific methods describe the

genotyping that was conducted. Quality-control filters were used

to exclude low-quality samples or SNPs. Each study imputed ,2.5

million Phase 2 HapMap SNPs based on CEU samples; allelic

dosage was used in the analysis.

Each cohort separately conducted the regression analysis, using

an additive genetic effect model with accounting for family structure

when necessary. Next, we conducted a fixed effects weighted Z-

score meta-analysis given possible differences in phenotype scaling

between the participating studies using METAL [32]. Statistical

significance was considered when SNPs reached a meta-analysis P

value#561028 [33]. Discovery analyses were performed on

European ancestry participants. SNPs were filtered at a minor

allele frequency,2% and an imputation quality score,0.3.

Stage 2 Analysis
We conducted Stage 2 validation using non-white ethnic

samples from the MESA study. Statistical significance was

achieved when a direction-consistent p-value was at least p,0.05.

Analyses of Related Phenotypes
For our lead SNP, we performed look-up in the publically

available GIANT datasets [12,14]. We also obtained specific look-

up results in the CARDIoGRAM (for coronary heart disease) [16]

and MESA (for coronary artery calcification and carotid intimal

medial thickness).

We also tested whether the 25 previously-identified SNPs for

coronary heart disease from the CARDIoGRAM consortium [16]

were associated with pericardial fat. To determine statistical

significance, we used the false discovery rate q-value; SNPs with q-

value,0.05 were considered statistically significant using the

QVALUE package in R [34].

Interaction Testing
We tested for a formal sex interaction of rs10198628. Each study

computed the interaction regression coefficient, standard error, and

p-value. For the sex interaction, we included, age, height, weight,

and any principal components (and study center) that were used in

the original discovery analysis. We additionally added rs10198628

and the cross-product rs10198628*sex. Interaction terms were

meta-analyzed using the weighted z-score approach.

Variance Explained
We calculated the variance explained using the following

formula: 2*MAF*(12MAF)*(((beta)‘2)/((SD)‘2)).

eSNP Analysis
We searched for eQTLs in a region bounded by the LIPN1

and TRIB2 genes using expression SNP (eSNP) datasets availably

publically or via collaboration including lymphocytes [35],

leukocytes [36], leukocytes from patients with Celiac disease

[37], lymphoblastoid cell lines (LCL) from children with asthma

[38], HapMap LCL from 3 populations [39], a separate study on

HapMap CEU LCL [40], peripheral blood monocytes [41,42],

subcutaneous and omental adipose tissue [43,44], and blood

samples [43], 2 studies on brain cortex [41,45], three large studies

of brain regions including prefrontal cortex, visual cortex and

cerebellum (Emilsson, personal communication), liver [44,46],

osteoblasts [47], skin [48], and additional fibroblast, T cell and

LCL samples [49]. Statistical significance was considered using the

association with gene transcript levels as originally described.

Gene Expression
Adipose tissue was dissected from male C57Bl/6J mice (Jackson

Labs) (n = 4) following 20 weeks of ad libitum feeding with a 60%

high-fat diet (Research Diets, New Brunswick NJ). High fat feeding

was used because many adipose depots (such as pericardial fat) are

either not visible or extremely limited in size in standard chow fed

mice. Animals were sacrificed and adipose tissues were dissected

and frozen in liquid nitrogen. The following adipose depots were

dissected: inguinal, axillary, gluteal, brown adipose, epididymal,

retroperitoneal, mesenteric, omental, pericardial, and perivascu-

lar. All animal experiments were done according to procedures

approved by the Institutional Animal Care and Use Committee of

Beth Israel Deaconess Medical Center.

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA)

combined with RNeasy mini-columns, (Qiagen, Valencia, CA)

according to the manufacturer’s instructions. For real-time PCR

Pericardial Fat GWAS

PLoS Genetics | www.plosgenetics.org 5 May 2012 | Volume 8 | Issue 5 | e1002705



analysis, cDNA was synthesized from RNA using the high capacity

cDNA synthesis kit (ABI, Carlsbad, CA). cDNA was used in

quantitative PCR containing SYBR-green dye (ABI). mRNA

expression levels for each gene were normalized to TBP. Quantitative

PCR was performed using an ABI-7900HT PCR machine.

In addition to Lipin 1 and Trb2, the expression of the adipocyte

markers aP2 and PPARc2 were also measured. The primer

sequences were as follows: aP2, forward 59 CAT CAG CGT AAA

TGG GGA TT 39 reverse 59 CCG CCA TCT AGG GTT ATG

AT 39; Lipin 1, forward 59 CGT ACG TGC GGC TCT GCG

AA 39 reverse 59 GCT CGG TCG CGT CAA GCT GA 39;

PPARc2, forward 59 GCA TGG TGC CTT CGC TGA 39

reverse 59 TGG CAT CTC TGT GTC AAC CAT G 39; TBP,

forward 59 CCC CTT GTA CCC TTC ACC AAT 39 reverse 59

GAA GCT GCG GTA CAA TTC CAG 39; Trib2, forward 59

CCC GCC CGA GAC TCC GAA CT 39 reverse 59 GCA CAG

CGC GGA AAA CGT GG 39.

Study-Specific Information
Framingham Heart Study. The Framingham Heart Study

began in 1948 with the enrollment of the Original Cohort [50]. In

1971, the 5,124 participants were enrolled as part of the Offspring

Cohort. Finally, in 2002, the Third Generation cohort was

enrolled (n = 4095) [51]. Participants for the present study were

derived from the Framingham Heart Study Multi-detector

Computed Tomography (MDCT) Sub-Study. Briefly, from June

2002 to April 2005, 3529 participants (2111 Third Generation,

1418 Offspring participants) underwent MDCT.

Framingham Heart Study participants underwent MDCT

utilizing 8-slice MDCT in a supine position (LightSpeed Ultra,

General Electric, Milwaukee, WI). On average, 48 contiguous

2.5 mm slices of the heart were acquired with prospectively ECG

triggered CT scanning protocol (120 kVp, 400 mA, temporal

resolution 330 ms).

We measured pericardial fat tissue volumes (cm3) with a

dedicated offline workstation (Aquarius 3D Workstation, TeraR-

econ Inc., San Mateo, CA) based on the principle that absolute

Hounsfield Units (HU) values correspond to tissue property. Thus,

we set a predefined image display (window width 2195 to 245

HU; window center 2120 HU) to identify pixels that correspond

with adipose tissue. Pericardial fat was measured across the

complete available imaging volume in cm3.

We used a semi-automatic segmentation technique which required

the reader to manually trace the pericardium. We defined pericardial

fat volume as adipose tissue located within the pericardial sac. Using a

random sample of 100 participants, intra-reader (ICC 0.97) and

inter-reader (ICC 0.95) reproducibility was excellent [5].

Framingham Heart Study participants also underwent eight-

slice MDCT imaging of the abdomen with twenty-five contiguous

five mm thick slices (120 kVp, 400 mA, gantry rotation time

500 ms, table feed 3:1) acquired 125 mm beyond the level of S1.

Subcutaneous and visceral adipose tissue volumes (SAT and VAT)

were assessed as previously described, with excellent inter-class

correlations for VAT (0.992) and SAT (0.997) [52].

The Phase II CEU HapMap panel was used a reference to

impute genotypes to roughly 2.5 million HapMap SNPs; details

can be found in Table S1. MACH v1.0.15/16 (http://www.sph.

umich.edu/csg/abecasis/MACH/) was used along with 200 (101

Men and 99 Women) biologically independent individuals in order

to establish parameter estimates. We then used these estimates to

infer gene dosage. Imputed genotypes were expressed as allelic

dosage (which is a decimal value ranging from 0–2).

Linear mixed effects regression modeling was used in order to

account for pedigree structure (R lme and kinship package). Given

that we observed association with the first principal component

(estimated using Eigenstrat [53]), we included this component in

our regression models.

MESA. The Multi-Ethnic Study of Atherosclerosis (MESA) is a

National Heart, Lung and Blood Institute-sponsored, population-

based investigation of subclinical cardiovascular disease and its

progression [54]. In brief, a total of 6,809 individuals, aged 45 to

84 years, were recruited from six US communities (Baltimore City

and County, MD; Chicago, IL; Forsyth County, NC; Los Angeles

County, CA; New York, NY; and St. Paul, MN) between July

2000 and August 2002.

All MESA participants underwent baseline cardiac CT scans at

baseline, which were analyzed for pericardial fat volume (cm3).

Cardiac CT scans were performed either with an ECG-triggered

(at 80% of the RR interval) electron-beam scanner (Chicago, Los

Angeles, and New York field centers; Imatron C-150, Imatron) or

with prospectively ECG-triggered scan acquisition at 50% of

the RR interval with a multidetector system that acquired 4

simultaneous 2.5-mm slices for each cardiac cycle in a sequential

or axial scan mode (Baltimore, Forsyth Country, and St. Paul field

centers; Lightspeed, General Electric or Volume Zoom, Siemens).

Three experienced CT analysts measured pericardial fat volume

on the previously obtained images of the heart. For pericardial fat

volume, slices within 15 mm above and 30 mm below the superior

extent of the left main coronary artery were included. This region

of the heart was selected because it includes the pericardial fat

located around the proximal coronary arteries (left main coronary,

left anterior descending, right coronary, and circumflex arteries).

The anterior border of the volume was defined by the chest wall

and the posterior border by the aorta and the bronchus. Volume

Analysis software (GE Healthcare, Waukesha, WI) was used to

discern fat from other tissues with a threshold of 2190 to 230

Hounsfield units. The volume was the sum of all voxels containing

fat. Our measure of pericardial fat volume was highly correlated

with total volume of pericardial fat volume in a random subset of

10 Diabetes Heart Study participants (correlation coefficient: 0.93;

p,0.0001). A random sample of 80 MESA participants was

selected and their CT scans were reread. The intra-class

correlation coefficients of intra-reader and inter-reader reliability

were 0.99 and 0.89 for pericardial fat [6].

Coronary artery calcium was also assessed using the cardiac CT

scans at baseline [55]. Briefly, we used the reader–work station

interface to calibrate each tomographic image according to the

estimated attenuation of the calcium phantom and then identified

and quantified the coronary calcium in each image. We than

calculated the coronary calcium score (Agatston score) for each

scan. Intraobserver and interobserver agreement was excellent

(kappa statistics, 0.93 and 0.90, respectively).

Carotid intimal medial thickness (IMT) measures were obtained

at baseline using ultrasound imaging of the carotid arteries that

was performed using a GE scanner. Using videotaped scans, we

performed a centralized interpretation of the data. IMT was

measured between lumen-intima and media-adventitia interfaces

of near and far walls of the common carotid artery (the 1 cm

segment proximal to the bifurcation) and the internal carotid

artery (including the bifurcation and 1 cm distal to the bifurca-

tion). A maximum IMT for each of these two segments was

standardized (by subtraction of the MESA population mean and

division by its standard deviation), and the mean of the

standardized IMT for the common and the internal carotid

maxima was used in analysis [56].

MESA participants provided consent for genotyping and had

DNA extracted at the time of baseline enrollment between 2000–

2002. Genotyping was performed at the Broad Institute of

Pericardial Fat GWAS
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Harvard and MIT (Boston, Massachusetts, USA) and at the

Affymetrix Laboratory (Santa Clara, CA, USA) using the

Affymetric Genome-Wide Human SNP Array 6.0 (Affymetrix,

Santa Clara, California, USA). Genotype results were imputed to

2.5 million SNPs using IMPUTE v.2.1.0 software (http://

mathgen.stats.ox.ac.uk/impute/impute.html) [57]. Participant-

specific quality controls included filters for call rate and number

of Mendelian errors per individual. SNP-specific quality controls

included filters for call rate and heterozygosity.

Linear regression modeling was used with adjustment for age,

sex, weight, and height. The first principal component (estimated

using Eigenstrat [53]) was included in our regression models.
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