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Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector
proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton
assembly is associated with cell polarity, adhesion, movement and other functions in
eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of
actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in
an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal
downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved
sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of
Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The
present study has identified and further classified CRIB containing effector proteins in lower
eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and
taking human proteins as a reference point to the highest evolved organism in the
evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional
effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins
family, and some have unique domain combinations unlike any known proteins. We
also highlight the correlation between the effector protein isoforms and their selective
specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing
effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in
Trypanosoma andGiardia. CRIB containing effector proteins that have been studied so far
in humans are potential candidates for drug targets in cancer, neurological disorders, and
others. Conventional CRIB containing proteins from protozoan parasites remain largely
elusive and our data provides their identification and classification for further in-depth
functional validations. The tropical diseases caused by protozoan parasites lack
combinatorial drug targets as effective paradigms. Targeting signaling mechanisms
operative in these pathogens can provide greater molecules in combatting their infections.
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INTRODUCTION

Cellular functions are a cumulative outcome of various signaling
pathways that involve a downstream activation of a series of
protein molecules. Cytoskeletal organization and dynamics
critically regulate cell movement and migration, proliferation,
adhesion, differentiation, and vesicular trafficking (Sackmann,
2015). Molecular switches are crucial proteins, which interact
with their effectors to activate a signaling cascade. A varsity of
small GTPase molecules is present in the cell where Rho family
proteins are regulatory molecules for actin cytoskeleton dynamics
(Hall, 1998).

Cdc42, Rho, and Rac are Rho family proteins’ subfamilies, a
Ras superfamily subgroup (Wennerberg et al., 2005). These
proteins oscillate between an active GTP-bound and inactive
GDP-bound states as molecular switches in the cell (Vetter and
Wittinghofer, 2001). In humans, several studies have
characterized Cdc42 (filopodia formation), Rac1 (lamellipodia
formation), and RhoA (establishment of stress fiber) members of
the Rho family (Jordan and Canman, 2012; Ridley, 2015;
Narumiya and Thumkeo, 2018). Cdc42 (Cell division control
protein 42) was the first member to be reported (Shinjo et al.,
1990; Marks and Kwiatkowski, 1996) with its profound functions
in; cell polarity (in yeast), cell morphology regulation, motility,
mammalian cell-cycle progression and induction of malignant
cell transformation (summary by (Wu et al., 2000)). Rac1
modulates cytoskeleton in multiple cellular functions like
phagocytosis, neural polarization and axonal growth,
mesenchymal-like migration, and cellular growth and
differentiation (summary by (Reijnders et al., 2017)). The
signaling cascade of Cdc42 and Rac proteins recognize a
consensus motif in downstream proteins for specific binding.
Thus, these proteins were coined as CRIB (Cdc42/Rac interactive
binding) effector proteins of the Rho family. The conserved motif
is a 16 amino acid sequence “I-S-X-P-(X)2-4-F-X-H-X-X-H-V-
G”, with eight core amino acids first identified by Burbelo in 1995
(Burbelo et al., 1995). Interestingly, effector proteins with one or
two variations within the core sequence can still bind to Cdc42/
Rac (Owen et al., 2000). Biophysical studies elucidated that the
CRIB motif is essential for interaction with GTP-Cdc42/Rac, but
not adequate for high-affinity binding (Rudolph et al., 1998;
Thompson et al., 1998). The binding region of CRIB effector
protein is thus, also called as gtpase binding domain (GBD)
(Rudolph et al., 1998). Subsequently, when the motif, including a
more extended sequence region was found in p21-activated
kinase (PAK) CRIB effector protein, it was known as p21-
binding domain (PBD) (Thompson et al., 1998).

The potential CRIB effector proteins were then categorically
separated via different signaling pathways activated by Cdc42/
Rac (Neudauer et al., 1998; Bishop and Hall, 2000; Phillips et al.,
2008). Cdc42 and Rac activate effector proteins to signal
downstream to function on actin, SRF and NF-kB
(transcription factor), JNK and p38 (MAP kinase pathway),
G1-cell cycle progression, cell-cell contact, and transformation
(Bishop and Hall, 2000). NADPH oxidase complex (present only
in professional phagocytic cells) and secretin (only in mast cells)
signaling pathways get explicitly activated by binding Rac to

CRIB effector protein. Similarly, the cell-polarity signaling
pathway also involves the CRIB effector proteins, triggered
only by Cdc42 (Neudauer et al., 1998; Bishop and Hall, 2000;
Vlahou and Rivero, 2006). The effector proteins of Cdc42/Rac are
diverse in domain architecture and function, which includes Ser/
Thr kinase, cytosolic Tyrosine kinase, actin-associated proteins,
adaptor proteins, and miscellaneous (Owen andMott, 2018). Ser/
Thr kinases include PAKs, myotonic dystrophy kinase-related
Cdc42 binding kinases (MRCKs) and mixed-lineage kinases
(MLKs) family. In Tyrosine kinase, only one family of
activated Cdc42-associated Tyrosine kinase (ACK) contain a
CRIB motif (Bishop and Hall, 2000; Pirone et al., 2000; Owen
and Mott, 2018). Actin associated proteins include Wiskott
Aldrich syndrome protein (WASP), WASP-like verproline-
homologous protein (WAVE), IQ motif-containing GTPase-
activating proteins (IQGAP) and formin families of proteins
(Bishop and Hall, 2000; Owen and Mott, 2018). Partitioning
defective (PAR) proteins belong to adaptor proteins of
cytoskeleton assembly. Small protein effector of Cdc42 (SPEC)
and Cdc42 effector protein (CEP)/Binder of Rho GTPases (Borg)
(Joberty et al., 1999; Hirsch et al., 2001) family of proteins fall
under the miscellaneous group because they have not been
designated under any specific classification (Owen and Mott,
2018).

The diverse signaling range and protein families project the
necessity of CRIB effector proteins. In humans, CRIB containing
proteins have been explored structurally and functionally in
depth (Pirone et al., 2001; Cotteret and Chernoff, 2002). CRIB
containing effector proteins in humans belong to nine distinct
families, four kinase families and five non-kinase families (Bishop
and Hall, 2000). Six PAKs (PAK1-6), three MRCKs, two MLKs,
three PAR-6, two WASP (WASP and N-WASP) (Kuspa and
Loomis, 2006), and two SPEC (Pirone et al., 2000), which are
commonly known families of Cdc42/Rac effectors. Additionally,
two unique families, Gene33 (one member) (Makkinje et al.,
2000) and CEP/Borg (five members) (Joberty et al., 1999; Hirsch
et al., 2001) are present only in humans. In plants, eleven Rop-
interactive CRIB motif-containing protein (RIC) effectors, Ric1
to Ric11, are present, involved in cell growth like CRIB effector
protein in metazoans (Wu et al., 2001; Cotteret and Chernoff,
2002; Fu et al., 2005).

CRIB effector proteins present in complex and multicellular
eukaryotes such as worms, flies, and frogs are mammalian
homologues (Pirone et al., 2001). Nine proteins in D.
melanogaster; DmMLK (Teramoto et al., 1996), DmGEK
(MRCK) (Luo et al., 1997; Leung et al., 1998), DmACK
(Manser et al., 1995; Clemens et al., 2000), DmPAK1-3 are
kinases (Mentzel and Raabe, 2005) and DmWASP (Symons
et al., 1996; Miki et al., 1998a), DmPAR-6 (Qiu et al., 2000),
DmSPEC (Pirone et al., 2000) are non-kinase. All nine proteins
are architecturally homologous to humans and perform alike
functions. Eight proteins in C. elegans; CePAK1 and CePAK2
(Lucanic and Cheng, 2008), are PAK-like kinases, CeACK and
CeMRCK are ACK (Manser et al., 1995), and MRCK (Leung
et al., 1998) homologs, respectively, and other four belonging to
non-kinases are CeWASP (Symons et al., 1996; Miki et al., 1998a;
Zhang and Kubiseski, 2010), CePAR-6 (Qiu et al., 2000), F09F7.5
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and T23G5.3 (Pirone et al., 2001; Cotteret and Chernoff, 2002).
All four non-kinase Cdc42/Rac effectors share no familiar
domain characteristic features except for the consensus CRIB/
GBD domain. WASP and Par-6 participate in cell polarity
through actin organization, while F09F7.5 and T23G5.3 are
novel proteins with no homologues in humans or flies (Pirone
et al., 2001). In simple eukaryotes such as yeast, there are only five
such proteins, Ste20, Skm1, and Cla4, within the PAK family, and
Gic1 and Gic2 (Brown et al., 1997), which are non-kinases
homologous to plants, and not mammalian CRIB effector
proteins. The characteristically different Gics might have a
specialized role in cytoskeleton modulation during cell wall
assembly.

The extended repertoire of Cdc42/Rac effector proteins in
humans indicates a more complex mechanism for extracellular
signals to reach Rho GTPases (Cdc42 and Rac) compared to
Drosophila. Nevertheless, in worms, each group of effectors have
a single protein to perform a related signaling function, while in
yeast, only the PAK family is present. The trend highlights that
complexity of an organism is correlated with the extension of
protein members in each effector protein group. Evolutionarily,
the presence of CRIB containing effector proteins in plants
interestingly points an ancient origin of the CRIB motif.
Possibly, the CRIB motif associated with an array of Rho
signaling proteins during evolution.

The CRIB containing effector proteins from unicellular
eukaryotes are not structurally characterized or classified.
Here, we present the identification of effector proteins in
unicellular eukaryotes, offering exciting insights into their
evolutionary connection to higher eukaryotes’ signaling.
Many unicellular eukaryotes organisms are pathogenic and
cause dire health challenges with high prevalence. In the new
world era, the treatments available for diseases like amoebiasis,
sleeping sickness and protozoan parasitic diseases are not very
effective and need more attention for targeted drug research
(Baker et al., 2013; Diaz et al., 2014; Gonzales et al., 2019;
Carrero et al., 2020). The CRIB domain effector proteins,
which are barely known and investigated in protozoan
parasites can be a prospective candidate for drug research
as they are integral to cellular signaling cascades during
parasitic pathogenesis. In humans, PAK and WASP family
proteins have been thoroughly inspected, both functionally
and biochemically, and they proved to be potential targets
against cancer, neurodegenerative and cardiovascular diseases
(Kichina et al., 2010; Li et al., 2010; Zhao and Manser, 2010;
Llorens et al., 2013; Dammann et al., 2018). Rho signaling
effectors are the mediators of cytoskeletal dynamics in higher
organisms and are crucial for unicellular pathogens requiring a
highly regulated cytoskeletal system for survival and
pathogenicity. The functional and drug target-oriented
research attention is needed for such proteins involved in
pivotal signaling that are still undiscovered. This systematic
review presents the identification and annotation of CRIB
domain-containing proteins in unicellular eukaryotes,

FIGURE 1 | Sequence alignment of conserved CRIB motif of all the
proteins of human, Dictyostelium discoideum, Acanthamoeba castellani,
Entamoeba histolytica extracted from domain-based search from database.
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especially in pathogenic protozoans responsible for neglected
tropical diseases and model organisms, from literature and
database search. We have tried to present a crisp platform to
select out proteins for targeted functional studies and drug
development strategies.

RESULTS

The tree of life depicts that, lower eukaryotes are simple and
unicellular except Dictyostelium, an evolutionary link between
unicellular and multicellular organisms. Understanding the
ancient CRIB motif in signaling effector proteins in model
organism-Dictyostelium, and protozoan parasite-
Acanthamoeba, Entamoeba, Giardia, Trypanosoma and
Leishmania to the highest evolutionary candidate will comfort
to classify them suitably for further in vitro and in vivo validation.
In silico studies have been conducted to identify the CRIB
containing repertoire of effector proteins, further cross-
referenced with available literature, and finally, a new
classification has also been added.

Cdc42/Rac Interactive Binding
Domain-Containing Protein in Lower
Eukaryotes and Evolutionary Divergence
The complete proteome-based phylogenetic analysis of
Dictyostelium, Acanthamoeba, and Entamoeba shows that
animals and fungi are close to amoebozoa group (Song et al.,
2005). Nevertheless, amoebozoa are distinct from early diverging
unicellular eukaryotes, Leishmania, Trypanosoma, Plasmodium,
Giardia, and plant as well. The more remarkable similarities
despite their early divergence in amoebozoa and metazoan
proteins translate into a generally higher degree of functional
conservation between them. The universal domain architectures
aid in delineating and organizing the proteins in their families
and participating in particular cellular pathways in lower
eukaryotes.

The conserved sequence-based search identifies CRIB/PBD/
GBD containing proteins; ten in Dictyostelium discoideum,
fourteen in Acanthamoeba castellani, nine in Entamoeba
histolytica, only one protein in Trypanosoma cruzi, and
Giardia lamblia. In humans, twenty-seven CRIB containing
effector proteins have been identified and reported in earlier
studies (Pirone et al., 2001) (Figure 1). The available functional,
biophysical and biochemical characterization has been explored
in detail to classify the identified CRIB containing effector
proteins. Apart from the CRIB motif, the conserved structural
features in identified proteins of Amoebozoa fall into PAK or
PAK like kinase and actin-associated or actin assembly protein. In
Acanthamoeba and Entamoeba, very few proteins have been
studied earlier, on the other hand, a lot of literature is
available for Dictyostelium proteins. However, in other parasite
protozoans (Giardia and Trypanosoma), the single identified
CRIB domain protein does not show any similarities with the
conserved domains of Cdc42/Rac effector. The identified CRIB
containing protein families indicated here are PAK/PAK related

kinase and actin assembly protein families found conventionally
during evolution, while Ser/Thr and cytosolic Tyrosine kinase,
adaptor family proteins present in humans are non-conventional.

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Dictyostelium
Dictyostelium discoideum, a soil-dwelling social amoeba, is a
unicellular eukaryote that forms multicellular structure fruiting
bodies under limiting nutrition conditions (Gaudet et al., 2008).
The D. discoideum genome (~34 Mb) entirely encrypts about
10,300 proteins, including numerous protein families; some are
involved in fundamental processes like post-translational
modification, secondary metabolism, and signal transduction
belong to cellular activities like cell adhesion and cytoskeleton
control (Kuspa and Loomis, 2006; Loomis, 2006). Numerous
Dictyostelium proteins are more similar to human orthologs than
yeast, probably due to higher evolutionary changes along the
fungal lineage. The small, simple genome and complex
transcriptome made it an easy-going prototypical organism to
dissect the signaling pathways and their elements with typical
relationships throughout the metazoans (Li and Purugganan,
2011; Bozzaro, 2019).

In this study, ten CRIB domain (or PBD/GBD) proteins were
found fit functionally to be Cdc42/Rac effector proteins.
Conserved sequence and structural features group them into
p21-activated kinase (six protein), WASP family (three
protein) and a novel gelsolin-related protein (Figure 2).
However, a genomic study mentions that eight PAKs (PAKa-
h) are present in D. discoideum (Arasada et al., 2006), with no
structural and functional shreds of evidence support. In our study
we found that PAKe (Q54B33) and PAKh (Q556S2) have a kinase
domain but lack a consensus CRIB domain and other accessory
domains present in human homologues. Thus, these two proteins
may potentially be candidates of some other subfamily of Ser/Thr
kinase that is a matter of further investigation or may be pseudo
PAK like E. histolytica PAK1 (Labruyere et al., 2000; Labruyere
et al., 2003). The novel gelsolin homolog identified here is
encoded by the gnrC gene, categorically a putative actin-
binding protein (Q551I6), which suggests its regulation by a
small gtpase. This is the unique protein in Dictyostelium with two
CRIB domains present consecutively at its N-terminal. However,
no study reports any details regarding the Rac protein, which
activates it.

Out of six PAK family members identified in the search, PAKa,
PAKb/MIHCK, PAKc, and PAKd have some similar structural
domains of human Group-I PAKs. PAKf (Q869T7) and PAKg
(Q556S2) possess the conserved CRIB and kinase domain; typical
structural features of PAK homologs of metazoans and yeast but
need to be experimentally validated. One member has identical
features to human WASP protein, while, the other two (WASP
like-B (Q7KWP7) and WASP like-C (Q54QH4)) have
comparable domain characteristics to human N-WASP
derived as WASP-related protein (Figure 2).

In Dictyostelium, PAK and WASP are the CRIB-containing
effectors of Rho family GTPases, which regulate chemotaxis,
phagocytosis, and cytokinesis (Wilkins and Insall, 2001; Park
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et al., 2004). No clear homologues of Rho and Cdc42 are present,
though 15members of Rac have been reported in the Rho GTPase
family (Rivero et al., 2001; Rivero and Somesh, 2002). RacB has
been proposed as a functional equivalent to Cdc42 (Rivero et al.,
2001). Additionally, a component of SCAR (suppressor of cAMP-
receptor)/WAVE complex, four IQGAPs, ten formins, two PCH
(full form) family, several lipid kinases/phospholipase and
NADPH oxidase components are also present which represent
CRIB-independent effectors of Rho family (Vlahou and Rivero,
2006). Experimental evidence remarkably suggested that a CRIB
motif is present in coronin protein, which interacts with GDP
bound gtpase (Swaminathan et al., 2014; Swaminathan et al.,
2015). In general, coronin activates the actin nucleation factor
Arp2/3 complex and IQGAPs (Shina and Noegel, 2008). The
presence of the CRIB motif varied amongst lower and higher
eukaryotes’ coronin proteins. Nevertheless, the sequence
comparison of the conserved CRIB motif and the coronin
CRIB region indicated moderate similarity while displaying
Cdc42/Rac binding. Reasonable similarity can possibly explain
that the region not annotated as CRIB in protein domain
databases can contribute to the protein-protein interaction
mechanism.

WASP family consist of one WASP, two WASP related and
one WASP like (SCAR) subfamilies proteins, which are the
positive regulators of Arp2/3 complex in actin polymerization
(Seastone et al., 2001; Myers et al., 2005). WASP controls Arp2/3
complex spatially and temporally inD. discoideum via interaction
of Rac with the CRIB motif. WASP, an actin nucleation-
promoting factor, also functions as a controller of cellular
localization of Rac, contributing to the maintenance of front-

rear polarity (Amato et al., 2019). WASP-A encoded by wasA
gene has a WH1 (WASP-homology 1) domain that interacts with
poly-Proline helices (Myers et al., 2005). RacC works as a
connection between WASP activation and chemo-attractant
stimulation in the signaling pathway regulating F-actin
assembly during chemotaxis (Han et al., 2006). WASP-B
regulates F-actin polymerization through attenuation that is
important for regulating the dynamics of pseudopod extension
and retraction (Chung et al., 2013). However, SCAR subfamily
proteins possess a C-terminal VCA domain akin to human
WASP and N-WASP but lack an extended N-terminal WH1
region and GBD domains (Symons et al., 1996). The human
homolog of SCAR is called WAVE. SCAR/WAVE is a multi-
protein complex with PIR121, Nap125, Abi2, and HSp300
components, each encoded by a single gene present in the
Dictyostelium genome (Blagg et al., 2003). WASP compensates
for the loss of function of SCAR/WAVE proteins inDictyostelium
(Veltman et al., 2012).

PAK family has six proteins positioned in two different
clades, classified in two separate classes; PAKa-d and PAKf/g,
based on phylogenetic analysis of the catalytic kinase domain.
The consequence of such distinction is not clear in
Dictyostelium to humans who also have two PAK groups
(Arasada et al., 2006). The class I PAKs in Dictyostelium
functionally established to be involved in cell polarity, actin-
myosin assemble and phagocytosis (Lee et al., 2004; Yang et al.,
2013; Garcia et al., 2014; Phillips and Gomer, 2014). The six
PAK isoforms share high sequence identity ~50–70% in the
catalytic kinase domain and PBD regions, while the rarely
display any homology outside these regions. PAKa and

FIGURE 2 | Schematic diagram of domain organization of Dictyostelium discoideum, CRIB domain containing proteins. The domain names and amino acid is
labeled. The abbreviations for the domains are: CRIB, Cdc42/Rac interactive binding; CH, Calponin Homology; PBD, p21-activated binding domain; PH, pleckstrin-
homology; WH1, Enabled/VASP homology 1; WH2, WASP homology 2; ADF, Actin depolymerizing factor. The proteins already known from the earlier literature, but not
characterized yet are marked as green colored box. The proteins marked in orange (subtle effect) boxes are reported for the first time in this in silico study and are
completely uncharacterized. Footnote: In Dictyostelium discoideum, PAKa-d can be studied for their protein structure and interaction studies with respective Rac
repertoire or Cdc42. The functional role of PAKa-d in cell motility, adhesion, phagocytosis and chemotaxis represent their crucial role in unicellular protozoans, and
comparative studies in parasite protozoans would be the scope of future research.
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PAKb, both of which have CRIB/AI domains that have been
linked to myosin II regulation (de la Roche and Cote, 2001).

Dictyostelium PAKa possesses a potential poly-Proline tract
for SH3 domain interaction, a highly acidic N-terminal domain
followed by a CRIB and a C-terminal kinase domain. The CRIB/
PBD domain preferentially interacts with DdRac1B and HsCdc42
and then translocate to myosin II filament to regulate myosin
heavy chain kinases (MHCKs). PAKa inhibits MHCK-B, C, and
D to stabilize myosin II assembly in response to upstream cAMP
response. Despite dynamic subcellular localization, PAKa co-
localizes with myosin in all the cell movement process (de la
Roche and Cote, 2001). PAKa was also identified at the
cytokinesis cleavage furrow, and localized to rear end of the
polarized migrating cell, and posterior cortex during chemotaxis
(Chung and Firtel, 1999; Muller-Taubenberger et al., 2002). The
signaling cascades regulated by PAKa are also dependent on
coronin (Swaminathan et al., 2015).

Dictyostelium PAKb consists of an N-terminal Proline-rich
region, followed by a consensus PBD, a Glutamine and
Asparagine residues rich linker, and a C-terminal kinase
domain for catalysis. DdPAKb, previously termed as myosin I
heavy chain kinase (MIHCK), was identified (Lee et al., 1996)
through its phosphorylation and regulation of a single-headed
myosin I (DdMyoD) (de la Roche and Cote, 2001). PAKb
phosphorylates TEDS (Thr, Glu, Asp, or Ser residue) rule site
located in the MyoD motor (de la Roche and Cote, 2001).
Dictyostelium Rac1a/b/c, RacA (a RhoBTB protein), RacB,
RacC and RacF1 activate PAKb to regulate myosin driven
motility on actin. PAKb localizes in the cytosol and enriches
at the leading edge of the cells during migration,
macropinocytosis, and phagocytosis, sites that show prevalence
of myosin I as well (de la Roche et al., 2005). Thus PAKb plays
pivotal role in myosin I activation during these events. However,
loss of function mutants’ have impaired functions dependent on
myosin I (Wu et al., 1996). In contrast, constitutively active PAKb
mutant increases the rate of myosin I dependent processes such as
pinocytosis/phagocytosis and disrupts cytokinesis. The
constitutively active and C-terminal truncated active PAKb
shows localization at rear-end of the migrating cell and
cleavage-furrow during cell division (Yang et al., 2013). The
notable fact here is the opposite localization of PAKa and
PAKb in migrating cells, one at the rear end and the other at
the posterior end, respectively, suggests that the two proteins do
not have an overlapping function. However, both PAKa and
PAKb function synergistically during phagocytosis and not
pinocytosis.

The structural features of PAKc include a PH domain followed
by a CRIB and a kinase domain, with a C-terminal extension Gßγ
binding domain. PAKc PH domain, related to the fungal Cla4p-
like PAKs, is alone responsible for the cytosolic localization
(Phillips and Gomer, 2014). The PH plus CRIB domain
exhibits weak membrane localization in response to chemo-
attractant stimulation (Lee et al., 2004). PAKc is activated
rapidly and transiently in response to chemo-attractant
stimulation that enriches it at the plasma membrane. PAKc
functions to inhibit lateral pseudopodia to restrict pseudopod
formation to the plasma membrane facing the chemo-attractant

source (Lee et al., 2004). PAKc CRIB domain preferentially binds
to RacC GTP-bound form. The highly conserved Arginine 34 is
required for inositol binding in the PH domain. The CRIB
domain is strongly similar to human PAK1 consisting of
overlapping CRIB and AID (auto-inhibitory domain). The
C-terminal Gßγ binding domain shows strong conservation of
the C-terminal yeast Ste20, required for transient localization to
the Dictyostelium plasma membrane (Lee et al., 2004).

PAKd contains an N-terminal CH domain and additional C1
domain upstream of the CRIB domain. PAKd was implicated in
F-actin aggregation during developmental processes, and actin
polymerization in response to stimulation by a chemo attractant
(Phillips and Gomer, 2014). Upon cell starvation, PAKdmoves to
cellular extensions, suggesting its presence in the Golgi apparatus
(Garcia et al., 2014). PAKd kinase activity is regulated through the
binding of CRIB domain to activated Cdc42/Rac molecules.

Experimental records strongly confirm that Dictyostelium
coronins (Coronin A and B) have a Rac activated CRIB motif
(Uetrecht and Bear, 2006). None of the previous studies on CRIB
containing proteins included coronin family under Cdc42/Rac
effector proteins (Clemen et al., 2008). In D. discoideum
CoroninA, residues 117–133 harbor the CRIB motif highly
homologous to CRIB motifs of other conventional effector
proteins. Structural characterization indicates that half of the
CRIB motif lies on the solvent accessible face, while the other half
is embedded inside. Coronin prefers the GDP form of GTPases
for binding to the CRIB motif, which is interestingly exceptional
to all other CRIB containing proteins. Analysis of coronin lacking
mutants reveals its role in cell motility, phagocytosis and
cytokinesis (Vinet et al., 2014). Coronin functions as a Rho
protein GDP dissociation inhibitor (RhoGDI) that interacts
with Rac GTPases in their inactive GDP bound form, thus
preventing their availability to PAKs. It also interacts with
PAKs (PAKa) directly to regulate their activity (Swaminathan
et al., 2015).

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Acanthamoeba
Acanthamoeba is the solitary free-living soil amoeba that
diverged earlier than other amoebozoans (Shabardina et al.,
2018; Corsaro, 2020). The genome contains ~15,455 coding
genes and comparative genomic studies from other metazoans
established many putative protein families who play an
interpreting role of cytoskeleton machinery and signaling
related to cell motility and cytokinesis (Clarke et al., 2013).
The putative proteins involved in cytoskeleton regulation
through small GTPases in downstream pathways are not
explored thoroughly (Mullins and Pollard, 1999).

In silico search for the conserved CRIB domain retrieved
fourteen proteins in Acanthamoeba castellanii (Figure 3). The
only characterized protein in this repertoire is a Myosin I heavy
chain kinase (MIHCK), belongs to the p21 activated kinase family
(Brzeska et al., 1997). Including MIHCK (Q93107), seven
proteins (L8GCL9, L8GPX2, L8GVV0, L8GW48, L8H707,
L8HHB6, and L8HET0) have kinase domains homologous to
human PAKs along with some variant domains. L8GPX2 shares a
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domain with myosin I heavy chain kinase, while, L8H707 and
L8GW48 have substantial similarities with PAK proteins.
L8HHB6 (39%) and L8GCL9 (42%) are potential Ser/Thr
kinases that show moderate similarity with human PAK6 and
can be categorized under the PAK family after experimental
validation. L8HET0 kinase domain shows 24% similarity with
HsMRCKβ but no other domains so it could be probable PAK
family member. L8GVV0 shows 30% similarity with HsPAK3 can
also be prospective PAK family member subjected to
experimental backing. Two proteins (L8H2P8 and L8H6L6)
with WH1 domain and strong homology with WASP proteins
could be potential WASP proteins in Acanthamoeba. Apart from
these two, another protein (L8H3X7) possesses WASP like
domain characteristics/homology with WASP related proteins
of metazoans. Two proteins (L8GKX1 and L8GYC7) composed
of unique domains along with the CRIB domain, which does not
have homology with any conventional/non-conventional
proteins of higher eukaryotes, can be classified as p21 rho-
binding domain-containing protein. We also found one
protein (L8H695) with Leucine-rich repeats along with the
CRIB domain, and have classified it as a unique group. Lastly,
L8GFZ9 was with similar structural features to the coronin
family, but the functional role and interactive GTPase
molecule are yet to be explored. The extensive repertoire of
CRIB containing proteins present in Acanthamoeba indicates
and supports the ancient origin of the CRIB motif and its linkage
to various effector proteins of Rho mediated signaling (see
Supplementary Table S1). However, the relation with the Rho
family of protein and detailed functional study will help link these
proteins with cellular processes and their subcellular localization.

Acanthamoeba MIHCK, member of the PAK family,
phosphorylates a heavy chain of myosin IC and activates it.
MIHCK, from Dictyostelium, was validated as PAKb, which
performs a similar function to phosphorylate and activate
myosin I. AcMIHCK has a homologous region to human
PAK1, PBD (Residue 93–149), which includes the CRIB motif
(Residue 93–100) and as IS domain, but lacks the kinase
inhibitory (KI) domain region. It also has a putative
calmodulin-binding region at its N-terminal, before PBD
(Brzeska et al., 2001). The typical C-terminal Ser/Thr kinase
domain has the characteristic Ser-627 phosphorylation site. The
region between PBD and catalytic domain (residue 158–449) is
highly Proline-rich, including multiple PXXP motifs (class I) that
provide potential binding to SH3 domains (Brzeska et al., 1996).
AcanthamoebaMIHCK mechanism of regulation is quite similar
to mammalian PAK1. Acanhtamoeba MIHCK is fully
phosphorylated (Brzeska et al., 1990a; Brzeska et al., 1999),
while Dictyostelium MIHCK is partially activated in vitro by
autophosphorylation in the presence of Rac and lipids (Lee et al.,
1998). Human PAK1 also requires Rac or lipids for
autophosphorylation (Manser et al., 1994). Calcium-dependent
calmodulin inhibits phospholipids’ stimulation in Acanthamoeba
MIHCK (Brzeska et al., 1992) and Dictyostelium MIHCK/PAKb
(Lee et al., 1998) but is not required for mammalian PAKs. Also,
the lipid that activates mammalian PAK1 (Bokoch et al., 1998)
differs from those that activate Acanthamoeba and Dictyostelium
proteins (Brzeska et al., 1990a; Brzeska et al., 1990b).

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Entamoeba
Entamoeba histolytica is a primitive unicellular eukaryote and
amitrochondrian protozoan parasite, which causes dysentery and
liver abscess. Amoebic pathogenicity is selected coincidently in
the lumen of the intestine because the parasite uses the same
methods to kill bacteria or cause disease by damaging the host
cells (Bosch and Siderovski, 2015). Amoebic phagocytosis and its
mechanism show similarities with the action of macrophages
during the phagocytosis of bacteria and unwanted cells, which
supports the idea of coincidental selection (Ghosh and
Samuelson, 1997; Labruyere et al., 2019). The parasite uses
anterior pseudopods and posterior uroids to move inside the
human intestine. The host complement system, lectin ConA
(multivalent), and anti-amoeba antibodies target the invading
amoebic cell, initiating the formation of cap by rearward
recruitment of surface receptors and increasing the local
receptor-ligand concentration (Calderon, 1980). The defense
mechanism of E. histolytica against host immune response
includes surface receptor capping in the uroids and membrane
shedding (Espinosa-Cantellano and Martinez-Palomo, 1994). E.
histolytica cytoskeleton functions actively in the capping process
(Espinosa-Cantellano and Martinez-Palomo, 1994; Rath and
Gourinath, 2020). The invasion and survival inside the host
tissue are maintained through the phagocytosis of RBC, lumen
cells and surrounding cells. It has been demonstrated the role of
cytoskeleton assembly in the Entamoeba and a human
macrophage (Marchat et al., 2020). Phagocytosis is a dynamic
and regulated process that involved a varsity of proteins ranging
from actin-binding protein, motor protein, small GTPases,
kinases and phosphatases (Godbold and Mann, 1998; Marquay
Markiewicz et al., 2011; Anwar and Gourinath, 2016; Gautam
et al., 2017; Agarwal et al., 2019; Gautam et al., 2019). ~20 Rho
family GTPases and numerous downstream signaling effectors
are present in these single-celled trophozoites that coordinate
actin dynamics in pathogenesis-related processes. Hence, cell
migration and chemotaxis, followed by adherence to the
epithelium in the host intestine, and host cell killing and
phagocytosis are all regulated by Rho family signaling toolkit
(Bosch and Siderovski, 2013).

The domain-based search retrieved a total of nine CRIB
domain-containing proteins (Figure 4). The homology with
metazoans proteins classifies them under conventional effector
proteins of Rac/Cdc42. Six (PAK2-7) and one pseudo-PAK
(PAK1) belong to the p21-activated kinase with their typical
PBD and kinase domain architecture. However, an earlier study
shows that one isoform of PAK lacks CRIB/PBD domain in
N-terminal but has C-terminal kinase domain homologous to
yeast ste20 (Gangopadhyay et al., 1997). Earlier kinome study
(Anamika et al., 2008) predicted 17 homologous PAKs in the E.
histolytica genome. Only with the six homologues match the
typical PAK features, and thus, it is now confirmed that
Entamoeba possesses only six PAK isoforms, including one
pseudo-PAK. Interestingly, out of six, three PAKs (PAK2,
PAK3 and PAK5) have additional PH domains (Figure 4).
Three proteins (C4M2L6, C4LZJ6, C4M0R3) have a domain
that is homologous to C-terminal of human WASP, but no
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experimental studies have so far been performed to characterize
its structure and function (Figure 4). The Arp2/3 complex
nucleates new actin filaments, when activated by nucleation
promoting factors like WASP or SCAR. No available research
yet describes any WASP or SCAR protein in Entamoeba, hence,
the actin nucleation activity may be regulated by other
unidentified proteins. Exploring the predicted putative WASP
here might reveal its role in actin nucleation and regulation of
actin cytoskeleton. However, CARMIL protein binds Arp2/3
complex with an exact mechanism used by WASP via its
acidic motif. CARMIL homologues have been discovered
through proteomic analysis of the phagosome (Okada et al.,
2005; Clark et al., 2007; Tolstrup et al., 2007) and they further
provide essential clues for understanding actin nucleation. A
recent in silico study on actin-binding proteins (Rath and
Gourinath, 2020) from our lab shows that E. histolytica
harbors three WASH (Wiskoit-Aldrich syndrome protein and
SCAR homolog) proteins C4MBT4, C4LTV1 and C4M2Y0.
Additionally, E. histolytica encodes six formin genes that
accelerate actin filament assembly in eukaryotic cells, however,
no IQGAPs are reported yet. Three proteins (C4M137, C4M943,
C4M5U0), which have similar structural features to the coronin
protein family, are also present in Entamoeba (see
Supplementary Table S1) but the CRIB motif is not yet
defined it them like Dictyostelium. Out of the seven PAK
family members, the detailed account of experimental evidence
is available only for five; PAK6 and PAK7 have not been
characterized yet (see Supplementary Table S1).

Entamoeba PAK (PAK1) is a pseudo-PAK because it lacks the
consensus CRIB motif (or PBD); still, it interacts with EhRac1 via
the N-terminal region, suggesting that it is a regulatory domain
necessary for the maintenance of cell polarity (Labruyere et al.,
2003). Migrating trophozoites display PAK1 at their leading edge,
where it functions in amoeboid cellular polarity and motility,
along with human red blood cell phagocytosis (Labruyere et al.,
2000). The protein shares 33% identity with rat KPAK and yeast
STE20 (Gangopadhyay et al., 1997). The Proline-rich N-terminal
domain can potentially bind to SH3 domains of adapters like Nck
(non-catalytic region of Tyrosine kinase adapter protein) or PIX
(PAK Interacting eXchange factor) (Galisteo et al., 1996; Manser
et al., 1998). Constitutive EhPAK expression alters the new
adhesion site formation in E. histolytica (Labruyere et al., 2003).

PAK2 PBD selectively binds activated EhRacA during receptor
capping and collagenmatrix invasion (Arias-Romero et al., 2006).
PAK2 probably controls cell movement, surface receptor capping
and cytokinesis (Arias-Romero et al., 2006). The biochemical
studies conducted on the C-terminal kinase domain of PAK2
described its activity towards myelin basic protein. Interestingly,
the PAK and EhRacA complex homology model showed the
specific interaction in PAK2 residues Met-121 and His-123 with
RacA Tyr-40; and PAK2 residue Phe-145 with RacAAsp-63, Arg-
66, Leu-67 and Leu-70 (Arias-Romero et al., 2006). A detailed
investigation to elucidate the critical residues influencing the
binding energy would guide the rationale development of
small molecules that inhibit such interaction. The possible

interaction of other GTPases with PAK2 can also be
investigated experimentally.

Un-stimulated cells show cytoplasmic PAK3 distribution,
while capping protein induction relocates it to the caps (Dutta
et al., 2007). PAK3 undergoes autophosphorylation and
phosphorylates histone H1 in vivo, and in vitro studies
displays kinase activity in the absence of small GTPases (Dutta
et al., 2007). Maximum enzymatic activity is achieved after the
autophosphorylation of a critical residue present in the
activation-loop of many protein kinases. It is yet to be
established whether an increase in activity or change in
localization is observed upon gtpase binding. PAK3 sequential
feature reports a PH domain (residues 2–82), a PBD/CRIB
domain (residues 84–141) and a kinase domain (residue
142–447) at its C-terminal. PAK3 shares 40% identity (50%
similarity) with Dictyostelium PAK (PAKc). All the typically
conserved XI subdomains from Ser/Thr kinases are visible in
its kinase domain. The only variation observed, is the
replacement of the conserved Leucine by Tyrosine in
subdomain VII.

PAK4 and PAK5 are highly specific effectors of EhRacC
(Bosch and Siderovski, 2015). EhRacCQ65LGTP and EhPAK4-
PBD reveal a deviation of PBD α-helix in an otherwise conserved
Rho/effector interface. The side chains of EhPAK4 PBD residues
line up the EhRacC binding interface. The similar residues are
well conserved in EhPAK5, hinting at a common interaction
surface for the same Rho gtpase. Asp-17 of EhPAK4 (Glu-108 in
EhPAK5) forms a salt bridge with Arg-30 of EhRacC, while Phe-
21 of EhPAK4 (Tyr-112 of EhPAK5) contributes towards a
hydrophobic RacC interface (Bosch and Siderovski, 2015).
Further experiments need to be conducted to for RacC
effectors PAK4 and PAK5 to elucidate their biological
functions. We still lack the knowledge that correlates the
autoinhibition modes of E. histolytica PAK isoforms with
mammalian group-I and group-II PAKs. Here, we also
acknowledge the unresolved question of the signaling
specificity between Rho family gtpase and PAKs.

Entamoeba has three coronins; two belonging to short tail
(Coronin1: C4M943, Coronin 2: C4M137) are 70% identical to
each other, and one long tail (Coronin 3: C4M5U0). The
predicted function of long coronin is crucial in the amoeboid
migration and pseudopod regulation (Tolstrup et al., 2007).

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Giardia
The genus Giardia comprises several species that inhabit
intestinal tracts of vertebrates (fish, amphibians, reptiles, birds,
rodents). It is one of the most pervasive intestinal pathogens that
infects a wide range of mammals; for example, human and
agricultural livestock such as cattle and sheep. However,
Giardia lamblia (alternatively referred to as Giardia intestinalis
and Giardia duodenalis) infects and causes giardiasis in humans,
suggesting a zoonotic transmission (Ryan and Caccio, 2013). The
life cycle is simple, involving two morphogenetic stages; 1) cyst
form, which is environmentally resistant and infectious, and 2)
vegetative trophozoite stage, which colonizes the small intestine
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and becomes invasive to cause disease. During encystation, the
parasite relays the signals to produce, transport, and secrete the
cyst wall protein (CWP). It has been demonstrated that flagella
and disk structures modulate motility and host intestinal
epithelial cell attachment (Di Genova and Tonelli, 2016). The
molecular mechanism behind the regulation of these processes
remains abstract. The sole Rho family gtpase, GlRac, regulates
endomembrane organization and CWP trafficking (Krtkova
et al., 2016). Subcellular localization studies indicate the
association of GlRac with endoplasmic reticulum and Golgi
apparatus like encystation-specific vesicles (ESV).

The CRIB domain search identifies only one protein
(C6LUS0), which has the CRIB and the kinase domains
homologous with other PAKs (see Supplementary Table S1).
The earlier studies indicated that Giardia lamblia has only one
Rac in the complete Rho family, so the identified protein in our
search can be the prospective effector protein (Krtkova et al.,
2016). The interaction and co-localization studies on proposed
protein with known Rac will provide thoughtful insights on the
signaling mechanism of cytoskeleton assembly in the parasite.

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Trypanosoma
Trypanosoma cruzi causes an encumbering severe illness in
humans, known as the Chagas disease, which affects millions
of people globally (de Souza et al., 2010). The various species of
Trypanosoma belongs to kinetoplastid protozoans in an
evolutionary context (Gupta et al., 2020). The complex life
cycle involves four developmental stages: 1) epimastigotes; 2)
metacyclic trypomastigotes; 3) amastigotes; and 4) bloodstream
trypomastigotes (Zuma et al., 2021). Trypomastigotes and
extracellular amastigotes are the only infective forms that are
able to invade almost any nucleated host cell (Ferri and Edreira,
2021). During the invasion, bidirectional signaling pathways are
triggered in both the parasite and the host cell. The CRIB domain
search identifies only one protein (Q4DHX7) in Trypanosoma
cruzi (see Supplementary Table S1) which intrigued us to
carryout in depth literature search for cytoskeletal regulation
signaling pathways. However, we cannot categorize this CRIB
domain-containing protein in any existing families of effector
protein because it doesn’t any depict homologous features to
other eukaryotic proteins. Further investigation is required to
know more about the protein function and relation to the CRIB
domain-containing protein family from other lower eukaryotes.

Interestingly, few proteins have been found that regulate
cytoskeletal pathways but are only related to the invasion of
the extracellular amastigote form of T. Cruzi. Extracellular
amastigote engulfed by mammalian cells via phagocytic cup
based on actin-dependent cytoskeleton changes (Mortara et al.,
2005). Extracellular amastigotes secretes proteins like P21,
mevalonate kinase (MVK) and specific-surface protein 4
(Ssp4), which mediate host cell signaling during phagocytosis.
P21 is a 21 kDa secretory protein (da Silva et al., 2009), related to
ERK and PI3K signaling pathways during phagocytosis and
cytoskeleton remodelling (Rodrigues et al., 2012; Teixeira
et al., 2015). The recombinant version of P21 (rP21) interacts

with the CXCR4 chemokine receptor, inducing actin assembly to
drive phagocytosis and modulate the PI3K-dependent expression
of an actin-related gene (da Silva et al., 2009; Rodrigues et al.,
2012). TcMVK is involved in protein glycosylation and
cytoskeletal assembly through activation of p38/ERK, FAK
(focal adhesion kinase) components and PAK signaling trails
(Ferreira et al., 2016). Amastigote form invades the host cell
through Ssp-4, another secretory molecule predicted to function
as Rac1/WAVE2 and Cdc42/N-WASP signaling mediators
(Florentino et al., 2018). TcSsp4 is majorly a surface GPI-
anchored glycoprotein whose expression doesn’t correlate with
infection, but glycosylation of protein is linked with host cell
invasion. Highly infective strain’s amastigotes secrete a
differentially glycosylated Ssp4 that recruits Galectin-3 (Gal3)
to mediate host cell surface and parasite interaction (Florentino
et al., 2018). Recent studies on actin-binding proteins from
kinetoplastids, proposed a protein (Q4DEX0) as coronin
because it has homologous WD repeat and coronin domains
characteristic to amoebozoa and higher eukaryotes (Gupta et al.,
2020).

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in Leishmania
Leishmania donovani also belongs to kinetoplastids, a unicellular
protozoan parasite causing a fatal disease, visceral leishmaniasis,
in humans. In vertebrates, it is present as invasive promastigote
and amastigote, which cause infection. The best survival strategy
used by promastigotes during establishment of infection in
macrophages is to inhibit the fusion of phagosome and
endosome (Desjardins and Descoteaux, 1997).
Lipophosphoglycan (LPG), a significant surface glycoconjugate
of promastigote, is crucial for intracellular survival (Handman
et al., 1986). The pathogen uses the human host macrophage cell
cytoskeletal assembly to sustain and prevent phagosome
maturation (Scianimanico et al., 1999; Lodge and Descoteaux,
2008). However, recent report on the actin-binding protein
repertoire is classifying the presence of various proteins in the
pathogen itself (Gupta et al., 2020). Earlier information reveals
that L. donovani recruits human Cdc42 and Rac1 to form an
F-actin coat around its phagosome as protective measure from
macrophage killing (Lodge and Descoteaux, 2005; Lerm et al.,
2006).

The domain search retrieves one protein (Q4QEZ0), which
has conserved Ser/Thr kinase domain homologous to PAK
catalytic domain but no CRIB domain was present in it (see
Supplementary Table S1). A coronin homolog protein (E9BGF4)
is reported recently in the genome-based studies (Gupta et al.,
2020). The functional characterization to link it with CRIB
containing effector proteins is yet to be established.

Cdc42/Rac Interactive Binding-Containing
Effector Proteins in the Human Host
Human is placed as the top ranking evolutionary evolved
organism, but it is a host for several pathogens. The
understanding of molecular mechanisms of host and pathogen
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FIGURE 3 | Schematic diagram of domain organization of Acanthamoeba castellani CRIB domain containing proteins. The abbreviations for the domains are:
CRIB, Cdc42/Rac interactive binding; CaM BD, Calmodulin Binding Domain; LRR, Leucine Rich Repeat; PBD, p21-activated binding domain PH, pleckstrin-homology;
PRR, Proline Rich Region; WH1, Enabled/VASP homology 1; WH2, WASP homology 2. The proteins already known from the earlier literature, but not characterized yet
are marked as green colored box. The proteins marked in orange (subtle effect) boxes are reported for the first time in this in silico study and are completely
uncharacterized. Footnote: In Acanthamoeba castellani, the biochemical characterization is only available for MIHCK, reported 2 decades ago. However, in our study, we
report the highest number of CRIB domain-containing proteins from this organism. Their identification opens all kinds of structural, biochemical, biophysical and cellular
study avenues for further research. The detailed study on the proteins with entirely novel domain combinations is highly relevant for further research as drug candidates.

FIGURE 4 | Schematic diagram of domain organization of Entamoeba histolytica CRIB domain containing proteins. The abbreviations for the domains are: CRIB,
Cdc42/Rac interactive binding; PBD, p21-activated binding domain PH, pleckstrin-homology. The proteins already known from the earlier literature, but not
characterized yet are marked as green colored box. The proteins marked in orange (subtle effect) boxes are reported for the first time in this in silico study and are
completely uncharacterized. Footnote: In Entamoeba histolytica, PAK1 and PAK2 have been reported as crucial kinases in the survival of this pathogen and are
intricately involved in the phagocytic process. PAK3 and PAK4 characterization also showed a promising role in pathogenesis. Structural and biophysical
characterization is the prospective future of the already recognized proteins apart from the ones identified in this study. Experimental research on these proteins will lead
to new potential drugs targets against the single drug (metronidazole) available in the market. The development of new drugs is necessary due to the reports of drug
resistance found in laboratory cultured amoebic cells.
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proteins helps to prevent infections and diseases. The cellular
signaling process is complex in this system due to presence of
multi-layered system of tissues and organs. However,
cytoskeleton signaling and its regulation are somehow similar
in most of the cells and different in some cells at the same time.
Investigations on complexity in regulating cytoskeleton
dynamics, mediated by Rho family GTPases is fundamental to
processes like motility (Murali and Rajalingam, 2014), adhesion,
differentiation and development. All the twenty-seven proteins,
which have been identified in the CRIB domain-based search, are
effector proteins of Rac/Cdc42. The brief information of CRIB
containing effectors is accounted in this study to understand the
link and origin of CRIB motif and association with protein in
social amoebas (Kumar et al., 2009), intestinal pathogens and
kinetoplastids. In the human proteome, nine different CRIB
containing protein families are present (Figure 5, see
Supplementary Table S2). Additionally, six coronin isoforms
are also identified in human; some of them have shown the
presence of CRIB motif via experimental evidence while others
need to be explored (see Supplementary Table S2).

p21-Activated Kinases
Human PAKs are thoroughly studied, including the elucidation
of their structure, function, localization and regulatory
mechanism in cells. PAK isoforms have been categorized in
Group-I (PAK1, 2, 3) and Group-II (PAK4, 5, 6). Most of the
PAKs are ubiquitously expressed, but some are restricted to tissue
specific expression (Murali and Rajalingam, 2014). PAK
phosphorylates numerous substrates (membrane, cytosolic,
mitochondria and nuclear) and act by remodeling
cytoskeleton, employing scaffold and shuttling to specific
subcellular compartment (Lian et al., 2002; Kumar et al.,

2017). It has been clearly understood from evidences that their
dysregulation leads to disruption of cellular homeostasis and
severely impacts key cellular functions (Bokoch, 2003). Some
PAKs are associated with numerous defects and disease (Chan
and Manser, 2012) majorly, cancer (Kumar et al., 2006),
neurological (Ma et al., 2012), and cardiac disorders (Ke et al.,
2014). The in depth functional details can be referred from the
recent reviews (Zhao and Manser, 2005; Rane and Minden, 2014;
Kumar et al., 2017), while this study presents the classification
details based of domain architecture and structural features. Both
the PAK groups possess a PBD at N-terminus, an auto inhibitory
domain (AID), and a kinase domain at C-terminus. The PBD
domain is similar in both groups whereas AID domain of Group-
I is partly similar to group-II with minor modifications. The
regulatory kinase domain is structurally different and shows
distinct activation mechanism in both groups (Ha et al., 2015).
The kinase activity of group-I PAKs is initiated in the presence of
Rac/Cdc42, while group-II doesn’t require Rac/Cdc42
stimulation for its constitutive activity. Many publications
(Baker et al., 2014; Rane and Minden, 2014) highlight that
group-I activity modifies through two PAK molecules acting
as a dimer to exert a reciprocal auto inhibitory activity
(Buchwald et al., 2001). Group-I PAKs are also stimulated by
interaction of its PIX motif (PXXP motif at Proline-rich region)
present between PBD and kinase domain with SH3 domain in
signaling molecule, phosphorylation by 3-phospho-insositide
dependent kinase1, AKT and JAK, and binding of
phospholipids, exchange factor β-PIX or SH3 proteins such as
NCK1 and GRB2 (summary by (Kumar et al., 2017)). The
emerging role of PAK1 as potential therapeutic target in
cancer was recently reviewed (Rane and Minden, 2019; Yao
et al., 2020) comprehensively, elaborating interesting facts and

FIGURE 5 |Cartoon diagram of signature domain organization of humanCRIB domain containing protein families A colour key to the domain names and symbols is
given below of classification. The abbreviations for the domains are: CRIB, Cdc42/Rac interactive binding; PH, pleckstrin-homology; WH1, Enabled/VASP homology 1;
WH2, WASP homology 2; SH3, Src-homology 3 doamin; PB1, Phox and Bem1; PDZ, PSD-95, Drosophila discs large, and the adherens junction protein, ZO 1; CEP,
CRIB effector protein; CNH, Citron homology domain. The proteins divided into conventional and unconventional classification on the basis of their evolutionary link
with unicellular eukaryotes.
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classical evidences to understand its role in many oncogenic
signaling pathways (Senapedis et al., 2016; Yao et al., 2020).

Wiskott-Aldrich Syndrome Proteins
The 2 decades of extensive evidences suggest that WASP family
proteins have widened into five subfamilies in vertebrates
including humans: 1) WASP and neural-WASP (N-WASP;
also known as WASL), 2) three WASP family Verprolin
homologue isoforms (WAVE1-3; also known as SCAR1-3 or
WASF1-3), 3) WASP homolog associated with actin, membranes
and microtubules (WHAMM), WASP and SCAR homologue
(WASH; also known as WASHC1), and 4) junction-mediating
regulatory protein (JMY) (Alekhina et al., 2017). WASP protein
participates in innate and adaptive immune response through
regulation of actin cytoskeleton-dependent cellular processes,
including immune synapse formation, cell signaling, migration
and cytokine release (Thrasher and Burns, 2010; Rivers and
Thrasher, 2017). Most of the vertebrate including human
possess a ubiquitous WASP-paralogue, N-WASP, which was
originally described as neural-specific gene although expressed
in nearly all cell types (Miki et al., 1996; Miki et al., 1998a).
N-WASP commonly exists in an inactive confirmation in which
Arp2/3 complex cannot interact with actin filament. Humans
have four homologues of SCAR (HsSCAR1-4) (Bear et al., 1998)
and one WAVE (Miki et al., 1998b) protein member
representatives. Subcellular localization data of WASP family
proteins underline the crucial role of these proteins in actin-
based cell motility regulation (Papayannopoulos et al., 2005). The
C-terminal VCA domain in all WASP family members is
responsible for the activation of Arp2/3 complex to nucleate
actin polymerization. On the other hand, the N-terminus
contains variable domains that are considered to confer spatial
and temporal regulation of Arp2/3 activating activity. The
presence of Proline-rich regions, one or more WH2 (WASP
homology-2) and WH1 (WASP homology-1) domain helps to
interact with WIP (WASP interacting protein) and is required to
stabilize WASP (Tyler et al., 2016). The GBD/CRIB domain bind
to gtpase bound forms of Cdc42/Rac and alleviate auto inhibitory
fold (Kim et al., 2000; Hemsath et al., 2005). The role of WASP
family member as actin cytoskeleton regulators also links with the
invasiveness and metastasis of cancer (review by (Kurisu and
Takenawa, 2010)).

Activated Cdc42-Associated Kinase
ACK1, the only non-receptor Tyrosine kinase (or cytosolic
Tyrosine kinase) is composed of diverse domains and its
Tyrosine phosphorylation activates several effectors involved
in cell proliferation and growth. ACK1 gets activated in
response to multiple signals, majorly cell adhesion, growth
factor receptors and hetero-trimeric G-protein coupled
receptors (Prieto-Echague and Miller, 2011). The ACK1
possesses N-terminal catalytic kinase domain followed by a
SH3 domain, C-terminal poly-Proline region (PPXY motif)
and CRIB domain (Yang and Cerione, 1997). ACK1 was
identified with some more domain regions which sets it apart
from other non-receptor Tyrosine kinases (NRTKs) and includes
at least eight distinct domains; the sterile α-motif (SAM), kinase

or catalytic domain, SH3 domain, GTPase-binding domain,
clathrin-interacting region, PPXY motif or WW domain-
interacting region, an MIG6 homology region (MHR), also
known as epidermal growth factor receptor (EGFR)-binding
domain and an ubiquitin association (UBA) domain. It
interacts only with Cdc42 and not Rac gtpase protein.
Biochemical studies suggest that ACK1 strongly interacts with
SH3 domain of Src family kinases (Src or Hck) via the C-terminal
Proline-rich region (Yokoyama and Miller, 2003). Interaction of
Cdc42 is required for auto phosphorylation whereas SH3 domain
appears to function during auto inhibition (Galisteo et al., 2006).
One of the substrates of ACK1 is WASP, which get
phosphorylated and promotes its function (Yokoyama et al.,
2005). The high expression of ACK1 during breast cancer
makes it an appropriate marker for breast cancer detection.
Apart from its role in breast cancer, ACK1 involved in
stomach (Xu et al., 2015), hepatic (Xie et al., 2015; Wang
et al., 2020), prostate (Furlow, 2006), ovarian, lung (Tan et al.,
2014) and cervical cancer. The emergence of ACK1 as an
oncogenic kinase has unraveled novel mechanisms by which
dysregulated Tyrosine kinase signaling drives cancer
progression through altered cellular homeostasis (Mahajan and
Mahajan, 2015). Perhaps, recent data explains its function as an
epigenetic regulator (Mahajan and Mahajan, 2015).

Myotonic Dystrophy-Related Cdc42-Binding Kinases
Proteins
MRCK is primarily involved in actomyosin regulation by
regulating Myosin II light chain (MLC) and has three isoforms
(MRCKα, MRCKβ, MRCKγ) (Zhao et al., 1997; Leung et al.,
1998; Ng et al., 2004) in human. MRCK, a CRIB containing
effector is present in non-vertebrate and vertebrates but absent in
lower eukaryotes and yeast (Pirone et al., 2001; Zhao andManser,
2005). The Cdc42 regulated MRCK proteins are a subfamily of
AGC (PKA, PAG and PKC) kinase family (Pearce et al., 2010).
Apart from MRCK, Rho mediated signaling pathway for
phosphorylation of MLC includes ROCK (RhoA binding
coiled-coil containing kinases) (Olson, 2008) and CRIK
(Citron rho interacting kinase) (201), which are functionally
more established relative to MRCKs regulation mechanism. All
three MRCKs have well conserved N-terminal kinase domain
followed by a central linker linking to C-terminal with four
domains. These four domains are protein kinase C conserved
region (C1 domain) followed by PH domain, CH domain and
lastly CRIB domain. C1 domain binds phorbol ester and might
help in promoting kinase activation, while PH domain interacts
mostly with lipid partners and leads to appropriate cellular
localization of MRCKs (Loo et al., 2013). It has been expected
that elevated MRCK expression might be prominent in
invasiveness and metastasis of cancer, because actin myosin
contractility is essential component of cell motility and is vital
for cancer cell invasion and metastasis (Olson, 2008; Unbekandt
and Olson, 2014; Zhao and Manser, 2015).

Mixed Lineage Kinases
MLKs are predominantly upstream kinases initiating the MAPK
cascade, particularly the JNK (c-Jun N-terminal kinases). Four
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isoforms of MLKs (MLK1-4) are present in human and they are
of immense interest because of their role in neurodegenerative
conditions. The structural features of MLKs indicate N-terminal
SH3 domain and kinase domain, a Leucine zipper, which
connects the kinase domain to C-terminal CRIB/PBD domain
(Dorow et al., 1993). Experimental evidences show that MLK3
interacts with GTP bound state of Cdc42 and Rac1 (Teramoto
et al., 1996) and later on with RhoG as well (Zhang and Gallo,
2001; Wennerberg et al., 2002; Du et al., 2005). Earlier researches
on gene silencing, genetically engineered mouse models and small
molecule inhibitors suggest that MLKs are critical in tumor
progression as well as in inflammatory processes (Handley
et al., 2007; Gallo et al., 2020). Recent studies highlight the
function of MLK3 in tumor cell proliferation, migration and
invasion which opens the avenue for further research to
investigate MLKs as potential therapeutic target for cancer
treatment (Chadee, 2013; Gallo et al., 2020). Moreover,
previous studies shows that the altered function/expression of
MLK family of kinases leads to very wide spectrum of disorders
(Handley et al., 2007; Craige et al., 2016).

Cdc42 Effector Protein
CEPs are also known as binder of Rho GTPases (Borg), with five
isoforms present in humans. CEP/Borg protein family function as
negative regulator of small GTPases. Borg1, Borg2, Borg4, and
Borg5 (previously termed as MSE55) bind both TC10 GTPases
and Cdc42, except Borg3, which only interacts with Cdc42
(Joberty et al., 1999). CEPs are structurally composed of a
Cdc42 binding domain and two unique CI and CII domains
(Hirsch et al., 2001), only exception is CEP5 that lacks CI domain.
Alike PAK, ACK and WASP proteins, CEP family proteins also
have the conserved consensus sequence at extended C-terminal
CRIB domain (I-S-X-P-L-G-X-F-R-H-T-AA-H-AA-G-X-X-Gly-
(X)0–2-D-AA-F-G-D-X-S-F-L, where AA represents an aliphatic
amino acid) that can be involved in regulation of biological effects
of CEP protein (Hirsch et al., 2001). Despite an earlier discovery,
the molecular mechanism and functions CEPs or Borg family
remain largely elusive. Interestingly, unlike other Cdc42 effectors,
these genes are only present in vertebrates. However, recently
researchers have investigated their role in tumor progression,
regulation and function (Farrugia and Calvo, 2016; 2017).

Small Protein Effector of Cdc42
In humans, two members (SPEC1/Cdc42SE1 and SPEC2/
Cdc42SE2) are found that contain a conserved N-terminal
region and centrally located CRIB domain. Biochemical
interaction studies show that it strongly interacts with Cdc42,
weekly with Rac1 and not at all with RhoA (Pirone et al., 2000).
One study reveals that three distinct regions (phosphoinositide-
binding region within basic amino acids, N-terminal to CRIB
sequence) within SPECs are likely to be involved in early
contractile events in phagocytosis (Ching et al., 2007). SPECs
have been shown to play an important role in Cdc42-mediated
F-actin accumulation at immunological synapse (Ching et al.,
2005). In disease connection, SPEC1 was down regulated during
skin cancer to promote tumorigenesis, and thus proposed to be as
an important marker of skin cancer progression (Kalailingam

et al., 2019). This family of proteins is yet to be investigated for
regulation, expression and function in details to chronology
connect.

Gene33
Gene 33, also called as mitogen-inducible gene-6 (Mig-6) or
ERFI1 is an immediate early gene that is induced
transcriptionally by several extracellular stimuli. Physiological
function of Gene-33 remains unclear but commonly occurring
chronic stress stimuli (mechanical strain, vasoactive peptides and
diabetic nephropathy) increase its mRNA levels in the cells
(Makkinje et al., 2000; Park et al., 2017). The structure of
Gene33 resembles an adaptor protein capable of binding
monomeric gtpase (HsCdc42) in vivo and in vitro. Gene33/
Mig-6 is a negative regulator of EGF signaling (Park et al.,
2015), and Mig-6 inhibits Cdc42 signaling which is critical for
Mig-6 function to suppress cell migration. The dysregulation of
Cdc42 mediated Gene33 pathway may play a critical role in
cancer development (Jiang et al., 2016).

PAR-6
Structurally PAR-6 have pseudo-CRIB domain in comparison to
other CRIB containing effectors. PAR-6 functions mainly in
determining cell polarity and are conserved throughout
metazoans where it is a substrate of aPKC (atypical protein
kinase C) (Izumi et al., 1998; Lin et al., 2000). The Cdc42-
PAR-6-aPKC complex involved with PAR-3 localizes in
epithelial cells’ apical rings and E-cadherin at adherens
junction (Yamanaka et al., 2001; Atwood et al., 2007;
Thompson, 2021). PAR-6 has three isoforms in humans that
are involved in cell polarity regulated by Cdc42 (Joberty et al.,
2000; Macara, 2004).

DISCUSSION

Understanding the domain architecture serves as a crucial link to
decipher a protein’s molecular mechanism in intracellular
signaling cascades. Several protein domains and their relation
to signaling components present in humans are entirely missing
from the best-studied model organism or pathogens and vice
versa. The signaling pathways involving Cdc42 and Rac GTPases
are conserved in all eukaryotes but their interactive proteins
(CRIB) are not annotated or characterized in lower eukaryotes
like protozoan parasites. The current study identifies and
describes the CRIB domain containing protein families and
their possible role (according to domain architechture) as
effector proteins for cytoskeletal regulation. The structural
similarities, combination of regulatory domains, and their
putative/observed functions in lower eukaryotic pathogens
have been accounted here. Genome and proteome information
allows us for a better understanding of pathogenic processes and
consequently help improve the prevention, diagnosis, and
treatment of the diseases.

The evolutionary divergence shows that owing to their ancient
origin, PAK and WASP families are termed as conventional
effector molecules. They contain a conserved CRIB motif with
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its extended region known as PBD (in PAK) and GBD (in
WASP), crucial for cytoskeleton dynamics. However, coronin
protein family is an exception that binds GDP-Rac/Cdc42 in
Dictyostelium (Swaminathan et al., 2014). However, earlier
studies on CRIB effector proteins; coronin have not been
included in the list of Cdc42 effectors, despite their well-
defined CRIB motif shown in the structural and functional
studies (Swaminathan et al., 2014). The coronin family
proteins must be include in the CRIB effectors now. The CRIB
proteins in protozoan parasites is not investigated in any capacity
and reported here which opens an avenue for their functional and
biophysical studies as potential drug candidates against host.

The evolution of the other reported effector protein families
started later on as seen inworm, flies, frog, and human, displaying a
direct correlation between the increase in the complexity of the
organism with the increase in several members of each family.

These effector families: ACK, MRCK, MLK, SPEC, CEP, PAR-6
now classified as non-conventional Cdc42/Rac effectors. The
highest evolved organism, human, consists of conventional and
non-conventional Cdc42/Rac effector protein members along with
some other proteins like IQGAPs (IQGAP1-3), IRSp53 etc
((Pichaud et al., 2019) Supplementary Information).

Structural insights into the CRIB effector protein emphasizes
that the C-terminal inhibitory switch (IS) domain responsible for
sustaining it in an auto-inhibited basal state, is well-conserved during
evolution (Hoffman and Cerione, 2000; Kim et al., 2000; Lei et al.,
2000). Depending on the context of low or high-affinity binding,
GBD/PBD domain adopts related but distinct folds (Rudolph et al.,
1998; Kim et al., 2000). When the GBD domain is in the free state, it
looks largely unstructured, while in an auto-inhibited state, it forms
an β-hairpin structure following the conserved CRIB motif and a
central three-helix bundle. However, during the interaction, the

FIGURE 6 | PRISMA flow diagram (Reference) explains the conceptualization, brief overview of database and literature search and outcomes of systematic review.
The numbers of studies and reviews mentioned in box purely accounting CRIB containing proteins about particular organism. The future scope of systematic review
explained in key bullets. Coronin proteins which are unique and proposed to be included in this review based on individual protein characterization (Protein ID’s are
included in Supplementary Information).
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PBD/GBD forms high-affinity complex with their respective
G-proteins, in which the unstructured region becomes structured
(Hoffman and Cerione, 2000; Kim et al., 2000; Lei et al., 2000).
Similarly, the Cdc42-CRIB motif interaction occurs between the β2
strand of Cdc42 through the formation of an intermolecular β-sheet
(Abdul-Manan et al., 1999; Mott et al., 1999; Hoffman and Cerione,
2000; Morreale et al., 2000). The GBD domains (except CRIB motif)
display divergence in their C-terminal regions with several binding
mode variations, possibly determining the specificity of interaction
with effector protein. Association of GBD/PBD domains with
Cdc42/Rac, instigates a stagy change in the conformation that
refolds the IS domain while unfolding the rest of the structure
(Hoffman and Cerione, 2000). The CRIBmotif interacts with switch
I and II regions of GTPases (Stevens et al., 1999). It has been
observed generally that two histidine at the C-terminal and one at
sixth positions are well conserved, and along with the adjacent α-
helix mediate sensitivity to the nucleotide switch. This establishes
that the CRIB motif prefers GTP-loaded GTPases and exhibits
decreased binding activity with GDP form. Apart from GTP
bound state, the flanking sequence of the CRIB motif also
determines Cdc42/Rac binding specificity (Pirone et al., 2001;
Owen and Mott, 2018). The typical example of such specificity is
an autoinhibitory domain of PAKs located C-terminally to the
CRIB/PBD domain (Lei et al., 2000; Kim et al., 2016). The new
concepts of the intrinsically disordered region (IDR) have also
emerged, which highlight that apart from modular and defined
domain, the basic rich (BR) regions like poly-Proline leads to the
structure-function paradigm in CRIB containing effector proteins
(Papayannopoulos et al., 2005; Pang and Zhou, 2016; Owen and
Mott, 2018).

The structural component of CRIB containing effector proteins
also highlights that apart fromCRIB domain and signature domain
of that family, various accessory domains like, Proline-rich
sequences, PH domain, AID domain, and others are crucial for
regulation, activation, subcellular localization and specificity of
substrate to perform definite functions. The conventional or non-
conventional protein family’s structures share numerous
parallelisms in signaling and arrangement in course of
evolution. The notable fact that lower eukaryotes represent
functional equivalents/counterparts with high sequence
divergence in intrinsically regions of proteins. The putative
proteins identified in this study from gastric protozoan
pathogens and kinetoplastids will be of great importance to
study experimentally and some can be used as therapeutic
targets against neglected tropical diseases cause by them in their
human host. The putative proteins of occasional parasite social
amoeba can also be utilized to study the function and regulation of
activation of CRIB domain containing effector proteins to
understand the role of comparative to the human homologues.
Two unique domain combination protein of Acanthamoeba are of
great importance in light of drug targets.

Taken together, we would like to summarize that CRIB motif
is ancient in origin and it has conventional effector family protein
members present in model organism and protozoan parasites.
The primary classification and identified protein awaits
experimental confirmation for being potential drug targets and
key players for the survival of the pathogen.

METHODS

We first tabulated the various types of CRIB-domain containing
proteins from the available literature. We used the InterPro database
(Blum et al., 2021) to carry out a domain-based search for all the
types of CRIB domains against the selected organisms. Our data
consists of proteins searched across the proteome of the following
organisms: Dictyostelium discoideum, Acanthamoeba castellani,
Entamoeba histolytica, Trypanosoma cruzi, Leishmania donovani,
and Giardia lamblia. We also used the proteins from humans for
comparative purposes using their domain architecture (Figure 6)
(Page et al., 2021). The protein ID’s used in the manuscript was
procured from the UniProt database for universal usage (UniProt,
2021). Once the proteins from all the organisms were fished out, we
used Phyre2 software to determine their structure homology to
better classify them (Kelley et al., 2015). We performed a manual
sequence analysis as well to corroborate the presence of variant CRIB
domains, otherwise missed out by the software, as well. Sequence
alignment was performed using the ClustalW software and the final
Figure was prepared with the Sequence Manipulation Suite2 website
(Thompson et al., 1994; Stothard, 2000).
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