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Precise diagnosis of three top 
cancers using dbGaP data
Xu‑Qing Liu1*, Xin‑Sheng Liu2, Jian‑Ying Rong3, Feng Gao1, Yan‑Dong Wu1, 
Chun‑Hua Deng1, Hong‑Yan Jiang1,4, Xiao‑Feng Li1, Ye‑Qin Chen3, Zhi‑Guo Zhao1, 
Yu‑Ting Liu1, Hai‑Wen Chen1, Jun‑Liang Li1, Yu Huang1, Cheng‑Yao Ji1, Wen‑Wen Liu1, 
Xiao‑Hu Luo1 & Li‑Li Xiao1

The challenge of decoding information about complex diseases hidden in huge number of single 
nucleotide polymorphism (SNP) genotypes is undertaken based on five dbGaP studies. Current 
genome-wide association studies have successfully identified many high-risk SNPs associated with 
diseases, but precise diagnostic models for complex diseases by these or more other SNP genotypes 
are still unavailable in the literature. We report that lung cancer, breast cancer and prostate cancer as 
the first three top cancers worldwide can be predicted precisely via 240–370 SNPs with accuracy up to 
99% according to leave-one-out and 10-fold cross-validation. Our findings (1) confirm an early guess 
of Dr. Mitchell H. Gail that about 300 SNPs are needed to improve risk forecasts for breast cancer, (2) 
reveal an incredible fact that SNP genotypes may contain almost all information that one wants to 
know, and (3) show a hopeful possibility that complex diseases can be precisely diagnosed by means 
of SNP genotypes without using phenotypical features. In short words, information hidden in SNP 
genotypes can be extracted in efficient ways to make precise diagnoses for complex diseases.

High-throughput sequencing technology helps us get more and more molecular data, but also poses challenges 
on how to use these rich resources efficiently1. Among these challenges, it is of great practical significance to find 
methods of diagnosing complex diseases precisely based on single nucleotide polymorphism (SNP) genotypes2,3. 
This challenge has become a shackle to current genome-wide association (GWA) studies, and now it may be 
the time to break it such that moving beyond the initial steps of GWA studies4 will be no longer a hard work in 
the near future.

According to the global cancer statistics 20185, lung cancer6–8, breast cancer9–11 and prostate cancer12–15 are 
still the first three top cancers around the world (30.3% of the total cases and 28.8% of the total cancer deaths), 
so we start exploration from these three cancers. Our method can be extended to more other complex diseases, 
and may be expected to serve for personalized diagnosis and even precise medicine16,17. If so, combination of 
precise diagnostic models with those important insights known in GWA studies shall play a substantial role in 
further promoting GWA studies and even in improving human health comprehensively4.

Five dbGaP studies (containing six datasets in total) related to these three cancers are studied, with the 
following accession numbers: phs000634.v1.p1, phs000753.v1.p17, phs000147.v3.p19,10, phs000517.v3.p1 and 
phs000306.v4.p1. Given a dataset, we first use Snp2Bin (Fig. 1A and Algorithm S1; a key procedure) to 
transform SNPs into 2-value variables; Then, apply IterMMPC (Fig. 1B and Algorithm S2) to reduce attrib-
utes; Finally, employ OptNBC (Fig. 1C and Algorithm S3) to get the optimal features for naive Bayes classifier 
(NBC18,19).

Results
Classifications by means of OptNBC‑based models.  The lung cancer study, , consists of 946 cases 
and 1052 controls, involving 656,891 SNPs. Following the above procedures, we first use Snp2Bin to transform 
these SNPs into 656,891 binary variables, then apply IterMMPC to reduce attributes and obtain a 3274-variable 
subset, and finally employ OptNBC to get a 268-feature NBC (Fig. 2A and Fig. S1A).

For convenience, denote this NBC model by NBC(1)634 . Its classification accuracy according to leave-one-out is 
100% (Figs. 3C, 4A). The other lung cancer study, phs000753, consists of 1153 cases and 1137 controls, involving 
317,498 SNPs. For this dataset, we get a 1298-variable subset and then a 343-feature NBC (Figs. S1B and S3A), 
denoting it by NBC(1)753 . Its classification accuracy according to leave-one-out is 99.91% (Figs. 3C, 4A).
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The two breast cancer studies, phs000147 and phs000517, consist of 1145/699 cases and 1142/667 controls, 
involving 546,646 and 1,288,157 SNPs, respectively. For phs000147, we get a 4128-variable subset and then a 
318-feature NBC; for phs000517, we get a 1863-variable subset and then a 255-feature NBC. Denote the two 
NBCs by NBC(1)147 and NBC(1)517 , respectively (Figs. S1C and S3B; S1D and S5A). These two NBCs perform clas-
sification with accuracy 99.83% and 99.93% according to leave-one-out (Figs. 3C, 4A).

The prostate cancer study, phs000306, is divided into two datasets: one is for Japanese and Latinos (JL) con-
taining 829 cases and 836 controls, the other is for African Americans (AA) containing 1431 cases and 1424 
controls. JL and AA contain 657,366 and 1,199,187 SNPs, respectively. For JL, we get a 3919-variable subset and 
then a 242-feature NBC; for AA, we get a 24,457-variable subset and then a 352-feature NBC. Denote these two 
NBCs by NBC(1)306-JL and NBC(1)306-AA , respectively (Figs. S1E and S3C; S1F and S3D). The classification accuracy 
of NBC(1)306-JL according to leave-one-out is 99.94%, and that of NBC(1)306-AA is 99.93% (Figs. 3C, 4A). Note that 
the SNPs selected for JL are almost completely different from that for AA. This indicates diagnosis of prostate 
cancer based on SNP genotypes depends on ethnicity20,21, showing the same conclusion as Yücebaş and Son14 
concluded that ethnicity is the most important attribute.

Besides the classification accuracy, we also compute Matthews correlation coefficients (MCCs22) to measure 
the performance (Table S7E), each of which is larger than 0.99.

To further evaluate the classification performance of the above six NBCs, for each dataset we repeatedly 
perform 10-fold cross-validation for 100 times by randomly dividing all data points into 10 subsets and then 

Figure 1.   Main idea of building precise diagnostic models. (A) An illustration on how Snp2Bin works, taking 
the SNP, rs7524868 of phs000634, for example. Here, the score of a coding-scheme is defined as the χ2-statistic 
of the corresponding contingency table. (B) Schematic of IterMMPC. (C) Pseudocode for OptNBC, which 
consists of forward and backward phases.

Figure 2.   Log10(p value) of SNPs associated with lung cancer risk based on the data from phs000634. Small 
blue or gray dots denote all of the 656,891 SNPs with log10(p value) not larger than −1 ; large black dots denote 
the SNPs used in our NBC models. (A) Result of NBC(1)634 . (B) Result of NBC(2)634.
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performing a procedure similar to leave-one-out. The values of accuracy, sensitivity and specification are used 
to get corresponding error bars (Fig. 3A). As seen, the predictive performance of each NBC is very desirable. 
The MCCs show the same conclusion as above (Table S7F).

Classifications by means of SubOptNBC‑based models.  Although classification performance of 
each NBC is satisfactory according to leave-one-out (Fig. 3C) and 10-fold cross-validation (Fig. 3A), here are 
two problems to be solved: (a) There are a few incorrect diagnoses (e.g., the 318th instance diagnosed by NBC(1)753 ; 
Table 2C), for which what can we do? (b) There are some doubtful diagnoses (with posterior probability of being 
diagnosed as “positive” approximating 0.5; e.g., the 811st instance diagnosed by NBC(1)634 ; Table 1A), for which 
what can we do?

To address these two issues, a simple solution is to look for an alternative NBC for each NBC(1)study , written 
as NBC(2)study , which should also perform desirably, and then complement them with each other according to 
some rule.

Figure 3.   Classification performance of NBCs over the six datasets from five dbGaP studies. (A) Accuracy, 
sensitivity and specification of NBC(1)634 , NBC

(1)
753 , NBC

(1)
147 , NBC

(1)
517 , NBC

(1)
306-JL and NBC(1)306-AA according to 

10 fold cross-validation, where the error bars are in form of “mean±std” computed by repeatedly performing 
10-fold cross-validation for 100 times. (B) Performance of NBC(2)634 , NBC

(2)
753 , NBC

(2)
147 , NBC

(2)
517 , NBC

(2)
306-JL 

and NBC(2)306-AA according to 10-fold cross-validation. (C) Accuracy (accu.; %), sensitivity (sens.; %) and 
specification (spec.; %) of each NBC(1)study according to leave-one-out. (D) Performance of each NBC(2)study 
according to leave-one-out.

Figure 4.   Classification accuracy of NBCs versus the standardized forward phase. Here, the accuracy is that 
of NBCs in the modeling process, computed according to leave-one-out; the forward phase of OptNBC or 
SubOptNBC is “standardized” in the sense that “0” and “1” stand for its first and last steps, respectively. (A) 
Results based on OptNBC. (B) Results based on SubOptNBC.
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Following this idea, we modify OptNBC slightly to obtain the SubOptNBC algorithm (involved in Algo-
rithm S3). Substituting SubOptNBC for OptNBC in the process of building models for the six datasets, 
we get a 290-feature NBC for phs000634 denoted by NBC(2)634 , a 329-feature NBC for phs000753 denoted by 
NBC

(2)
753 , a 307-feature NBC for phs000147 denoted by NBC(2)147 , a 249-feature NBC for phs000517 denoted by 

NBC
(2)
517 , a 258-feature NBC for JL of phs000306 denoted by NBC(2)306-JL , and a 367-feature NBC for AA of 

phs000306 denoted by NBC(2)306-AA (Figs. S2, S4 and S5B). These six NBCs perform classification with accuracy 
99.95%, 99.96%, 99.96%, 99.93%, 99.94% and 99.93% according to leave-one-out (Figs. 3D, 4B) and not less than 
99% according to 10-fold cross-validation (Fig. 3B), also performing well enough. Their MCCs show similar 
results (Table S7E).

Remedying procedures.  As seen, for each dataset, its diagnostic models, NBC(1)study and NBC(2)study , can be 
regarded as two artificial experts holding different empirical information about the data, and thus can be com-
bined with each other to make remedies. Two remedying procedures are employed as follows: (1) use NBC(2)study 
to remedy NBC(1)study ; (2) use NBC(1)study to remedy NBC(2)study . To avoid over-remedying, only an instance (case 
or control) with posterior probability of being diagnosed as “positive” larger than 0.45 but less than 0.55 is taken 
into consideration. Table 1 and Table S2 list all such instances of the five dbGaP studies and corresponding pos-
terior probabilities of being diagnosed as “positive”. By the results, remedying procedures not only correct most 
of the incorrect diagnoses made by either NBC(1)study or NBC(2)study , but also improve reliability of those correct 
but doubtful diagnoses by increasing their posterior probabilities of being diagnosed correctly, except the 189th 
instance of phs000306-JL (Table S2I), for which NBC(1)306-JL and NBC(2)306-JL take almost the same posterior prob-
ability of making a correct diagnosis.

Finally, Table 2 lists all the 17 incorrect diagnoses (with respect to all NBCs and all datasets) and their pos-
terior probabilities of being diagnosed as “positive” by main models (3rd column of Table 2) and remedying 
models (4th column). It is seen that all incorrect diagnoses can be desirably corrected. In this sense, remedying 
procedures can render NBC(1)study and NBC(2)study to complement mutually and get accuracy up to 100% eventually.

Sufficient and efficient exploration of rules hidden in available sequencing data is a challenge but also a key 
to prevention, diagnosis and treatment of complex diseases such as the three top cancers. As expected, it may 
be increasingly becoming urgent to find SNPs that can be used to make precise diagnoses, rather than only 
identifying some related or high-risk SNPs4,23,24 and then build corresponding models. Our results show this 
possibility, indicating that moving beyond those initial steps of GWA studies4 may be no longer a hard work in 
the near future!

Discussion
Collection of sufficient information about cancers by Snp2Bin.  The use of Snp2Bin  is a key 
procedure to the performance of making classifications. Without using Snp2Bin, IterMMPC  cannot get a 
good subset of variables, and also OptNBC cannot select proper features to make precise classifications. Tak-
ing phs000634 for example, if using Snp2Bin to transform SNPs into 2-value variables, IterMMPC can get 
a 3274-variable subset, and then OptNBC selects a 268-feature NBC, namely NBC(1)634 , which gets classification 

Table 1.   Performance of remedying procedures for all possible situations of phs000634. (A) Results of using 
NBC

(2)

634 to remedy NBC(1)634 . (B) Results of using NBC(1)634 to remedy NBC(2)634 . The 3rd and 3th columns are 
posterior probabilities of diagnosing instances as “positive” using the main model (i.e., NBC(1)634 for (A) and 
NBC

(2)

634 for (B)) and the remedying model (i.e., NBC(2)634 for (A) and NBC(1)634 for (B)). Only an instance with 
posterior probability of being diagnosed as “positive” equaling from 0.45 to 0.55 is considered by remedying 
procedures. Taking the 29th instance (case) for example, NBC(2)634 accepts “negative” because the posterior 
probability of diagnosing it as “positive” equals 0.4896 (< 0.5) ; NBC(1)634 corrects the diagnosis with posterior 
probability of making correct diagnosis, 0.6215 (> 0.5) . In this situation, we label the conclusion as corrected. 
For the 1655th instance (control), NBC(2)634 remedies NBC(1)634 by improving the posterior probability of making 
correct diagnosis from 0.5455 (= 1− 0.4545 > 0.5) to 0.9608 (= 1− 0.0392 > 0.5455) . In this situation, the 
conclusion is labeled as improved. Other results can be explained similarly.

Instance no. True status NBC
(1)

634
NBC

(2)

634
Conclusion Instance no. True status NBC

(2)

634
NBC

(1)

634
Conclusion

(A) (B)

118 Case 0.5132 0.6442 Improved 29 Case 0.4896 0.6215 Corrected

811 Case 0.5005 0.9954 Improved 39 Case 0.5495 0.9332 Improved

1024 Case 0.5225 0.9034 Improved 375 Case 0.5290 0.9450 Improved

1077 Control 0.4590 0.2712 Improved 435 Control 0.4726 0.0838 Improved

1126 Case 0.5140 0.9823 Improved 1026 Case 0.5352 0.8606 Improved

1128 Control 0.4987 0.0508 Improved 1086 Control 0.4549 0.1960 Improved

1365 Control 0.4525 0.3326 Improved 1495 Case 0.5015 0.7915 Improved

1482 Case 0.5277 0.6845 Improved 1597 Case 0.5398 0.8696 Improved

1655 Control 0.4545 0.0392 Improved
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accuracy 99.91% according to leave-one-out; In comparison, if not using Snp2Bin, then IterMMPC will get 
a subset only containing 60 variables, and then OptNBC obtains a 59-feature NBC with accuracy 74.93% only.

Exclusion of redundant variables for high dimensional SNP genotypes by IterMMPC.  For a 
target variable in a Bayesian network25, the parents, children, and spouses are its theoretically optimal features26. 
As a special Bayesian network, NBC needs only the target’s children, which can be identified by the MMPC 
algorithm. An important working mechanism of MMPC is to use (conditional) independence tests to exclude 
redundant variables.

Numerically, for each of the six datasets, we check every SNP’s association with cancer risks by computing 
its (0-order) p value used for testing the statistical hypothesis “the SNP is independent of cancer risks”. As seen 
from Fig. 2 and Figs. S3, S4, S5A and S5B, there are many SNPs for which a very high association with cancer 
risks may not mean a large probability that the corresponding SNP can be selected as a feature, implying such a 
high association may only be a superficially (not truly) high association.

Such many superficially high associations make it hard to determine an optimal subset of SNPs used for 
prediction. However, these superficially high associations can be filtered to a great degree by conditioning one 
or more truly high associated SNPs, as MMPC does. To explain why this works so well, we take phs000517 as an 
illustration by computing the 1-order p value for every SNP when testing “the SNP is conditionally independent 
of cancer risks conditioned on any one of those SNPs (except itself) used by NBC(1)517 or NBC(2)517”.

By the results (Figs. S5C and S5D), many of the superficially high associations are identified immediately. 
Hence, we expect that, when 2-order p values are used, MMPC can exclude many more redundant variables.

On the other hand, MMPC has an exponential complexity, so it cannot be used directly to select features 
for a dataset of high dimension (especially when the dimension is larger than one million). Instead, Iter-
MMPC divides all variables into many parts and implements MMPC for every part to update the subset of variables, 
and then iterates the process until no change occurs. In short words, IterMMPC not only saves computing time, 
but also finds a small superset of all useful SNPs.

Selection of optimal features for naive Bayes by OptNBC.  Our OptNBC algorithm enhances naive 
Bayes by using a similar idea of constructing the selective Bayesian clasifier27. If the features are properly used, the 
resulting classifier will possess robust power of making classifications19. Considering the high dimensionality of 
each dataset, we use the 10-fold cross-validation score (substituting for leave-one-out score) to speed up compu-
tations. It can be seen from Fig. 4 that the features (selected by using the 10-fold cross-validation score) can make 
the accuracy (evaluated in the sense of leave-one-out) ascend with only slight fluctuations. This indicates there 
is no over-fitting in NBCs once the features are properly selected (Supplementary Materials S5). In addition, we 
use OptNBC also because naive Bayes is simple and has more intuitional probabilistic meanings.

Number of selected features: from quantity to quality.  For a complex disease such as one of these 
three top cancers, there are no leading SNPs, and per SNP only carries a small amount of information about 

Table 2.   Performance of remedying procedures on the 17 incorrect diagnoses. (A) Use NBC(2)634 to remedy 
NBC

(1)

634 . (B) Use NBC(1)634 to remedy NBC(2)634 . (C) Use NBC(2)753 to remedy NBC(1)753 . (D) Use NBC(1)753 to remedy 
NBC

(2)

753 . (E) Use NBC(2)147 to remedy NBC(1)147 . (F) Use NBC(1)147 to remedy NBC(2)147 . (G) Use NBC(2)517 to remedy 
NBC

(1)

517 . (H) Use NBC(1)517 to remedy NBC(2)517 . (I) Use NBC(2)306-JL to remedy NBC(1)306-JL . (J) Use NBC(1)306-JL to 
remedy NBC(2)306-JL . (K) Use NBC(2)306-AA to remedy NBC(1)306-AA . (L) Use NBC(1)306-AA to remedy NBC(2)306-AA.

A
Instance no. True status NBC

(1)

634 NBC
(2)

634
Conclusion

B
Instance no. True status NBC

(2)

634 NBC
(1)

634
Conclusion

No error 29 Case 0.4896 0.6215 Corrected

C

Instance no. True status NBC
(1)

753 NBC
(2)

753
Conclusion

D

Instance no. True status NBC
(2)

753 NBC
(1)

753
Conclusion

318   Control 0.5171 0.1060 Corrected
414 Control 0.5379 0.1386 Corrected

1291 Case 0.4465 0.6449 Corrected

E

Instance no. True status NBC
(1)

147 NBC
(2)

147
Conclusion

F

Instance no. True status NBC
(2)

147 NBC
(1)

147
Conclusion

1444 Case 0.4680 0.8689 Corrected

1356 Control 0.5486 0.0765 Corrected
1724 Control 0.6190 0.0276 Corrected

1982 Case 0.4549 0.7723 Corrected

2153 Case 0.4633 0.9114 Corrected

G
Instance no. True status NBC

(1)

517 NBC
(2)

517
Conclusion

H
Instance no. True status NBC

(2)

517 NBC
(1)

517
Conclusion

1354 Case 0.3288 0.5652 Corrected 581 Case 0.4947 0.8736 Corrected

I
Instance no. True status NBC

(1)

306-JL NBC
(2)

306-JL Conclusion
J

Instance no. True status NBC
(2)

306-JL NBC
(1)

306-JL Conclusion

1114 Case 0.4706 0.9645 Corrected 109 Control 0.5658 0.1494 Corrected

K

Instance no. True status NBC
(1)

306-AA NBC
(2)

306-AA Conclusion

L

Instance no. True status NBC
(2)

306-AA NBC
(1)

306-AA Conclusion

1006 Control 0.5111 0.1906 Corrected 1107 Case 0.4596 0.7027 Corrected

1079 Case 0.3978 0.9797 Corrected 2141 Case 0.4224 0.9866 Corrected
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cancer risks. In some situations, such information also may be swamped by some unknown random factors, and 
in this case the corresponding SNP will give an opposite effect on predicting cancer risks, needing more other 
SNPs to offset this opposite effect.

On the other hand, as Matt Ridley said in summarizing the genetic annealing model of Carl Woese: “the 
organism was not yet an enduring entity, and the genes that ended up in all of us may have come from lots of 
‘species’ of creature”28,29, we believe that evolution is indeed urging humans (and other species) to mitigate the 
risk of getting a serious disease by dispersing it to many loci of the micro world, so a large number of SNPs 
associated with a complex disease have to be identified and used in a better method.

Our results also confirm an early guess of Dr. Gail that about 300 (=7+10+280) SNPs are needed to dramati-
cally improve risk forecasts for breast cancer30,31. The guess of Dr. Gail, however, does not mean we can improve 
risk forecasts substantially by simply taking ∼ 300 (and even more) SNPs that have the highest associations. For 
example, if using such 300 SNPs, phs000753 can only get accuracy 55.85%, nearly equivalent to guessing cancer 
risks by tossing coins. Instead, these SNPs should be appropriately chosen from the huge number of SNPs via 
suitable methods, like our IterMMPC and OptNBC algorithms.

More information decoded from SNPs.  As the third generation of genetic markers, SNP genotypes are 
expected to contain all information about what one wants to know, such as skin color, gender, ethnicity, tempera-
ment, and even sexual orientation, if data on all SNP genotypes are collected properly. For example, to see the gen-
der information hidden in the intersected 170,571 SNPs of phs000634 and phs000753, we regard the 1998/2290 
gender labels in this two dbGaP studies as the target data, and then perform Snp2Bin/IterMMPC/OptNBC to 
make classifications. For phs000634, we get a 385-variable subset and then a 304-feature NBC, which performs 
“predictions” for gender with accuracy 89.64% according to 10-fold cross-validation; for phs000753, we get a 
507-variable subset and then a 311-feature NBC, performing “predictions” with accuracy 92.23%. If all SNPs are 
pre-collected at the data-gathering phase, the accuracy will be higher. In this sense, those phenotypical informa-
tion (such as gender) useful for characterizing cancer risks are contained in some SNPs genotypes. This explains 
why our method can make precise classifications by using SNPs only.

Application to more complex diseases.  Besides the three top cancers, our method can also be applied 
to many other complex diseases, if corresponding datasets are available. On the one hand, Snp2Bin plays an 
important role in extracting as much useful information as possible and in making the most efficient use of 
IterMMPC. On the other hand, among so many SNPs, there is no any leading SNP; in this case, any potential 
opposite effect of a SNP on making predictions caused by random factors may be remedied by some other SNPs.

Data availability.  All datasets are available through the dbGaP. The main code used in this report is avail-
able on https​://githu​b.com/lxq20​18/dbGaP​.

Data preprocessing.  All datasets only consist of the part with restriction of GRU (general research use). 
For a SNP, its missing values are regarded as chaos states of genotypes. Denote them by an imaginary genotype, 
instead of simply deleting them or replacing them with imputed data, because such states may stand for cer-
tain potential unknowns to be unexplored rather than consequences of some other factors such as precision of 
sequencers.

The 2‑value coding scheme: Snp2Bin algorithm.  As Fig. 1A illustrates, Snp2Bin first examines 
all genotypes (including the imaginary genotype) for a SNP; Then, it transforms the SNP into a 2-value variable 
by taking 1 for some alleles and 0 for all others; After that, the χ2-statistic32 of the corresponding contingency 
table is computed (as its score). Among all such possible coded 2-values variables, the one with the highest score 
is as the optimal 2-value variable for this SNP. This scheme borrows in part the idea of transforming a multi-
class attribute into a binary variable33 and can increase the power of χ2-tests involved in subsequent process of 
building models, so it is a key to implement IterMMPC and OptNBC/SubOptNBC. This is because, for a SNP 
related to the target, one or more of its genotypes may be only weakly dependent on (or even nearly independent 
of) the cancer, and such genotypes increase the statistical degrees of freedom for the corresponding χ2-test, lead-
ing further to a false conclusion about the dependence between this SNP and the cancer. Snp2Bin enhances 
the ability to detect such dependence.

Moreover, it can be verified that, for any SNP independent of the cancer, the corresponding 2-value variable 
must also be independent of this cancer. In fact, let T and X be two random variables, taking {t1, . . . , tk} and 
{x1, . . . , xℓ} , respectively. If T and X are independent, P(T = ti ,X = xj) = P(T = ti)P(X = xj) holds for any 
i = 1, . . . , k and j = 1, . . . , ℓ . Let Y be one of the 2-value variables of X, defined as taking 1 if X ∈ X1 and taking 
0 otherwise, where X1 and X0 are two (nonempty) exclusive and exhaustive subsets of {x1, . . . , xℓ} . Then, for any 
t ∈ {t1, . . . , tk} and y ∈ {1, 0} , we have

P(T = t,Y = y) = P
(

T = t,∪x∈Xy {X = x}
)

=

∑

x∈Xy

P(T = t,X = x) =
∑

x∈Xy

P(T = t)P(X = x)

= P(T = t)
∑

x∈Xy

P(X = x) = P(T = t)P
(

∪x∈Xy {X = x}
)

= P(T = t,Y = y).

https://github.com/lxq2018/dbGaP
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It follows that T and Y are also independent. This indicates (1) unrelated SNPs will never enter our NBC models, 
and (2) the information that a SNP carries about the cancer will be encoded by the 2-value variable as much as 
possible.

Reduction of search space for NBC: IterMMPC algorithm.  As a simple Bayesian network25, all the 
features in an NBC are children of the target (status of lung cancer or breast cancer or prostate cancer). Consid-
ering the number of SNPs is very huge, up to half a million and even larger, we use IterMMPC  to reduce the 
search space before looking for the optimal NBC. MMPC34,35 is a state-of-the-art algorithm used for finding the 
parents (direct causes) and children (direct efforts) of the target. Its computational complexity is exponential to 
the number of parents and children, so we divide the feature set into a number of groups and update each group 
individually by applying MMPC to it. Iterate this process until no change occurs. Figure 1B describes this divide-
and-conquer strategy schematically. To avoid over-excluding useful attributes, the two parameters of MMPC, 
“threshold” and “maxK”, are taken as 0.1 and 2, respectively.

Optimal NBC discovery: OptNBC  algorithm.  IterMMPC   gets a superset of attributes of a target. 
Specifically, this superset contains 3274 attributes for phs000634, 1298 attributes for phs000753, 4128 attrib-
utes for phs000147, 1863 attributes for phs000517, 3919 attributes for phs000306-JL, and 24,457 attributes for 
phs000306-AA. Based on these filtered attributes, OptNBC starts from an empty NBC. As Fig. 1C shows, for 
each attribute, add it tentatively to the current NBC and then compute the product of posterior probabilities of 
making correct diagnoses (just as the likelihood function in some sense; or equivalently, its logarithm) as its 
score. Add the attribute with the highest score to the current NBC to update the forward phase of OptNBC until 
the score no longer increases. Then, remove any attribute tentatively from the current NBC and then compute 
its score, deleting the attribute with the lowest score to update the backward phase until the score begins to 
decrease.

Alternative to OptNBC: SubOptNBC  algorithm.  SubOptNBC   is an alternative algorithm to 
OptNBC in searching a good NBC. It simply replaces OptNBC by adding the attribute with the second highest 
score to the NBC in the forward phase. The NBCs searched by OptNBC and SubOptNBC can be regarded as 
two different experts of making diagnoses with different empirical information in a sense.
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