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Therapeutic implications of the anergic/
postactivated status of B cells in systemic
lupus erythematosus

Thomas Dörner ,1 Franziska Szelinski,2 Andreia C Lino,3,4 Peter E Lipsky5

ABSTRACT
Systemic lupus erythematosus (SLE) is characterised by
numerous abnormalities in B lineage cells, including
increased CD27++ plasmablasts/plasma cells, atypical
CD27-IgD- B cells with increased CD95, spleen tyrosine
kinase (Syk)++, CXCR5- and CXCR5+ subsets and anergic
CD11c+Tbet+ age-associated B cells. Most findings,
together with preclinical lupus models, support the concept
of B cell hyperactivity in SLE. However, it remains largely
unknown whether these specific B cell subsets have
pathogenic consequences and whether they provide
relevant therapeutic targets. Recent findings indicate
a global distortion of B cell functional capability, in which the
entire repertoire of naïve and memory B cells in SLE exhibits
an anergic or postactivated (APA) functional phenotype. The
APA status of SLE B cells has some similarities to the
functional derangement of lupus T cells. APA B cells are
characterised by reduced global cytokine production,
diminished B cell receptor (BCR) signalling with decreased
Syk and Bruton’s tyrosine kinase phosphorylation related to
repeated in vivo BCR stimulation as well as
hyporesponsiveness to toll-like receptor 9 engagement, but
intact CD40 signalling. This APA status was related to
constitutive co-localisation of CD22 linked to phosphatase
SHP-1 and increased overall protein phosphatase activities.
Notably, CD40 co-stimulation could revert this APA status
and restore BCR signalling, downregulate protein tyrosine
phosphatase transcription and promote B cell proliferation
and differentiation. The APA status and their potential
rescue by bystander help conveyed through CD40
stimulation not only provides insights into possible
mechanisms of escape of autoreactive clones from negative
selection but also into novel ways to target B cells
therapeutically.

INTRODUCTION
Loss of central and peripheral self-tolerance
and subsequent maintenance of autoimmune
memory by T and B lineage cells and the resul-
tant autoantibody production are important
pathologic features of adaptive immunity in sys-
temic lupus erythematosus (SLE).1 2 Various
murine models of SLE3 4 point towards the key
findingof hyperactiveB cells drivenby autoreac-
tive T cells and lack of certain tolerance check-
points as important in the immunopathogenesis

of SLE. In patients with SLE, specific abnormal-
ities of peripheral B cell subsets have been
identified.5–13 14–16

Key functions of B cells include recognition
of antigen by the B cell receptor (BCR) and
subsequent downstream signalling and cellu-
lar activation. In addition, B cell activation is
modulated by numerous other receptors,
including CD40 and the endosomal toll-like
receptors (TLRs) (especially TLR7 and
TLR9). Functionally, B cells can contribute to
adaptive immunity by secreting cytokines, sup-
pressing adaptive immune responses and,
most prominently, by differentiating into anti-
body-secreting plasmablasts/plasma cells (PB/
PC). It is important to recognise that under
most circumstances, full activation of naïve
B cells requires engagement of the BCR and
also second signals, such as ligand–ligand
interaction or cytokines crucial for B cell
fate.17–19 As such, BCR signalling is considered
to play a necessary but not sufficient role in the
development and maintenance of autoimmu-
nity. Importantly, there is general consensus
that one central contributor to B cell hyperac-
tivity and autoimmunity is pathologically
increased BCR signalling.20–22 Key findings of
abnormal BCR signalling in autoimmunity are
mainly derived from studies in mice, in which
BCR hyperreactivity has been found to be
a main driver of autoimmunity.23 Less is
known about the contribution of individual
phenotypically identified B cell populations
to the development of autoimmunity and
whether abnormalities in BCR signalling con-
tribute to expansion or functional perturba-
tions of these B cell subsets.

ABNORMALITIES OF B LINEAGE DIFFERENTIATION
IN SLE
Several studies validated that increased PB/PC
induction is a feature of active SLE8 15 24 includ-
ing the demonstration that the PC gene expres-
sion profile correlated with disease activity.25
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Subsequent studies dissecting subgroups of PB/PC in per-
ipheral blood of SLE26 characterised at least two subsets.
One phenotype, expressing CCR10 and ß7, produced IgA,
whereas another subtype, expressingCD62L, producedpre-
ferentially IgG. Both contributed to the peripheral plasmo-
cytosis, whereas mainly the latter were found in kidney
infiltrates. The two subsets contained autoantibody-
producing cells with substantially different phenotypic and
functional characteristics. It is not known whether their site
of induction (mucosal immunity vs lymphoid organs) or
germinal centre (GC) programming are different (GC vs
extrafollicular).
The nomenclature and phenotypes of human B cells,

such as transitional 1 and 2, resting and activated-naïve,
preswitched and switched peripheral as well as tissue-
resident memory B cells, marginal zone B cells, regula-
tory B lineage cells, subsets of antibody-secreting cells
(ASCs),27 28 have been described recently. Remaining
challenges28 lacking consensus have also been
addressed, such as the nature of human B1 cells (CD27
+IgD++, IgM+, CD43+, CD70-, CD11c+, CD14+, CD5+-),
regulatory PC (CD27++CD38++CD19±, interleukin (IL)
10+ or IL-35+IgM++ or IgA+) and anergic-naïve B cells
(IgD+, CD27-, CD38+/low, CD24+, CD21-, IgMlow/-).
These are important references to evaluate abnormal-
ities of peripheral and tissue-based B lineage cells in
certain diseases, such as SLE. However, a main challenge
is to understand the role of expanded atypical memory
B cells in particular in SLE. Herein, we use the term
atypical memory to refer to B cells that have been
described or considered as antigen experienced, but
do not have the classic phenotype of memory B cells.
The CD27-IgD- B cell population is the origin of many

phenotypical studies of atypical B cell subsets in SLE.
A better understanding of the role of the CD27-IgD-
population and its subsets seems to be of special interest,
since these cells are expanded in various autoimmune
diseases, including SLE,10 rheumatoid arthritis (RA) and
inflammatory bowel disease.29 30

In mice, a B cell subset termed age-/autoimmune-
associated B cells (ABCs) has been described that arises
with age in normal mice and is expanded in various auto-
immune diseases.31 A similar B cell subset has been
reported in human autoimmune disease, although the
similarity is based on limited phenotypic analysis. ABC-
like B cells in human autoimmunity are characterised by
expression of CD19hi CD27- CD21- CD11c++ and the tran-
scription factor Tbet+ (tbx21). Further markers and their
expression levels have been reported, including CD23-
CD24lo CD38lo IL-4Rlo CD95hi CD86+ FCRL5+.16 Somatic
hypermutation of BCR gene rearrangements, lack of
expression of the ABCB1 transporter and the finding that
the majority of the population is class switched mark them
as memory B cells despite lacking CD27 expression.
Reduced responsiveness to BCR,32 CD4033 or TLR32 33

stimulation suggested their exhausted phenotype is caused
by persisting antigen-driven stimulation. Accordingly, the

ABC-like B cell population is expanded in autoimmune
patients with RA,34 SLE,35 primary Sjögren’s syndrome
(pSS)36 and chronic infection, such as malaria.37 Enrich-
ment of poly-reactive and autoreactive clones in ABC-B cells
was taken as indicator of their pathogenic role. A functional
study of ABCs38 in a B cell-intrinsic Ship-deficient (ShipΔB)
lupus model provided further evidence that young mice
already had increased CD11c+ ABC in spleen and lymph
nodes. Later in life, those mice developed increased T cell
activation linked to increased autoimmunity. ShipΔB follicu-
lar B cells showed the same potency in inducing T cell
activation in an antigen-dependent manner as wild-type
mice, whereas CD11c+ ABCs were more potent stimulators
of antigen-specific T cells with a TFH phenotype. Inducible
deletion of CD11c resulted in a decrease of CXCR5+ PD-1hi

TFH, suggesting an important role of CD11c+ ABCs for
maintenance of TFH. Of note, antibody affinity maturation
and GC selection were impaired in the presence of
the expanded CD11c+ B cell population. With regard
to humans, the increased CD11c+ Tbet+ ABC-like B cell
population in patients with SLE that correlates with
the frequency of recently activated memory TFH cells
(CD4+CXCR5+ICOS+PD-1hi) may represent an important
source of the drive towards autoimmunity.14 38

Another CD27-IgD- subset sharing some makers of
ABC-like B cells, including CD11chi, Tbet+ and lack of
CD21, was reported by Jenks et al.14 This CXCR5-negative
population (called double negative (DN)2) was
expanded in SLE, correlated with lupus activity and anti-
Smith (Sm)/ribonucleoprotein (RNP) autoantibodies.
The transcriptional profile found higher expression of
IRF4 and lower expression of IFR8 compared to other
B cell subsets, indicating the tendency towards differen-
tiation into PB/PC. Upon TLR7, IL-21 and IL-10 stimula-
tion, DN2 cells produced increased amounts of IgG with
a reduced mutation rate than classical switched memory
B cells. This indicated that DN2 cells may not originate
from the memory B cell compartment. Instead, stimula-
tion of naïve B cells with TRL7, IL-21 and IFNγ resulted in
differentiation into DN2 and PB/PC.
Another unique B cell subset characterised by

CD27-Syk++CD38-CD95+ expression and increased basal
spleen tyrosine kinase (Syk) phosphorylation was also
expanded in patients with SLE but not in RA and pSS,
and appeared to be stable over time and did not correlate
with disease activity measured by systemic lupus erythema-
tosus disease activity.39 Mutated VH gene rearrangements,
decreased expression of the ABCB1 transporter and mem-
ory like Syk phosphorylation upon BCR stimulation
implied that this was an atypical memory population. Com-
parison of marker expression with other atypical B cell
subsets in SLE demonstrated only a partial overlap. Nota-
bly, an enhanced frequency of CD27-Syk++ B cells after 48-
hour stimulation of whole blood cultures with IFNγ, LPS
and TNF suggested that these cells might be expanded in
response to inflammatory cytokines. Differentiation into
ASCs could be induced by IL-2, IL-10, CpG and anti-BCR
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stimulation.39 The various phenotypes of atypical memory
B cells expanded in SLE are shown in table 1.
It is still not clear whether the reported abnormalities in

B cell subsets in SLE reflect characteristic findings speci-
fically of this disease or rather are secondary to overacti-
vation of the immune system in patients with SLE. The
finding that these cells can be found in other autoim-
mune as well as infectious diseases and in normal older
mice suggests that the common thread might be persis-
tent stimulation of the immune system. However, the
finding that DN B cells have been found to be enriched
for autoreactive cells against dsDNA, Sm, RNP, and the
9G4 isotype14 34 suggests that they could contribute to
autoimmunity even if arising as part of diffuse B cell
activation. Reduced responsiveness to BCR, CD40 or
TLR40 41 stimulation suggested that they manifested an
exhausted anergic or postactivated (APA) phenotype
caused by persistent antigen-driven stimulation.

DIMINISHED BCR AND TLR9 SIGNALING IN HUMAN SLE B CELLS
Engagement of the BCR induces unique organisation of
numerous molecules on the surface of B cells leading to
intracellular signals that regulate survival, activation, pro-
liferation and differentiation. Together with
appropriate second signals by CD40 stimulation and cyto-
kines, the BCR determines B cell fate. Intracellular signal-
ling is defined by stimulatory and inhibitory molecules,
including various protein tyrosine kinases (PTKs) and
protein tyrosine (serine/threonine) phosphatases
(PTPs/PSPs).17–19 Antigen binding induces phosphoryla-
tion of the BCR-associated Igα (CD79a) and Igβ (CD79b)
chains leading to downstream Lck/Yes novel tyrosine
kinase (Lyn) and Syk phosphorylation.42 This activates
1-Phosphatidylinositol-4,5-bisphosphate

phosphodiesterase gamma-2 (PLCγ2), Bruton’s tyrosine
kinase (Btk) as well as protein kinase B (Akt), which
results in Ca2+- and Akt-dependent transcription43–45

(figure 1). As a negative feedback loop, CD22 becomes
phosphorylated and recruits PTP non-receptor type 6
(SHP-1) to the BCR, which dephosphorylates BCR down-
stream targets.46–48 Genome-wide association studies
identified polymorphisms of BCR downstream scaffold
proteins, PTKs and PTPs, are associated with SLE.49–56

These findings suggested that BCR signalling is geneti-
cally altered in SLE.
In this context, initial studies reported increased

BCR signalling in SLE B cells measured by Ca2+
release and downstream tyrosine phosphorylation
related to a lack of negative regulation, such as immu-
noglobulin gamma Fc receptor II-b (FcgRIIb), phos-
phatase and tensin homolog or Lyn.20 21 57–61 Further
reports provided evidence that the BCR signal in auto-
immunity is diminished in certain B cell subsets, with
reduced tyrosine phosphorylation, Ca2+ release and
recruitment of signalling kinases to lipid rafts upon
BCR stimulation.62–65 In a recent study,41 baseline
expression and phosphorylation levels of BCR-
associated PTKs, such as Syk, BTK and PLCγ2, did not
differ from normal in B cells from SLE patients. How-
ever, reduced Syk and Btk tyrosine phosphorylation
upon BCR stimulation was characteristic of naïve and
memory B cells from patients with SLE B cells. In con-
trast, naïve B cells from RA and pSS patients showed
similar phosphorylation kinetics as control-naïve B cells.
BCR-induced pSyk(Y352) and Btk(Y223) were substan-
tially lower for CD27+ memory B cells and naïve B cells
from patients with SLE independent of their surface IgG
and IgM expression.64 This suggests that this SLE B cell
functional phenotype is not related to reduced Ig

Table 1 Reported atypical memory B cell subsets reported to be increased in SLE

B cell
subset Marker Further markers Origin

B cells

HDs Autoimmunity Function

ABC-like
B cells

CD19hi CD27lo

CD21lo

CD11chi

CD23lo CD24lo

CD38lo

IL-4Rlo CD95hi

CD86+ FCRL5+

CD27-
memory
B cells

Mean
5%*32

CVID (EUROClass; group
SmB± CD21lo: ≥10%)*
SLE ca. 8–22%,7 35

depending on SLEDAI
RA: up to ca. 17%34

pSS: median 8.7%36

Production of
autoantibodies
Pathogenic role
by abnormal
TFH diff. and GC
selection38

DN2 CD19+ IgD-CD27-
CXCR5-CD24lo

See14 Naïve B cells ≤5%* SLE: Up to 75%* Production of
autoantibodies
Precursor of
ASCs

Syk high CD19hiCD20hiCD27-

Sykhi

CD38lo

pSyk++
see39

CD27-
memory
B cells

6.4% SLE 16.1% Precursor of
ASCs

*, of peripheral CD19+ B cells.
ABCs, age-/autoimmune-associated B cells; ASCs, antibody-secreting cells; CVID, common variable immunodeficiency; DN, double-negative
(CD27- IgD-) B cells; GC, germinal centre; HDs, healthy donors; pSS, primary Sjögren’s syndrome; pSyk, phosphorylated spleen tyrosine kinase;
SLE, systemic lupus erythematosus; SLEDAI, systemic lupus erythematosus disease activity; Sm, Smith.
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expression. Moreover, comparable phosphorylation
kinetics of pAkt(S473) upon BCR stimulation excluded
globally abnormal signalling in lupus B cells.
Mechanistically, repetitive BCR stimulation of B cells

from healthy controls, but not with other stimuli such as
CpG, resulted into reduced Syk(Y352) phosphorylation
upon subsequent BCR stimulation. An earlier study
demonstrated that proliferating murine GC B cells lack
active BCR signalling which is induced andmaintained by
increased phosphatase activity and persistent co-
localisation of SHP-1 with the BCR after ligation.66

Thus, reduced BCR signalling of postactivated function-
ally anergic B cells likely is induced by repetitive stimula-
tion by self-antigens or immune complexes in the absence
of appropriate co-stimulation.
Interestingly, reduced BCR-induced Syk phosphory-

lation in both CD27- naïve and CD27+ memory B cells
is related to increased PTP activity and expression by
SLE B cells.41 This may reflect the more persistent
stimulation of B cells in SLE, perhaps reflecting the
enhanced activity of T follicular helper cells (TFH) in
SLE67 68 and/or exposure to IL-21 that promotes
CD11chiT-bet+ B cell development.35 Even though
increased TFH and increased expression of CD40L
have been reported in SLE, there may be compart-
mentalisation of these cells away from sites of B cell
activation, permitting persistent engagement of the
BCR without appropriate T cell-derived help.

Increased CD22 and reduced CD21 expression are phe-
notypic markers of APA B cells39 69 70 (figure 2). This
phenotype is characteristic and a result of the proinflam-
matory environment, including abundantly available
autoantigens in SLE. In this regard, increased PTP as
well as PSP activity was a unique finding for SLE B cells.41

The data indicate that APA B cells are characterised by
increased PTP/PSP activity and explain immediate
dephosphorylation of signalling molecules undergoing
extrinsic stimulation as an important regulatory mechan-
ism (figure 2). Increased activity of serine/threonine
phosphatase, PP2A, has been reported recently to be
essential in a preclinical lupus model and was increased
in patients with SLE.71 Flox/flox PP2Amice had impaired
GC formation and TD and TI immune responses, includ-
ing PB/PC formation. Overall, the data indicate that the
intracellular PSP/PTP potential is critically involved in
mechanisms maintaining SLE cell responsiveness.
Moreover, T cell-independent stimuli employing TLR9

have been reported to enhance B cell activation, in parti-
cular when autoantigen/RNP-immune complexes simulta-
neously engage BCR and TLR9.72 Moreover, TLR9 plays
a crucial role in breaking tolerance against nuclear anti-
gens and driving B cell activation.73–75 In humans, TLR
ligands activate memory B cells, drive in vitro proliferation
and differentiation of B cells into PB/PC73 75 and is con-
sidered to be involved in type I interferon production in
autoimmunity.76 Hyporesponsiveness to TLR9 in vitro has
also been found in SLE B cells41 consistent with reduced
responses of SLE B cells to pokeweed mitogen77; reduced
IL-6, IL-10, vascular endothelial growth factor, IL-1ra pro-
duction and reduced Ki-67 expression78 79; reduced fre-
quencies of CD69+CD86+ and TACI+CD25+ B cells.78

Interestingly, Syk has been found to be necessary for
TLR9 signalling,80 81 consistent with the observation that
normal B cells showed hyporesponsiveness to CpG when
the Syk inhibitor entospletinib was present.41 Thus, Syk
may connect BCR and TLR activation.
In addition to intrinsic B cell abnormalities, alteration

of the functional status of other cells involved in regulat-
ing antibody production may also contribute to the devel-
opment of autoimmunity. In this regard, abnormal GC
reactions in autoimmune tissues,82 disturbances of regu-
latory T cells,2 increased TFH,68 abnormalities of CD4+83

and CD8+ T cells84 85 with diminished T cell responses
have been reported. As precise understanding of potential
abnormalities underlying B cell dysfunction in SLE has
critical importance for improved therapeutic outcome,86

the operative mechanisms remain to be fully delineated.

ANERGIC B CELLS ARE CHARACTERISED BY INCREASED PTP
ACTIVITY CONTROLLED BY CD40 ON THE TRANSCRIPTIONAL
LEVEL
BCR signalling is regulated by a finely tuned balance of
PTKs and PTPs,42 87 whereas anergic B cells in most
patients with SLE are characterised by increased PTP
activity,41 64 and PP2A (PSP) activity71 (figure 2). Of

Figure 1 Phenotypic (increased CD22, PD-1—large red
arrows; decreased CD21 and CD19—large blue arrows) and
functional characteristics of anergic (postactivated with
diminished pSyk, pBTK, pPLCγ2 upon BCR activation) B cells
expanded for naïve and memory B cells in SLE and memory
B cells in RA and primary Sjögren’s syndrome. This status is
apparently controlled by increased receptor type PTP and
generally increased PTP/PSP activity. BCR, B cell receptor;
pBTK, phosphorylated Bruton’s tyrosine kinase; PLCγ2,
phosphodiesterase gamma-2; PSP, protein serine/threonine
phosphatase; pSyk, phosphorylated spleen tyrosine kinase;
PTP, protein tyrosine phosphatase; RA, rheumatoid arthritis.
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note, PTP and PSP activities of CD3+ T cells are not
increased. Increased PTP activity is also evidenced by
elevated co-localisation of SHP-1 (PTPN6) with CD22 on
the B cell surface. The degree of co-localisation constitu-
tively present in SLE B cells appeared at a maximum,
cannot be further increased upon CD22 engagement
and suggest that a functionally active PTP complex of
SHP-1 is substantially increased in SLE B cells.

CO-STIMULATION OF CD40 EFFECTIVELY IMPROVES B CELL
ANERGY IN SLE
Gene expression analysis identified increased PTPN2,
PTPN11, PTPN22, PTPRC and PTPRO in SLE CD20+
B cells. Of particular note, CD40L/IL-4 stimulation
resulted in reduced transcription of PTPN2, PTPN22
and almost all receptor-related (R)PTP (except PTPRB)
compared to their overexpression before stimulation.
The available data of PSPs are limited, and no clear over-
expression or downregulation upon CD40 stimulation
was observed. However, the PSP PP2A has previously
been reported to be overexpressed and functionally rele-
vant in SLE.71

Thus, T cell help by CD40/IL-4R engagement alters the
expression of NRPTPs, such as PTPN22, and different
RPTPs and supports the crucial role of T cell co-
stimulation in defining B cell dysfunction in SLE. Some
reports also indicate a role of reduced BCR signalling in
the development and progression of autoimmunity.88 89

Interestingly, inhibition of PTPN22 could reset central
B cell tolerance in Non-obese diabetic (NOD) scid

gamma chain knock out mice which were engrafted with
human haematopoietic stem cells carrying the gain of
function mutation of PTPN22.89 Whereas this study indi-
cates that a normalised BCR signal could restore immune
tolerance, the strong role of CD40 activation in PTPN22
risk gene carriers is also consistent with the idea that this
pathway is critical for censoring the overly active immune
system in autoimmunity.90 Whether PTPN22 variant
increases or decreases BCR signalling is a matter of
debate. Mice expressing this mutation displayed
enhanced BCR and CD40 responses.91 CD40 seems to
be a critical context-dependent co-stimulatory molecule
regulating both the full activation of BCR-stimulated
B cells as well as their subsequent censoring.
CD40 co-stimulation, in contrast to CpG or cytokine

stimulation alone (IL-4, B cell activating factor from the
TNF family (BAFF), IL-6, IL-21), improved BCR respon-
siveness, including Syk(Y352) phosphorylation in
CD27–naïve and CD27+ memory B cells from patients
with SLE. This data suggests improved BCR responsive-
ness by CD40L co-stimulation in memory B cells and
naïve SLE cells. Before these results were obtained, it
has been reported that Th2 signals restore BCR signal-
ling in a small population of anergic IgM-IgD+-naïve
B cells present in blood of healthy donors and patients
with SLE.92 IL-4 or IL-21 alone led to modest effects on
the pSyk(Y352) response to BCR engagement. IL-4 in
combination with CD40L, however, led to higher
responses than with CD40L alone.
Co-stimulation of CD40 also increased restored TLR9

induced proliferation of SLE B cells. As already

Figure 2 The BCR complex signalling pathway and TLR9 signalling share PTKs, that is, Syk and BTK. CD40 stimulation is able to
decrease intracellular PTP and PSP activity in B cells together with receptor-type phosphatases controlling anergic B cells that are
expanded in SLE. BCR, B cell receptor; BTK, Bruton’s tyrosine kinase; PSP, protein serine/threonine phosphatase; PTKs, protein
tyrosine kinases; PTP, protein tyrosine phosphatase; Syk, spleen tyrosine kinase; TLR, toll-like receptor.
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reported,93 the induction of CD27+CD38+ PB/PC was
lower compared to TLR9 or TLR9/BCR stimulation. Of
note, however, CD40L stimulation blocked CpG induced
in vitro B cell differentiation to PB/PC. Therefore, CD40
engagement provided the co-stimulation signal that
allowed SLE B cells to proliferate when co-stimulated
through TLR9 but did not promote differentiation into
CD27+CD38+ PB/PC.
In summary, CD40 engagement on SLE B cells improves

largely their hyporesponsiveness to BCR andTLR9 agonists
and appears to be a checkpoint molecule controlling aner-
gic B cell fate. This conclusion is further supported by the
observation that in addition to repeated BCR engagement,
continuous signalling via SHP-1 is required to maintain
anergy.94 95 As the APA B cells appear to be functionally
reverted by CD40 engagement, there is the likelihood that
the anergic state derives from signalling through the BCR
in vivo without appropriate T cell-derived co-stimulation.
Moreover, since APA B cells are enriched in reactivity to
autoantigens, functional anergymay be an important brake
on the development of autoimmunity. Bystander help
through CD40 may provide the signal to overcome anergy
and permit the emergence of autoimmunity. Thus, the
regulation of proper T-B interaction plays an essential
role both in assuring a response to exogenous antigens
but also in controlling autoimmunity and the production
of autoantibodies in SLE.
These observations have important consequences. First,

most mature B cells in SLE are APA B cells regardless of
the stage of differentiation. This functional state does not
appear to be restricted to ABC-like B cells. Second, the
presence of APAB cells does not appear to be secondary to
disease activity as this functional phenotype is found in
patients with both active and inactive disease. Moreover,
increased APA B cells can also be found in patients with
other autoimmune disease, including RA and pSS, and,
therefore, it is not specific for SLE.41 Third, anergy is
characterised by upregulation of inhibitory molecules as
well as protein tyrosine phosphatases and can be reversed
by inhibition of the dephosphorylation of signalling
molecules. Finally, anergy appears to be specific for sig-
nalling through the BCR, as the cells can partially respond
to TLR engagement and can be functionally restored by
signalling through CD40. These findings have numerous
implications. First, ongoing activation of all B cell subsets,
presumably owing to chronic autoantigen exposure, seems
to be a characteristic of SLE and other autoimmune dis-
eases. Second, in so far as APA B cells contain subsets with
reactivity to autoantigens, they might be rescued by
bystander help provided by activated T cells expressing
CD40L and be induced to differentiate into autoantibody-
producing PB/PC.
It is notable that anergy is not restricted to B cells in SLE

and might contribute at least in part to the increased infec-
tious risks in this condition. Impaired cytotoxic function
and exhaustion of CD8+ T cells, a characteristic of viral
infections, has been reported.84 85 96 Moreover, SLE
T cells display abnormal T cell signalling.83 97 In addition,

exhausted CD4+ T cells with dysbalanced IL-17/IL-2 pro-
duction have been reported.83 The full impact of a broadly
anergic adaptive immune system in SLE has not been fully
delineated.

THERAPEUTIC IMPLICATIONS
The state of B cell anergy with its increased phosphatase
activity provides translational guidance for innovative
therapies as well as possible explanations for some failed
SLE trials. The generalised increase in APA B cells sug-
gests that these populations are stimulated through the
BCR in vivo. However, little is known about this process
and targeting it might require prolonged time for an
effect to become manifest. There is, however, evidence
that the APA phenotype can be reversed in vivo by certain
therapeutic interventions. In this regard, reduced cyto-
kine production by RA B cells appeared to be reversible
upon IL-6R blockade98 and anergic memory B cells in RA
were decreased.41 However, whether other approaches to
block B cell activation, such as inhibition of BTK, will be
effective in altering the APA B cell phenotype is uncer-
tain. Moreover, whether such inhibition will render
B cells responsive to subsequent stimulation is unclear.
In the context of recent approaches to inhibit down-
stream BCR signalling, studies using inhibitors of BTK
in SLE (fenebrutinib)99 as well as BTK in RA
(fenebrutinib)100 and Syk (fostamatinib) did not differ-
entiate substantially from placebo.101 It is possible that
these agents are not effective at targeting APA B cells or
inhibit the in vivo generation of APA B cells leaving the
patient able to fully respond to expressed autoantigens.
Of particular note, the Syk inhibitor (fostamatinib) has
been approved for autoimmune thrombocytopenia102

and the Btk inhibitor evobrutinib is in multiple sclerosis
phase III trials after successful initial studies.103 The latter
two organ-specific autoimmune diseases may differ from
SLE and RA regarding the role of APA B cells.
The failure of epratuzumab (anti-CD22)104 can also be

considered in the context of the prevalence of APA B cells
in SLE. It was thought that CD22 engagement would
impose negative regulation of BCR signalling47 by
increased SHP-1 activity. This could be convincingly
shown for normal B cells47 105 but since CD22 is fully
engaged in SLE APA B cells and phosphatases are
upregulated,41 the inability of epratuzumab to downregu-
late APA B cell function is perhaps understandable.
Experiences with belimumab, an anti-BAFF/B-lympho-

cyte stimulator (BLyS) antibody, showed an impact on the
differentiation of mature naïve and autoreactive B cells.106

An open study of 23 patients with SLE evaluated alterations
of leucocyte subsets under belimumab using mass cytome-
try (CyTOF).107 A rapid decrease of naïve B cells, a gradual
decrease of DN B cells, but no substantial T cell changes
were noted, which largely confirmed previous studies.
Intriguing new insights were reported for ABC-like B cells
expressing BAFF/BLyS receptors16 35 under this treat-
ment. CD11c+CD21- ABC-like B cells together with IgA+
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memory B cells decreased early with further declines over
the observation period of 24 months. The early decline of
both subsets was found especially in early responders with
no clear dynamics in non-responders and delayed respon-
ders. Further studies are warranted to delineate how beli-
mumabmight impact onABC-like B cells andperhaps APA
B cells as well, and whether CD11c+CD21- ABC-like B cells
and IgA+ memory B cells are interlinked.
The ability of CD40 engagement to restore functional

activity to APA B cells suggests that blocking this pathway
may be an effective means to limit rescues of APA B cell
function in SLE. Initial proof of concept was obtained by
a CD154monoclonal in lupus nephritis,108 but the impact
of this intervention on PB/PC was the focus of
investigation.109 The induction of thromboembolic
events prevented further studies at that time, but
a second-generation PEGylated anti-CD154 antibody is
currently in clinical development for SLE.110 111 Antibo-
dies blocking CD40 are also in clinical development.
Despite blocking CD40 or the ligand CD154 on the extra-
cellular or receptor level, intracellular and selective tar-
geting of CD40 downstream pathways holds additional
therapeutic promise.

CONCLUSION
The full impact of a broadly anergic adaptive immune
system and the recent identification of an APA B cell
phenotype in SLE has not be fully delineated. Innovative
treatment approaches should take into consideration
that adaptive immunity is globally hyporesponsive. Iden-
tification of key pathways able to overcome or overrule
this status can explain the expansion of autoreactive B cell
clones where the cognate autoantigen is not an essential
driver of the autoimmune process, but rather bystander
help provided by CD40/CD154 interactions can rescue
APA B cells leading to the generation of autoantibody-
producing PB/PC. While the anergic adaptive immunity
also suggests impaired protective immunity, further stu-
dies of regulatory principles to maintain or control APA
B cells hold promise for more effective and safe treat-
ments in SLE.
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