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Exact linear theory of perturbation response in a
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What are the principles that govern the responses of cortical networks to their inputs and the
emergence of these responses from recurrent connectivity? Recent experiments have probed
these questions by measuring cortical responses to two-photon optogenetic perturbations
of single cells in the mouse primary visual cortex. A robust theoretical framework is needed
to determine the implications of these responses for cortical recurrence. Here we propose a
novel analytical approach: a formulation of the dependence of cell-type-specific connectivity
on spatial distance that yields an exact solution for the linear perturbation response of a
model with multiple cell types and space- and feature-dependent connectivity. Importantly
and unlike previous approaches, the solution is valid in regimes of strong as well as weak
intra-cortical coupling. Analysis reveals the structure of connectivity implied by various
features of single-cell perturbation responses, such as the surprisingly narrow spatial radius
of nearby excitation beyond which inhibition dominates, the number of transitions between
mean excitation and inhibition thereafter, and the dependence of these responses on feature
preferences. Comparison of these results to existing optogenetic perturbation data yields
constraints on cell-type-specific connection strengths and their tuning dependence. Finally,
we provide experimental predictions regarding the response of inhibitory neurons to single-
cell perturbations and the modulation of perturbation response by neuronal gain; the latter can
explain observed differences in the feature-tuning of perturbation responses in the presence
vs. absence of visual stimuli.

Recurrent neural networks | Optogenetic perturbation | Mouse Primary Visual Cortex

In recent years there have been a number of experiments utilizing holographic
perturbation techniques to probe recurrent neuronal circuitry. In layers 2/3

(L2/3) of the mouse primary visual cortex (V1), such experiments have revealed
complex rules governing the perturbation response of neurons that depend on the
spatial locations and orientation tunings of both the perturbed and the unperturbed
neurons (1–7).

A common approach to making sense of this rich structure is to model mouse
V1 L2/3 with a linear, recurrently-connected firing rate model where connectivity
strength depends on the spatial location, orientation tuning, and cell type of the
pre- and post-synaptic neurons (2). While such models provide much simpler
descriptions than biophysical spiking models and are analytically tractable for weak
connectivity (spectral radius of weight matrix < 1), there is still a lack of a more
general understanding of how the perturbation response is related to the underlying
connectivity structure.

Here we introduce a novel analytical approach to the problem. First, we show that
an exponential-like spatial connectivity kernel is a good descriptor of the product
of connection probability and synaptic strength. This choice of kernel allows us to
derive an exact solution for the linear perturbation response of recurrently connected
networks with multiple cell types that is valid regardless of the spectral radius of
the weight matrix. As this formulation holds for any circuit coupling strength, it
allows one to investigate perturbation responses of inhibition stabilized networks
(ISNs) (8, 9), which appear to describe cortical circuits (10) and which may be
characterized by large negative eigenvalues.

The general solution for the circuit involving an arbitrary number of cell-types
and connectivity length scales is complex, and does not easily provide intuitive
insight. However, for the special case of an excitatory/inhibitory (E-I) network in
which connectivity width depends only on presynaptic cell types, we discover simple
mathematical rules that govern the relationship between connectivity structure
and single-cell perturbation response. These insights allow us to infer various
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Fig. 1. Exact linear response theory vs simulation
and common approximations. A) Schematic of model.
Neurons are located in a d-dimensional space with Nc cell
types, and have feature tuning preferences θ ∈ [−π, π),
and feature selectivities µ ∈ [0, 1]. B) Connectivity function
in a simplified 2D model, Wαβ(x − y) (equation 3),
fitted to the product of connection probability (11) and
connection strength (12) between excitatory and inhibitory
neurons. C) Region of convergence (yellow, all eigenvalues
λ of the weight matrix satisfying |λ| < 1) for the matrix
inverse expansion used in existing theoretical analyses of
perturbation response, compared to the region of stability
(blue, all Re(λ) < 1, assuming cell-type-independent time
constants), for which our theory applies. D) Comparison
between theory, simulation, and 3rd order matrix inverse
expansion for the single-cell perturbation response of an
E-I model with spectral radius of 1.8. Left: Response of
excitatory neurons as a function of distance to the perturbed
excitatory neuron, for different feature tuning preferences.
Right: Response of excitatory neurons as a function of
difference in feature tuning preference from the perturbed
excitatory neuron, for different feature selectivities.

constraints that the cortical connectivity should satisfy in
order to explain existing optogenetic perturbation data.

We break down our analysis in four sections: first,
we examine the condition for the circuit to exhibit mean
suppression in response to the perturbation of an excitatory
neuron, as observed in (1). This is followed by two sections
on the analysis of distance and feature preference dependence
of the perturbation response respectively. In particular,
in the first, we characterize the number and location of
spatial zero crossings of the network response (i.e. transitions
between mean excitatory and mean inhibitory response with
distance from the perturbation). Finally we study the joint
dependence of the perturbation response on distance and
feature tuning, specifically the relationship between feature-
specific amplification/suppression and distance.

To validate our theoretical findings, we establish several
predictions that can be tested experimentally. First, since
existing perturbation data mainly studies the response of
excitatory neurons to excitatory neuron perturbation, we
predict that the response of inhibitory neurons should exhibit
less suppression and a broader spatial profile than excitatory
neurons. Second, since the perturbation experiments may be
performed with or without the simultaneous presentation of
visual stimuli, we predict that the absence of visual stimuli,
which reduces firing rate and hence neuronal gain, may
result in feature tuning dependence of perturbation response
which is opposite to that when visual stimuli are present.
Finally, we predict that the absence of visual stimuli should
generally result in responses with less suppression and a
broader Mexican-hat profile response, possibly eliminating
the presence of zero-crossings altogether.

Results

We study responses to moderate single-cell perturbations.
Because these perturbations are small, we expect a linear
theory to be adequate. To this end, we consider a linear
recurrent neuronal network with Nc cell types and d spatial
dimensions (Figure 1A). Each neuron is uniquely indexed
by the four-tuple (α, µ, x, θ) ∈ ZNc × [0, 1] × Rd × S1,
representing cell type, feature selectivity, spatial location,
and feature tuning preference respectively. The firing
rate of neuron (α, µ, x, θ) at time t is written rα(µ, x, θ, t),

while the connectivity weight between postsynaptic neuron
(α, µ, x, θ) and presynaptic neuron (β, ν, y, ϕ) is denoted
Wαβ(µ, ν, x − y, θ − ϕ). Feature selectivity (i.e. how well
tuned a neuron is) is assigned independently to each neuron
and may be arbitrarily distributed with density Pα(µ). The
external input to each neuron is denoted hα(µ, x, θ). For
the single-cell perturbations we are considering, h is a delta
function given by equation 10. Taking the continuum limit for
our analytical work, the dynamical equation of the network
is given by equation 11. We are primarily interested in
the steady-state response rα(µ, x, θ) = limt→∞ rα(µ, x, θ, t),
which exists if and only if the network is stable and is given
by

rα(µ, x, θ) =
Nc−1∑
β=0

∫ 1

0

∫
Rd

∫ π

−π

Wαβ(µ, ν, x − y, θ − ϕ)

rβ(ν, y, ϕ)Pβ(ν) dϕdydν + hα(µ, x, θ)

[1]

In general, there is no closed-form analytical solution for
arbitrary choices of W . Our key insight is that W can
be chosen such that it captures the spatial dependence of
the product of the connection probability and the synaptic
strength between cells (Figure 1B), and admits a closed-form
analytical solution, as we now explain.

We will make the common assumption that the dependence
of W on space and feature can be factorized. The spatial
dependence is commonly modeled as a Gaussian kernel (13–
19), in accordance with the approximately Gaussian spatial
profile of connection probability measured in mouse V1 L2/3
(11, 20). However, this choice of spatial kernel neglects the
spatial decay of synaptic strength (12) and does not admit
a closed-form solution for equation 1. Instead, we propose
setting the spatial kernel as Gd(r; σ−2), where r is the spatial
distance, σ is the connectivity length scale, and Gd(∥·∥; σ−2)
is the Green’s function (effectively, the inverse) of the operator
σ−2 − ∇2 in d-dimensions. Specifically, Gd is a monotonic,
exponentially-decaying kernel given by

Gd(r; λ) = 1
(2π) d

2

(√
λ

r

)ν

Kν(
√

λr) [2]

where ν = d
2 − 1 and Kν(z) is the modified Bessel function

of the second kind with order ν (SI section 1). In 1 and
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3 dimensions, Gd(r; λ) is proportional to e−
√

λr and e−
√

λr

r

respectively. We combine data from (11) and (12) to compute
the product of connection probability and connection strength
as a function of distance between excitatory and inhibitory
neurons in mouse V1 L2/3. We find that our kernel can
exactly capture this dependence (Figure 1B; Materials and
Methods), with best-fit E → I and I → E connectivity
widths given by σE = (150 ± 11) µm and σI = (108 ± 8) µm
respectively.

Derivation for a simplified model. To understand how the
spatial kernel Gd enables one to solve equation 1 and to
illustrate the key ideas behind our derivation of the linear
response for the full model, we first consider a simplified
model whose connectivity depends only on the cell type and
spatial location of the pre- and post-synaptic neurons, and
whose connectivity width depends only on pre-synaptic cell
type. For this simplified model, the connectivity function is
given by

Wαβ(x − y) = wαβ

σ2
β

Gd(r; σ−2
β ). [3]

where r = ∥x − y∥, and the division by σ2
β ensures that the

integral of Wαβ over space is wαβ .
To solve for the system’s linear response to a perturbation,

we use the standard bra-ket notation (Materials and Methods)
to rewrite equation 1 in a more abstract form

|r⟩ = W |r⟩ + |h⟩ [4]
where |r⟩, |h⟩ are the firing rate function and the perturbing
input function respectively, and W is the linear integral opera-
tor that acts on |r⟩ according to equation 1. The perturbation
response vector can be written as |r⟩ = (I − W )−1|h⟩, so our
goal is to compute the operator L := (I − W )−1.

The most common approach, is to compute the perturba-
tive expansion of the linear response operator in the form of a
Neumann series (I −W )−1 =

∑∞
n=0 W n (2, 21–25). However,

this approach suffers from two key issues: 1) the series does
not converge for operators W whose spectral radius is greater
than 1 (Figure 1C), and 2) even when the series converges,
the number of terms required for a good approximation may
be large, thus failing to provide a simple description of the
relationship between connectivity and perturbation response.

The choice of spatial kernel Gd, allows for exact compu-
tation of the inverse L = (I − W )−1. This is because the
definition of Gd(∥·∥; σ−2) as the Green’s function of σ−2 −∇2

allows us to write the connectivity operator W as
W = W Σ−1(Σ−1 − ∇2)−1 [5]

where W is the matrix of elements wαβ , and Σ is a diagonal
matrix with elements σ2

β . But by the Woodbury matrix
(operator) identity (26), (I − UC−1)−1 = I + U(C − U)−1

for any operators U, C. Thus, if we take U = W Σ−1 and
C = Σ−1−∇2, and assume that (I−W )Σ−1 is diagonalizable
as P ΛP −1, then

L = I + W Σ−1P (Λ − ∇2)−1P −1 [6]
As L̃ := L − I is analogous to the connectivity operator
defined by equation 5, if we let L̃αβ(x − y) be the response
of neuron (α, x) to perturbation of a different neuron (β, y),
then L̃ can be written as

L̃αβ(x − y) =
Nc−1∑
γ=0

[W Σ−1P ]αγ [P −1]γβGd(r; λγ) [7]

where λγ are the diagonal entries of Λ, i.e. the eigenvalues
of (I − W )Σ−1.

The full model. We define the connectivity function of the full
space- and feature-dependent model by

Wαβ(µ, ν, x − y, θ − ϕ)

= wαβ

2πσ2
αβ

Gd(r; σ−2
αβ )(1 + 2καβfα(µ)gβ(ν) cos(θ − ϕ)) [8]

where καβ ∈ [−0.5, 0.5], and fα, gα ∈ L2([0, 1]) are mono-
tonically increasing functions such that fα(0) = gα(0) = 0,
fα(1) = gα(1) = 1. The sign of καβ determines whether
connectivity is correlated or anti-correlated with difference in
feature preference, while fα and gα determine the strength
of this correlation as a function of feature selectivity. Under
this choice of W , the response rα(µ, x, θ) to a single-cell
perturbation of a different neuron (β, ν, y, ϕ) can be found
to be (SI section 2)

L̃αβ(µ, ν, x − y, θ − ϕ)

= 1
2π

(
L̃0αβ(r) + 2L̃1αβ(r)fα(µ)gβ(ν) cos(θ − ϕ)

) [9]

where the definition of L̃nαβ(r) (equation 13) has a similar
form to equation 7, generalized to allow connectivity widths
to depend on both pre- and post-synaptic cell types and to
include feature preference dependence.

Since equation 9 is exact, we should expect a close
agreement between our theory and numerical simulations of
the model regardless of the spectral radius of the connectivity
matrix. Indeed, we obtain near perfect agreement between
our theory and numerical simulations for the single cell
perturbation response in an E-I model with two spatial
dimensions and a spectral radius of 1.8 (Figure 1D; Materials
and Methods). For comparison, we also computed the
perturbation response using the Neumann series expansion of
the matrix inverse up to 3rd order (i.e. L ≈

∑3
n=0 W n). This

is the minimum order at which the responses of excitatory
neurons to the perturbation of a single excitatory neuron
depend on all connectivity weights (including I → I weights).
As expected, the series expansion severely diverges from
simulations due to the spectral radius being greater than 1
(Figure 1D).

Mean response of unperturbed neurons. Perturbation of
a single pyramidal neuron results in mean suppression of
unperturbed neurons (1), suggesting that inhibitory connec-
tions are sufficiently strong in order to overcome recurrent
excitation. However, the precise conditions under which mean
suppression occurs are unclear. To address this question, we
integrate equation 9 over all its continuous variables to obtain
an expression for the mean response of unperturbed neurons
to single-cell perturbations, given by L̃ = (I − W )−1 − I,
where L̃αβ is the mean response of cell type α to perturbation
of cell type β (SI section 3). In the specific case of an E-I
model, it can be shown that for single-cell excitatory neuron
perturbations, unperturbed excitatory neurons are suppressed
on average if and only if det(W ) > wEE, or equivalently,
|wEI|wIE > wEE(|wII|+1), while inhibitory neurons are always
excited on average (SI section 6). Thus the observation of
mean suppression of unperturbed neurons implies that the
disynaptic E → I → E inhibition must be stronger than the
product of E → E excitation and I → I inhibition.
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Fig. 2. Spatial profile of excitatory neuron response to single-cell perturbation in E-I ISNs. A) Phase diagram of the number of zero crossings in the perturbation response
as a function of distance from the perturbation for networks with ρ=1 (i.e. σE = σI ). Networks in the phase region shaded in black are dynamically unstable. The phase

boundaries between 0, 1, and ∞ are given by y = 0 and y = x2
4 . B) Phase diagram of the number of zero crossings for networks with arbitrary ρ. The instability region

is dependent on ρ, with boundary y = ρ(x − ρ) for x ≤ 2ρ and y = x2
4 for x > 2ρ. Arrows indicate changes in number of zero crossings induced by perturbations of

each parameter at the phase boundaries. C) Top panel: Illustration of the perturbation response as a function of distance within each of the three phase regions. Remaining
panels: Illustration of the quantities r0, rmin

0 , and r1 as plotted in D-F. D) Location to the first zero-crossing, r0, as a fraction of the connectivity length scale
√

σEσI for
2-dimensional models with wEE = 5, ρ = 0.72. 95% confidence interval of r0√

σE σI
estimated from experimental data (1, 11, 12; Materials and Methods) is indicated by

hatched region. Grey line indicates the boundary between 1 and ∞ zero crossings as seen in A and B. E) Similar to D, but the distance from the first zero crossing r0 to the
first minimum rmin

0 is plotted. F) Similar to D, but the distance from the first zero-crossing r0 to the second zero-crossing r1 is plotted. G) Asymptotic decay length scale σ∞
for models with ρ = 0.72. Note that unlike D-F, this variable is independent of the specific choice of wEE and the number of spatial dimensions d. Panels D-F are computed
for 2-dimensional models; panels A and B are valid for 2 or more dimensions.

Spatial profile of perturbation response. In addition to
the mean suppression of unperturbed neurons, single-cell
perturbations of pyramidal neurons produce a Mexican-hat-
shaped response as a function of distance, where neurons near
the perturbed site are excited and neurons farther away are
suppressed (1). Intuitively, this would suggest a connectivity
motif of narrow excitation and broad inhibition. However,
recent mouse V1 L2/3 connectivity data shows that the
opposite is true: E → I and I → E connections are narrower
than E → E connections (11, 20). Furthermore, the length
scale of E → E connectivity (standard deviation ≈ 125 µm for
a Gaussian spatial profile, 20) is significantly broader than
the spatial radius of nearby excitation (≈ 70 µm, 1), and
an even shorter radius of excitation (≈ 35 µm) is seen for
multi-cell perturbations, which could not be explained by a
model with a Gaussian spatial profile for each connection (2).
Thus we set out to investigate the conditions under which
such small radii of nearby excitation can arise in our model
with realistic connectivity length scales.

Number of spatial zero crossings. The Mexican-hat-shaped spa-
tial profile of perturbation response implies that the response
crosses zero from nearby activation to suppression at least
once, or in other words, that there is at least one zero crossing
in the response as a function of distance from the perturbation.
It is conceivable that the response changes sign more than
once, but that these zero crossings cannot be detected due
to measurement noise. Thus, the question of whether or
not the model can exhibit the Mexican-hat-shaped profile of
perturbation response can be broken into two mathematical
sub-problems: whether or not nearby neurons are activated,
and whether or not there exists at least one zero crossing

in the response as a function of distance. We find that
for all networks with 2 or more spatial dimensions, single-
cell excitatory neuron perturbations always activates nearby
neurons, in the mathematical sense that neurons arbitrarily
close to the perturbed cell are activated (SI section 7).

To proceed further, we assume that the connectivity width
depends only on pre-synaptic cell type. In this case, we find
that E-I models may exhibit either 0, 1, or infinitely many zero
crossings (SI section 8A). The exact behavior is determined by
both the connectivity width and connectivity strength via the
two eigenvalues λγ of the 2 × 2 matrix (I − W )Σ−1. If λ0, λ1
are complex conjugates, then the response of both excitatory
and inhibitory neurons must exhibit infinitely many zero
crossings. If λγ are real and the network is an ISN with
two or more spatial dimensions, the condition for excitatory
neuron response having exactly one zero crossing is that the
smaller of the two eigenvalues, λ0, satisfy λ0 > σ−2

E , and
the same condition for inhibitory neurons is λ0 > σ−2

I (SI
Corollary 8.4). Thus, not only can the model exhibit the
Mexican-hat-shaped profile of perturbation response, but we
are also able to determine the precise conditions under which
this occurs.

The mathematical conditions on the number of zero
crossings can be formulated more intuitively in terms of
the connectivity strengths wαβ and the ratio of inhibitory
to excitatory connectivity width ρ = σI

σE
. Note that those

conditions, and the following results presented in Figures 2
and 3, assume that the E-I network is an ISN with two or more
spatial dimensions whose connectivity widths depend only
on presynaptic cell type. We first consider the special case in
which the inhibitory and excitatory spatial kernels have the
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same width (ρ = 1). In this case, the number of zero crossings
of excitatory neuron response can be represented as a phase
diagram in terms of the trace and determinant of W (Figure
2A). This diagram reveals some simple principles governing
the number of zero crossings: First, the existence of at least
one zero-crossing implies det(W ) = |wEI|wIE − wEE|wII|
must be positive, and hence the disynaptic E → I → E
inhibition must be stronger than product of E → E and I →
I connections. Second, notice that I → I connections must
be stronger than E → E (so that the value on the x-axis is
less than 0) for the network response to exhibit exactly one
zero crossing. This suggests I → I connections may have the
regularizing role of suppressing spatial oscillations.

Our phase diagram can be generalized to the case of
arbitrary ρ by modifying the axes (Figure 2B; SI section 8B).
To gain intuition about this phase diagram, we analyze the
change in the number of zero crossings induced by increasing
each of the connectivity parameters at the phase boundaries
(SI section 8C), as indicated by the colored arrows in the
figure. We find that increasing ρ (i.e. broadening inhibitory
connections) encourages the formation of zero crossings, as
one would expect intuitively. Increasing the strength of E →
I and I → E connections also encourages the formation of zero
crossings, while increasing the strength of E → E and I → I
connections has the opposite effect. Furthermore, the phase
diagram reveals that the principles we obtained for the case of
ρ = 1 can be generalized with slight modifications: First, the
existence of at least one zero crossing implies the determinant
det(W ) must be greater than (1 − ρ2)wEE, which is positive
for networks with ρ < 1. Second, for the network response
to exhibit exactly one zero crossing, I → I connections must
be stronger than ρ2wEE + (ρ2 − 1), which in turn must be
stronger than E → E connections if ρ > 1.

Spatial radius of nearby excitation. We have shown that our
model can qualitatively exhibit the Mexican-hat response to
excitatory perturbations found in data (1), given sufficiently
strong disynaptic E → I → E inhibition. However, the
location of the first zero crossing (i.e. the spatial radius of
nearby excitation), r0, has been measured at approximately
70 µm (1), which is significantly narrower than the connection
probability length scale at around 100 – 125 µm (11, 20). Can
this be explained by our model? To address this we compute
r0 at different points of the phase space as a fraction of the
geometric mean of the connectivity length scales, √

σEσI .
Since this quantity is not fully determined by the x- and y-
axes of Figure 2B, we compute it for different combinations of
wEE and ρ (Figure S1). The specific case of wEE = 5, ρ = 0.72
is illustrated in Figure 2D, where the value of 0.72 is our best
estimate of ρ obtained from the fitted connectivity kernels in
Figure 1B. These numerical results show that r0 is negatively
correlated with det(W ), such that the determinant must be
considerably greater than 0 (i.e., disynaptic E → I → E
inhibition must be significantly stronger than the product
of E → E and I → I connections) in order to explain the
narrow Mexican-hat-shaped response profile observed by (1).
Note that this condition is more stringent than the condition
det(W ) > 0 for the existence of at least one zero crossing.

Spatial location of maximum suppression.. Further constraints on
the connectivity parameters can be inferred by considering the
distance to the first local minimum rmin

0 of the perturbation
response, which we expect to be the spatial location of

maximum suppression. Unlike the location of the first zero
crossing r0, the additional distance to the first minimum,
rmin

0 − r0, is moderately invariant to the specific choice of
wEE and ρ (Figure S2; Figure 2E shows the specific case of
wEE = 5, ρ = 0.72). Combined with the observation that
the contour lines of rmin

0 − r0 are diagonal, this implies a
correlation between the values of det(W ) and tr(W ) that
can explain the data.

Experimental data places rmin
0 at around 110 µm (1), so

that rmin
0 − r0 is around 40 µm, which is less than half of

the connectivity width length scale of √
σEσI ≈ 127 µm as

measured from Figure 1B. This would place the network in
the darker blue region – roughly, the upper left triangle – of
Figure 2E, which overlaps considerably with the appropriate
region of Figure 2D as determined above.

Frequency of spatial oscillations. As we have shown, the region
of phase space with only one zero-crossing requires sufficiently
strong I → I inhibition (Figure 2B). This suggests that I →
I inhibition is important for suppressing spatial oscillations.
This intuition can be made precise by considering the distance
from the first zero-crossing r0 to the second zero-crossing r1,
a quantity that is invariant to the choice of wEE in one
and three spatial dimensions (SI section 9A), and almost
invariant in two dimensions (Figure S3). As expected from the
intuition, r1−r0 increases (i.e. frequency of spatial oscillations
decreases) with the strength of I → I inhibition (Figure 2F).
More precisely, it can be proven that in one or three spatial
dimensions, the derivative of r1 − r0 with respect to |wII| is
always positive (SI section 9B).

Stability and spatial decay length scale. Finally we consider the
rate at which the perturbation response decays with distance.
Since the response is a non-monotonic function of distance,
we measure its asymptotic decay length scale σ∞, defined
such that the perturbation response decays asymptotically
as r− d−1

2 e
− r

σ∞ as r → ∞. Under the assumption of fast
inhibition, we find an interesting relationship between σ∞
and the overall stability of the network: the closer the network
is to the edge of instability, the longer the decay length scale
(Figure 2G, SI section 11). This relationship is fully general,
applying to networks with arbitrary number of cell types and
arbitrary connectivity widths and spatial dimensions. Thus,
assuming sufficiently fast inhibition, observation of a decay
length scale of the same order of magnitude as, or smaller
than, the connectivity length scale would suggest that the
network is reasonably far from the edge of instability.

Inhibitory neuron response. Thus far we have focused on the
responses of excitatory neurons to perturbations. This is
because, to the best of our knowledge, existing simultaneous
two-photon optogenetics and calcium imaging experiments in
mouse V1 either do not discriminate between the responses
of excitatory and inhibitory neurons, or only measure the
responses of excitatory neurons (1–3, 5). However, the
responses of inhibitory neurons encode important information
about the recurrent connectivity: for example, whether the
cortical circuit is an ISN can be determined by a paradoxical
effect whereby inhibitory neurons are suppressed by optoge-
netic stimulation of inhibitory neurons (8–10, 27, 28).

We find that, in response to perturbation of a single
excitatory cell, the responses of inhibitory neurons are tightly
related to those of excitatory neurons. Consider, again,
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Fig. 3. Relationship between the spatial profile of excitatory and inhibitory
neuron response to single-cell perturbation in E-I ISNs with 2 or more spatial
dimensions. A) Phase diagram of the number of E and I zero crossings for networks
with ρ = 0.72. Green: Neither E nor I exhibit zero crossings. Orange: E exhibits
one zero crossing, I exhibits no zero crossing. Red: Both E and I exhibit one zero
crossing. Blue: Both E and I exhibit infinitely many zero crossings. Dashed line is
given by the equation y = (ρ−ρ−1)(x−(ρ−ρ−1)). B) Distance between the first
zero crossing of excitatory neuron response and the first zero crossing of inhibitory
neuron response in networks with two spatial dimensions and wEE = 5, ρ = 0.72.

an E-I ISN in two or higher dimensions with connectivity
widths depending only on pre-synaptic cell type. We can
show that 1) the excitatory neuron response is oscillatory
(having an infinite number of zero crossings as a function
of distance) if and only if inhibitory neuron response is also
oscillatory, and 2) if excitatory neuron response exhibits a
single zero-crossing as a function of distance, then inhibitory
neuron response must also exhibit a single zero-crossing
unless σ−2

E < λ0 < σ−2
I (SI section 8E). These relations are

summarized by the phase diagram in Figure 3A. Thus, for
most parameter regimes we expect the responses of inhibitory
neurons to exhibit the same number of zero-crossings as
excitatory neurons. Violations of this expectation, however,
would suggest that the connection strengths between E and I
satisfy tight inequalities.

Now suppose that inhibitory neurons indeed exhibit
a Mexican-hat shaped response profile. As explained in
the section Mean response of unperturbed neurons, mean
inhibitory neuron response must be positive. Given the mean
suppression of excitatory neurons, we thus expect less lateral
suppression of inhibitory neurons than excitatory neurons. In
particular, it can be shown that if, and only if, det(W ) > 0,
the inhibitory response profile has a greater spatial radius
of nearby excitation than the excitatory response profile,
that is, rI

0 > rE
0 , where rE

0 , rI
0 are the distances to the first

zero crossing of excitatory and inhibitory neuron responses
respectively (SI section 9D). This is illustrated by Figure 3B
for the case of wEE = 5, ρ = 0.72. Other combinations of
wEE and ρ are shown in Figure S4. Note that rI

0 > rE
0 for all

subplots with ρ ≤ 1 since for these networks, existence of a
zero crossing implies det(W ) > 0 (Figure 2B). Furthermore,
recall that there is mean suppression of excitatory neurons
if and only if det(W ) > wEE. Thus, given mean suppression
of excitatory neurons, inhibitory neuron response must be
less suppressed and exhibit a broader spatial profile than
excitatory neuron response.

Feature-tuning dependence of perturbation response. Upon
optogenetic perturbation of a single excitatory neuron,
neurons in L2/3 of mouse V1 that have tuning similar to
that of the perturbed neuron (iso-tuned neurons) are, on
average over space, more suppressed than neurons that have
orthogonal tuning (ortho-tuned neurons) (1). We call this

A

C
0
90

# transitions = 0

# transitions = 1

D

B

0
1
∞

# transitions

κEIκIE>0

Distance

Unstable

Same-favoring Opposite-favoring

Fig. 4. Feature-tuning dependence of excitatory neuron response to single-cell
perturbation in E-I networks. A) Illustration of same-favoring and opposite-favoring
responses. B) Phase diagram of feature tuning of perturbation response, with red
indicating same-favoring response (iso-tuned neurons are more excited than ortho-
tuned neurons), and blue indicating opposite-favoring response (the opposite of
same-favoring).C) Example responses of networks with 0 and 1 transitions between
same- and opposite-favoring response with increasing distance, normalized for
visual clarity. D) Phase diagram of number of such transitions for a two-dimensional
network with w̃EE = 0.2 and ρ = 0.72. Green, orange, and blue represent 0, 1,
and ∞ transitions respectively, while black represent region of instability. Hatched
region indicates like-to-like disynaptic E → I → E inhibition. Orange and blue
regions are contained within the hatched region, showing that the presence of at
least one transition implies like-to-like disynaptic inhibition.

an opposite-favoring response, as opposed to a same-favoring
response in which iso-tuned neurons are less suppressed or
more excited than ortho-tuned neurons (Figure 4A). Since
E → E connectivity in L2/3 of mouse V1 is like-to-like,
meaning similarly tuned excitatory neurons are preferentially
connected (11, 29), this suggests the need for a like-to-like
disynaptic E → I → E inhibition motif to obtain preferential
suppression of similarly tuned excitatory neurons.

To determine if this intuition is correct, we integrate
equation 9 over space to obtain the average perturbation
response as a function of feature tuning (SI equation S32).
Given like-to-like E → E connectivity, we find that excitatory
neuron response is opposite-favoring if and only if w̃EIw̃IE >
w̃EE(w̃II + 1) (Figure 4B; SI section 12A), where w̃αβ =
|wαβ |καβ

∫ 1
0 fα(µ)gα(µ)Pα(µ) dµ is positive if and only if

the connectivity from cell type β to α is like-to-like, i.e.
καβ is positive. Under this condition, like-to-like E → I
→ E inhibition (κEIκIE > 0) is not necessary if w̃II < −1.
However, networks with w̃II < −1 and anti-like-to-like E → I
→ E inhibition (κEIκIE ≤ 0) are unstable (SI section 12B).
Thus, the observation of opposite-favoring response implies
that disynaptic E → I → E connections provide like-to-like
inhibition.

Modulation of feature-tuning dependence by distance. The
single-cell perturbation response measured experimentally
is not only opposite-favoring on average, it is opposite-
favoring at all distances beyond 25 µm, if one computes tuning
similarity as signal correlation (1). We find that in models
with two or more spatial dimensions and like-to-like E →
E connections, sufficiently nearby excitatory neurons always
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exhibit same-favoring response (SI section 13). Thus, in order
to explain the data, our model should exhibit a very nearby
transition from same-favoring to opposite-favoring response
with increasing distance from the perturbed neuron (Figure
4C). Indeed, E-I networks with two or more spatial dimensions
and connectivity width that depends only on presynaptic cell
type can exhibit 0, 1, or ∞ number of transitions between
same- and opposite-favoring response (SI section 13). The
number of such transitions is determined by combinations of
w̃αβ and ρ (Figure 4D). Interestingly, given like-to-like E → E
connectivity and the presence of at least one such transition
(which is required to explain the data), disynaptic E → I →
E connectivity must be like-to-like (Figure 4D; SI Theorem
13.4). In other words, given that sufficiently nearby neurons
have same-favoring responses, if the perturbation response is
opposite-favoring at any distance, then the disynaptic E → I
→ E inhibition must be like-to-like. Note that this finding
is stronger than our previous finding that a response whose
mean across distance is opposite-favoring implies like-to-like
E → I → E connectivity.

Modulation of perturbation response by neuronal gain. While
perturbation of a single pyramidal neuron leads to an opposite-
favoring response (1), perturbation of an ensemble of 10
similarly-tuned pyramidal neurons results in a same-favoring,
rather than opposite-favoring, response (2). There are
three important differences between these experiments that
could underlie these seemingly contradictory results. One
difference is the number of stimulated cells. Second, the
single cell perturbation experiment measured all cells, while
the ensemble perturbation experiment measured only E cells.
A scenario in which excitatory neurons exhibit weakly same-
favoring response and inhibitory neurons exhibit strongly
opposite-favoring response, such that the average of E and
I response is opposite-favoring, could therefore explain both
results. However this seems unlikely since most neurons in the
cortex are excitatory. The third difference, which we address
here, is that the two experiments were performed under
different stimulus conditions: the single-cell perturbation
was performed with the simultaneous presentation of a
visual stimulus (drifting gratings), and thus with a higher
background firing rate, while the ensemble perturbation
experiment was performed with only a gray screen. If cortical
cells have supralinear input/output functions (30–32, but see
33), then their gain – the change in rate for a given change
in input – would be increased for higher firing rates. This in
turn would increase the effective connection strengths which,
in a model linearized about a fixed point, are given by the
gains times the synaptic weights. This increased gain and
increased connectivity strength might explain the difference
between the two experiments. Motivated by this reasoning,
we study how various perturbation response properties are
modulated by neuronal gain.

Modulation of mean perturbation response by neuronal gain. First
we study how changes in neuronal gain (g), which in our model
effectively scales all connectivity weights by g, modulate the
mean response. We find that if the unperturbed excitatory
neurons exhibit mean suppression, then increasing neuronal
gain always results in stronger suppression (SI section 6).
Similarly, reducing neuronal gain always results in weaker
suppression or, for sufficiently small gain, mean excitation
(Figure 5A). Note that the derivative of the mean response

B

gE

gI

C

A

D

0 1 ∞# crossings

Unstable

Same-favoring Opp.-favoring

ρ=
2

ρ=1

g (ρ=1)

g (ρ<1)
g (ρ>1)

Fig. 5. Modulation of excitatory neuron response to single-cell perturbation
by neuronal gain in E-I ISNs with 2 spatial dimensions A) Mean response of
unperturbed excitatory neurons as a function of gain, for a network with wEE =
2, wII = −1, det(W ) = 5. B) Phase diagram of number of zero crossings
from Figure 2B. Arrows indicate changes in number of zero crossings induced by
increasing gain at the phase boundaries for ρ = 1, ρ > 1, or ρ < 1. C) Derivative
of distance to the first zero crossing with respect to gain, divided by the distance,
for wEE = 5, ρ = 0.72. D) Phase diagram of feature tuning of perturbation
response, with red indicating same-favoring response and blue indicating opposite-
favoring response. Arrows indicate movement in phase space induced by increasing
excitatory and inhibitory neuron gain respectively at the phase boundary.

with respect to gain is non-monotonic, such that if the
unperturbed excitatory neurons exhibit mean excitation, then
increasing the gain may result in stronger excitation instead.

Modulation of the spatial profile of the response by neuronal gain.
Next, we study the modulation of the number of spatial zero
crossings by neuronal gain. We find that the changes in the
number of spatial zero crossing due to increasing gain depend
entirely on the value of ρ (Figure 5B; SI section 8D): if ρ = 1,
then an increase in gain does not change the number of spatial
zero crossings of the response; while if ρ < 1 or ρ > 1, then, if
starting from near a phase boundary, increasing gain increases
or decreases, respectively, the number of zero crossings.

We next study the effect of gain on the location of zero
crossings. We compute the derivative of the distance to the
first zero crossing r0 with respect to the gain g, and find
that when ρ = 1, the derivative is always negative (SI section
9C). This means that if ρ = 1 and a zero crossing exists,
then increasing the gain always produces a narrower spatial
radius of nearby excitation. Numerically, we find that this
also holds when ρ < 1 (Figure 5C), and is mostly true when
ρ > 1 (Figure S5). Thus, given our estimate of ρ ≈ 0.72 in
experimental data, we predict that single-cell perturbation
experiments performed while presenting only a grey screen,
which have a lower gain, should result in a broader response
profile with less suppression and the same or a decrease in
number of zero crossings.

Modulation of feature dependence by neuronal gain. We return
to our original motivation for studying the gain modulation
of perturbation responses: can a difference in gain explain
the seemingly contradictory results reported regarding the
feature dependence of perturbation response? We find that
increasing gain may result in a transition from same-favoring
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to opposite-favoring excitatory neuron response (SI section
12C). Furthermore, if we selectively increase the gain of
excitatory or inhibitory neurons only, we find that this
transition is mediated by an increase in gain of inhibitory
neurons gI (i.e. effective scaling of all connections onto
inhibitory neurons by gI), whereas increasing the gain of
excitatory neurons gE cannot yield such a transition (Figure
5D). More importantly, it can be shown that a transition from
opposite- to same-favoring response can always be induced
by sufficiently decreasing the gain of inhibitory neurons (SI
section 12C). Thus, the difference in neuronal gain may indeed
be the explanation for why an opposite-favoring response is
observed in the experiment with drifting grating stimuli (1)
while a same-favoring response is observed in the experiment
without visual stimuli (2), suggesting that a supralinear
transfer function of neurons (or at least of inhibitory neurons)
may be important for switching between two qualitatively
distinct computations.

Validation of theoretical insights in fitted models

So far all of our theoretical analysis of the properties of the
linear response function has relied on two simplifying assump-
tions. First, we have assumed, for theoretical tractability,
that the connectivity width depends only on the presynaptic
cell type, i.e. the models obey the symmetries σEE = σIE and
σEI = σII. However, recent connection probability data from
L2/3 of mouse V1 suggests that this symmetry may not hold,
and that the connection probability length scales instead
satisfy the relations σEE ≈ σII > σEI ≈ σIE (20). Second,
we have analyzed the single-cell perturbation response in (1)
under the simplifying assumption that the measured responses
are all of excitatory neurons, while in the experiment both
excitatory and inhibitory neurons were measured. To test
the robustness of our findings, we relax these assumptions
and fit models so that the mix of 85% excitatory and 15%
inhibitory cells match the perturbation response from (1),
both as a function of distance and as a function of orientation
tuning preference. We also constrain the models to have
the parameter κEE within two standard deviations of our
estimate from data of (11) (Materials and Methods).

From the 200 fitted models, we select the 50 best-fitting
models for analysis (Materials and Methods). Consistent with
our theoretical analysis of the spatial profile of perturbation
response, all fitted models exhibit a positive determinant of
the weight matrix W , and the determinant and trace of W are
correlated across models (Figure 6A; compare Figure 2D, E).
Most fitted models (47/50) also exhibit like-to-like disynaptic
E → I → E inhibition as suggested by our theory (Figure
6B; compare Figure 4D). Furthermore, we find that the two
exceptions nonetheless confirm our prediction that negative
κIEκEI implies same-favoring excitatory responses; these two
cases follow the unlikely scenario we referred to previously,
in which the same-favoring behavior of the excitatory cells
is weak enough, and the opposite-favoring behavior of the
inhibitory cells strong enough, that the average over the
population matches the opposite-favoring behavior of the data.
Despite large variances in model parameters, the perturbation
responses of all the fitted models closely match experimental
data (Figure 6C, D). On average, the fitted models display
opposite-favoring responses across almost the entire range of
experimentally measured distances (Figure 6E), consistent
with the findings of (1).

C D

A B

Model
Data

E
I

E F

G H

0°
45°
90°

x10-3

x10-3

Fig. 6. Validation of theoretical insights in fitted models. 200 models are fitted
to the single cell-perturbation response curve as a function of distance from (1),
the top 50 of which are plotted. A) Distribution of the fitted model parameters,
where each point is a fitted model. B) Histogram of the product of fitted parameters
κEIκIE, which is positive if and only if disynaptic E → I → E inhibition is like-
to-like. C-E) Perturbation response of all neurons in the model (including E and
I) C-D) Comparison between the perturbation response of the fitted models and
experimental data. Error bars of data represents standard error. Error bars of model
represents standard deviation across fitted models. To match the data analysis
procedure of (1), bin widths of 60 µm for C and 25◦ for D are used. E) Perturbation
response of fitted models as a function of distance to the perturbed neuron, for
different tuning preferences. Same bin width as C). F-H) Simulations support
analytical predictions. Smaller bin widths than C-E are used for more accurate
results (2 µm bins for F, G and 10◦ bins for H). F) Comparison between excitatory
and inhibitory neuron response in fitted models. G-H) Effect of reducing neuronal
gain on the responses of excitatory neurons. Models are fitted with a gain of 1.

We then test three of our theoretical predictions on these
fitted models: 1) inhibitory neurons should exhibit a broader
perturbation response profile than excitatory neurons (Figure
6F), 2) when overall neuronal gain is lowered, excitatory
neuron response should be broader and less suppressed
(Figure 6G), and 3) when overall neuronal gain is sufficiently
weak, excitatory neuron response transitions from opposite-
favoring to same-favoring (Figure 6H). These predictions hold
true in all the fitted models, despite the large variances in
model parameters and despite the fact that these models
violate the symmetry assumptions in our theory, suggesting
that these are robust effects that can be expected from
experimental measurements.
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Discussion

In this paper, we developed novel theory for understanding
the link between recurrent connectivity structure and single-
cell optogenetic perturbation responses. We introduced
an exponential-type kernel for describing connectivity as
a function of distance that for the first time allows an
exact solution for a space- and feature-dependent linear
network that is valid in all coupling regimes. We showed
that this kernel can well capture the spatial dependence of
the connectivity in the data, defined as the product of the
connection probability and its strength, and used this to
exactly solve for the network’s steady-state response to a
single-cell perturbation.

Analysis of the solution for the class of E-I ISN networks
revealed five main results. First, we found that a positive
determinant of the 2 × 2 connectivity weight matrix W
is necessary (assuming inhibitory projections are narrower
than excitatory) to explain experimental observations of a
perturbation response that is excitatory for nearby cells and
suppressive at larger distances. The larger the determinant,
the shorter the spatial radius of nearby excitation. Second, we
found that the response at larger distances can either remain
negative or be oscillatory in space, and spatial oscillation
frequency is negatively correlated with the strength of I
→ I connections. Third, we predicted that the spatial
profile of the perturbation responses of inhibitory neurons
qualitatively matches that of excitatory neurons, but that
inhibitory neurons exhibit a larger spatial radius of nearby
excitation than excitatory neurons. Fourth, examining
dependence on feature tuning, we found that feature-specific
disynaptic inhibition (E → I → E) that is like-to-like (i.e., that
couples neurons with similar preferred features) is necessary
to explain experimental observations. These observations
show that neurons with feature preferences opposite to a
perturbed neuron are less suppressed or more excited on
average than neurons with similar feature preferences, a
phenomenon we called “opposite-favoring responses”. In
fact, such a like-to-like connectivity motif is necessary if the
perturbation response is opposite-favoring at any distance.
Finally, we predicted that a decrease in neuronal gain
would cause perturbation response to be less suppressive
and have a broader spatial radius of excitation, and that
the response becomes same-favoring rather than opposite-
favoring for sufficiently weak neuronal gain. All of the
analytic results listed above except the fourth were obtained
on the assumption that connectivity width depends only on
presynaptic cell type. However, we found that our theoretical
predictions hold in simulations without this assumption.

To the best of our knowledge, this is the first exactly
solvable model of a recurrent network with space- and feature-
dependent recurrent connectivity. Consider models that are
“translation-invariant”, meaning that connectivity depends
only on spatial distance and difference in preferred feature,
as well as on cell type (the model we study also includes a
non-translation-invariant dependence on feature selectivity).
It is straightforward to obtain an exact analytic solution of
a linear translation-invariant model in Fourier space, but
in general this cannot be inverted to obtain responses as a
function of distance. Nonetheless, previous works were able to
obtain some information analytically, e.g. using the Fourier-
space solutions to compute the spatial resonant frequencies
of the network, from which experimental predictions were

made (13). Alternatively, one may obtain an approximate
expression for the steady-state solution by assuming that all
activity patterns have a Gaussian shape (18, 34), although
this assumption, typically applied to visual responses, may not
be suitable for describing single-cell perturbation responses.
Ref. (14), obtained an exact steady-state solution for an
E-I network with a Gaussian spatial connectivity kernel
in the tightly balanced regime (14). In this regime, there
is a precise cancellation between excitatory and inhibitory
synaptic input currents such that W |r⟩ + |h⟩ ≈ 0, so the
steady state solution can be approximated as |r⟩ ≈ −W −1|h⟩.
However, experimental evidence suggests that the cortex is
in a loosely balanced rather than a tightly balanced regime
(35), and our model is valid in both regimes.

The exponential-type kernel we introduced for modeling
the spatial dependence of connectivity is a natural higher-
dimensional generalization of the exponential kernel for a 1D
ring network studied by (36). Compared to the Gaussian
kernel typically used for modeling mouse V1 connectivity
(13–19), it has a sharp peak at short distances. This
property of our spatial kernel satisfies the conditions recently
found necessary to explain the short spatial radius of nearby
excitation in perturbation responses (2), namely that this
cannot be explained by models with spatial connectivity given
by a single Gaussian kernel with realistic length scales, and
that a sharp peak must be added to the connectivity kernel
to explain the data.

A surprising corollary of our analysis of the spatial profile
of perturbation responses is that, given an exponential-type
connectivity kernel, a narrow perturbation response does
not necessitate a narrow spatial connectivity kernel, and,
conversely, neither does a narrow spatial connectivity kernel
imply a narrow perturbation response. Instead, the spatial
profile of perturbation response is strongly dependent on
the mean connectivity strengths between different cell types.
For example, Figure S1 shows that, given fixed connectivity
widths, the spatial radius of nearby excitation can vary
over several orders of magnitude depending on the E →
E connectivity strength and the determinant det(W ).

Our analysis of mean perturbation response as well as the
spatial profile of perturbation response both strongly suggest
the determinant det(W ) is positive, i.e. the disynaptic E →
I → E inhibition is stronger than the product of E → E and
I → I connections. This has important implications for the
network dynamics in a nonlinear E-I network. Because the
linearized dynamics of a nonlinear network around the fixed
point are driven by an effective connectivity matrix W equal
to the product of the connectivity J and a diagonal matrix of
(positive) neuronal gains, the determinant of W and J have
the same sign. Thus, our insight that the determinant of the
connectivity matrix W of the linearized network is positive
also implies det(J) > 0. Theoretical work on the stabilized
supralinear network (SSN) has shown that the condition
det(J) > 0 guarantees stable network dynamics assuming
sufficiently fast inhibition (37), and plays an important role
in determining aspects of neural dynamics such as bistability,
persistent activity, and global oscillations (38).

Sadeh and Clopath (24) studied the conditions to obtain
a suppressive, opposite-favoring mean perturbation response,
and also concluded that disynaptic E → I → E connections
must be sufficiently strong and like-to-like. Our results extend
theirs in several ways. First, we are able to describe the spatial
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dependence of the response and not only the mean response.
Second, we are able to obtain stronger and more precise
mathematical results (for example, we do not require the
assumption that inhibitory connections are much stronger
than E → E connections, and in our analysis of feature-
tuning, we considered the possibility of like-to-unlike I → I
connections) by including stability constraints in our analysis.
Finally, we note that the single-cell perturbation response
data we and they are modeling (1) excludes neurons within
25 µm of the perturbed cell in lateral distance. Since the most
nearby neurons studied were strongly excited, this exclusion is
likely to result in an artifactual decrease of mean perturbation
response, and thus it is unclear to what extent analysis based
on mean perturbation response is valid. By additionally
considering the dependence of response on distance between
the perturbed neuron and the measured neuron, we are able
to conclude that disynaptic E → I → E connections are
sufficiently strong and like-to-like independently of the mean
perturbation response.

We inferred parameters of the mean connectivity (i.e.,
ignoring stochasticity in the connectivity) from optogenetic
perturbation responses based on an explicit expression we
derived for response vs. distance and feature preference, given
that connectivity. Our approach is distinct from the works of
(39–45), who inferred individual synaptic connections from
whole-cell recordings of postsynaptic currents in response to
perturbations of specific cells, based on models of monosy-
naptic intracellular responses. Other efforts to infer mean,
and in some cases variance, of connectivity from responses
to visual stimuli (16, 18, 28, 46–48) were either based on
fitting by extensive search, or by comparison to expressions
for responses that ignored space and/or feature dependence.

There are a few important future directions for our work.
First, so far our analysis of the perturbation response equation
has been restricted to a network with only a single inhibitory
cell type and whose connectivity width depends only on
presynaptic cell type. Without either restriction, our linear
response equation would be composed of a sum of more
than two spatial terms, which would make it difficult, if
not impossible, to precisely characterize the conditions for
the perturbation response to exhibit zero or more crossings
in space. Thus, it remains to be seen whether analytic
insight can be obtained into the behavior of more realistic
models without these restrictions. Second, we have only
considered models with dependence on a single feature.
Mathematically it is straightforward to generalize our steady
state solution to include an arbitrary number of periodic
feature dependencies, but it is unclear how non-periodic
features such as spatial and temporal frequency can be
incorporated. Third, the feature tuning in our connectivity
is parametrized by a cosine function, which fixes the feature
tuning width. It will be important to investigate whether
the theory can be adapted for other choices of feature tuning
kernel that allow for variable feature tuning width, such
as the wrapped Gaussian function. Finally, we have so far
only dealt with single-cell perturbations in a linear network.
Linearity is a reasonable approximation since a moderate
single-cell perturbation is unlikely to generate significant
nonlinear effects. However, many optogenetic experiments
perturb an ensemble of neurons (2–5), or use one-photon
methods to perturb large numbers of neurons and/or consider
the combination of sensory and optogenetic stimuli (e.g.,

19, 28, 49), in which case nonlinear effects cannot be ignored.
Furthermore, in nonlinear networks one also needs to consider
the effects of connectivity disorder, which would both modify
the mean perturbation response and potentially result in
chaotic dynamics (19, 50). Thus, it is important to extend
our work to consider nonlinear contributions to perturbation
response.

Materials and Methods

Mathematical notation. Throughout the paper, scalar variables
represented by lowercase letters like r, k. Vectors are represented
by boldface lowercase letters such as x, k. Matrices are represented
by boldface uppercase letters such as Σ, W . Given a matrix W ,
its elements are written as Wij or [W ]ij , where the first notation
is preferred whenever possible. Linear operators on vector spaces
except Rn are represented by uppercase letters such as W, L, T .

Using the standard bra-ket notation, |v⟩ represents a vector
in a Hilbert space with label v. ⟨v| is the linear functional in the
dual space associated with |v⟩ such that ⟨v|(|u⟩) = (|v⟩, |u⟩), where
(·, ·) is the inner product on the Hilbert space. We write ⟨v | u⟩ to
denote ⟨v|(|u⟩). Similarly, given an operator T , we write ⟨v|T |u⟩
to denote ⟨v|(T |u⟩). Given vectors |v⟩, |u⟩ in vector spaces V, U
respectively, the vector |v, u⟩ represents the vector |v⟩ ⊗ |u⟩ in the
tensor product space V ⊗ U .

Given cell type index α ∈ ZNc , we write |α⟩ to represent the
standard basis vector eα ∈ RNc . Given vector y ∈ Rd, we write
|y⟩ to represent the Dirac delta ‘function’ δ(x−y). Similarly, given
ϕ ∈ S1, we write |ϕ⟩ to represent the Dirac delta ‘function’ δ(θ − ϕ)
on the circle.

Model setup details. External input to the model (single-cell
optogenetic perturbations) is modeled as a Dirac delta function.
Specifically, external input due to the perturbation of neuron
(β, ν, y, ϕ) is given by the equation

hα(µ, x, θ) = hPα(µ)−1δαβδ(µ − ν)δ(x − y)δ(θ − ϕ) [10]

where h is a scalar representing the perturbation strength, and
the prefactor Pα(µ)−1 ensures that the total input to the network∫ 1

0

∫
Rd

∫ π

−π
hα(µ, x, θ)Pα(µ) dθdxdµ is independent of the feature

selectivity of the perturbed neuron ν.
We assume that the synaptic timescale of each neuron is only

dependent on its cell type. Thus, the dynamical equation of our
model is given by

(1 + τα∂t)rα(µ, x, θ, t) =
Nc−1∑
β=0

∫ 1

0

∫
Rd

∫ π

−π

Wαβ(µ, ν, x − y, θ − ϕ)

rβ(ν, y, ϕ, t)Pβ(ν) dϕdydν + hα(µ, x, θ)
[11]

where τα is the time constant for cell type α. Stability of the
network dynamics in general depends on the specific time constants
chosen for each cell type. To simplify our discussion, however, we
assume that the time constant of inhibitory neurons is sufficiently
fast, such that the stability of the network dynamics depends only
on the connectivity parameters (SI section 5C).

We define the linear response function, L̃αβ(µ, ν, x − y, θ − ϕ),
as the solution rα(µ, x, θ) of the steady state equation 1 with
external input hα(µ, x, θ) given by equation 10 where the scalar
parameter h is set to 1 and (α, x, θ, µ) ̸= (β, y, ϕ, ν). In terms of
the linear operator L = (I − W )−1, it can be written as

L̃αβ(µ, ν, x − y, θ − ϕ) = Pβ(ν)−1⟨α, µ, x, θ|L − I|β, ν, y, ϕ⟩ [12]

where the factor of Pβ(ν)−1 comes from equation 10. The
identity operator can be subtracted from L since we specified
that (α, x, θ, µ) ̸= (β, y, ϕ, ν).

Perturbation response in the full model. In equation 9 we specified
the functional form of the perturbation response in the full model.
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It contains a distance-dependent term, L̃nαβ(r), which is given by

L̃nαβ(r) =
N2

c −1∑
ρ=0

[ŨnPn]αρ[P −1
n Ṽn]ρβGd(r; λnρ) [13]

where Ũn ∈ RNc×N2
c , Ṽn ∈ RN2

c ×Nc are matrices defined by

Ũnαγ =
Nc−1∑
β=0

AnαβδNcα+β,γ , Ṽnγβ =
Nc−1∑
α=0

δNcα+β,γ

A0αβ = wαβσ−2
αβ

, A1αβ = wαβσ−2
αβ

καβ . [14]

λnρ ∈ C and Pn ∈ CN2
c ×N2

c are defined such that PnΛnP −1
n is

a diagonalization of Σ−1 − ṼnKnŨn, where Λn is the diagonal
matrix of λnρ, Kn ∈ RNc×Nc is defined by

K0αβ = δαβ , K1αβ = δαβ

∫ 1

0
fβ(µ)gβ(µ)Pβ(µ) dµ, [15]

and Σ ∈ RN2
c ×N2

c is defined by

Σγγ′ = δγγ′

Nc−1∑
α,β=0

σ2
αβδNcα+β,γ . [16]

These definitions arise naturally from the derivation of the
perturbation response for the full model in SI section 2.

Equation 13 is completely analogous to the perturbation
response of the simplified model given by equation 7, but it contains
a sum over N2

c rather than Nc terms due to the fact that we now
allow connectivity width to depend on both pre- and post-synaptic
cell type rather than on pre-synaptic cell type alone.

Fitting of the spatial connectivity kernel. For Figure 1B, we combined
the connection probability data from (11) and the connection
strength data from (12) to estimate the product of connection
probability and connection strength as a function of distance
between excitatory and inhibitory neurons in mouse V1 L2/3.
Since only I → E connection probability is measured in (11), we
assumed that E → I connection probability is the same as I →
E connection probability, an assumption supported by another
dataset which shows that I → E and E → I connection probabilities
have approximately the same width as a function of distance (20).
Binning of connection probability and connection strength data is
performed with bin edges from 0 to 500 µm spaced 25 µm apart.
Given that connection strength is only measured between neurons
up to about 100 µm apart in the data from (12), we assume that
the connection strength for all bins in which no data is available is
equal to the connection strength in the last bin in which data is
available. The spatial kernel being fitted to this product is given by
equation 3 with d = 2. For a given pair of post- and pre-synaptic
cell types α, β, there are two free parameters: wαβ and σβ . These
parameters are fitted using the optimize.curve_fit function in
the scipy Python library (51), which performs non-linear least
squares. σβ is initialized at 100 µm and wαβ is initialized to
match the 2-norm of the data vector. Uncertainty of the fitted
parameters is obtained from the default output of the curve_fit
function, which estimates the covariance of fitted parameters by
a linear approximation. This results in the best-fit parameters
σE = (150.2 ± 11.3) µm and σI = (107.6 ± 8.4) µm.

Estimation of r0, rmin
0 from data. The 95% confidence intervals

for r0√
σEσI

and rmin
0 −r0√

σEσI
in Figure 2D and 2E are estimated via

bootstrapping. We independently sample each data point of the
single-cell perturbation response curve in (1, Figure 2G) from a
Gaussian distribution with its mean and standard error to obtain
a random sample of the single-cell perturbation response curve.
For each sample curve, we compute r0 by linearly interpolating
between the first two consecutive data points which exhibit a sign
change. However, this would introduce a slight bias towards a
smaller r0 since the sampled curve may exhibit multiple crossings
around r0 and we are taking the first crossing. To address this
bias we filter out all sampled curves with more than one crossing

within 100 µm. We compute rmin
0 as the location of the minimum

of the sampled curve. However, the large standard errors in the
data at large distances creates spurious minima in the sampled
curve and thus introduces a small bias towards larger rmin

0 . To
address this we simply consider the minimum of the sampled
curve within 300 µm. We repeat the above procedures to obtain
100,000 samples of r0 and rmin

0 . Finally, we divide each sample
of r0 and rmin

0 by an independent sample of √
σEσI using the

mean and uncertainty of σE and σI as estimated in the Methods
subsection Fitting of the spatial connectivity kernel, and compute
the 2.5 and 97.5 percentiles of those 100,000 samples. This yields

r0√
σEσI

∈ (0.443, 0.691), rmin
0 −r0√

σEσI
∈ (0.260, 0.530)

Comparison of theory and simulations. The parameters for the
model in Figure 1D are given by Table 1. Since feature tuning
preference in Figure 1D specifically refers to orientation tuning
preference which is a variable in [− π

2 , π
2 ) rather than [−π, π), the

connectivity function equation 8 as well as the linear response
equation 9 need to be modified by replacing the factor of 2π by π
and replacing cos(θ − ϕ) by cos(2(θ − ϕ)).

Table 1. Model parameters for Figure 1D

Parameter Value

σEE 125 µm
σEI 90 µm
σIE 85 µm
σII 110 µm

wEE 3
wEI, wIE 4

wII 5.25

Parameter Value

κEE 0.5
κEI, κIE −0.25

κII 0.25
fα(µ), gα(µ) µ

Pα(µ) 1
τI

1
2 τE

For numerical simulations, the model is discretized on a regular
grid with Nx = 100 by Ny = 100 spatial locations on a 1 mm ×
1 mm torus (d = 2), Nθ = 12 feature tuning preferences, and
Nµ = 7 feature selectivities. Spatial distances between neurons are
measured by toroidal distances. The discretized model connectivity
is obtained by multiplying the connectivity function equation 8 by
a factor of

∆V =
(

1
Nµ

) (
1 mm2

NxNy

) (
π

Nθ

)
. [17]

To deal with the divergence of the spatial connectivity kernel
Gd(r; λ) for d ≥ 2 as r → 0, we simply set the connectivity
strength between neurons at the exact same spatial location to 0.
We provide a justification for this procedure in SI section 14. In
other words, the discretized connectivity matrix W dis is defined
by

W dis
ij =

{
Wαiαj (µi, µj , xi − xj , θi − θj)∆V, xi ̸= xj

0, otherwise [18]

where αi, µi, xi, θi are the cell type, selectivity, spatial location,
and feature preference respectively of neuron i ∈ {1, · · · , N} in
the model, and N := NcNµNxNyNθ. Note that despite the
multiplication by ∆V , the resulting discretized connectivity matrix
is unitless since the connectivity function equation 8 has unit
[length]−d. Network dynamics given by the discretized version of
equation 11 is numerically integrated with order-5 Dormand-Prince
method using the torchdiffeq package until convergence to steady
state (52, 53), which is numerically determined by the condition∣∣∣dri

dt

∣∣∣ ≤ 10−5|ri| + 10−6 being satisfied for all i ∈ {1, · · · , N},
where ri is the firing rate of neuron i.

The analytical solution given by equation 9 is also scaled by the
factor ∆V . Specifically, our analytical solution for the response of
neuron i to the perturbation of neuron k in the discretized model
is computed as

rdis
i =

{
hL̃αiαk (µi, µk, xi − xk, θi − θk)∆V, xi ̸= xk

hδik, otherwise . [19]
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Intuitively, the scaling of the perturbation response by ∆V arises
from the fact that the total external input does not increase with
the number of neurons. We discuss this in detail in SI section 14.

Estimation of κEE from data. For the models fitted to experimental
data in Figure 6, we estimate the value of the parameter κEE based
on the publicly available mouse V1 L2/3 connection probability
data from (11, Figure 2H), and use it to constrain fitted model
parameters. To do this, we perform non-linear least squares using
the optimize.curve_fit function in the scipy Python library (51)
to fit the parameters a, κEE of the curve θ 7→ a(1 + 2κEE cos(2θ))
to the connection probability data. Each data point is weighted
inversely proportional to its standard error. The parameter a
is initialized as the mean connection probability, while κEE is
initialized at 0. κEE is constrained to be between −0.5 and
0.5. Uncertainty of the parameters is taken from the output
of curve_fit. This yield a best-fit value of κEE = 0.198 ± 0.054.

Model fitting to experimental data. Here we describe the model fitting
procedure used in Figure 6. The model consists of N = 24,000
neurons on a 900 µm × 900 µm plane (d = 2). The cell type,
spatial location, and orientation tuning preference of each neuron is
randomly assigned, such that each neuron has pE = 0.85 probability
of being an excitatory neuron and pI = 0.15 chance of being an
inhibitory neuron, while spatial locations and tuning preferences
are uniformly distributed. To avoid numerical issues due to the
divergence of the spatial kernel Gd(r; λ) as r → 0, we require that
all pairwise distances between neurons be at least 3 µm. This is
achieved by resampling the spatial location of one of the neurons
from each pair of neurons whose pairwise distance is less than
3 µm, and repeating until the requirement is satisfied. Since there
is no experimental data for the perturbation response as a function
of tuning selectivity, tuning selectivity is omitted in this model by
setting Pα(µ) = δ(µ − 1), i.e. every neuron is perfectly tuned. The
inhibitory time constant is chosen to be twice as fast as excitatory
time constant, i.e. τI = 1

2 τE. A random excitatory neuron within
a 680 µm × 680 µm window centered at the origin is chosen for
perturbation. During model fitting, the steady-state response of
the network is computed using the analytical solution. Specifically
the steady state response of neuron i to perturbation of neuron k
is computed as

rdis
i =

{
hL̃αiαk (1, 1, xi − xk, θi − θk)∆Vαk , xi ̸= xk

hδik, otherwise [20]

where ∆Vα = 1 mm2·π
pαN

, αi, xi are the cell type and spatial location
of neuron i respectively, and L̃αβ is the linear response equation
equation 9 with the factor of 2π replaced by π and cos(θ − ϕ)
replaced by cos(2(θ − ϕ)).

Model parameters are simultaneously fitted to both experimen-
tal data curves in Figure 6C, D. Neurons beyond a 680 µm×680 µm
window centered at the origin are excluded to mimic the field-of-
view of the experiment as well as to minimize boundary effects.
Following the data analysis procedure of (1), neurons within 25 µm
of the perturbed neuron are also excluded, and the mean responses
of neurons within bins with bin widths of 60 µm are taken for
fitting to the distance curve, while the mean responses of neurons
within bins with bin widths of 25◦ are taken for fitting to the
tuning preference curve. Since there are more data points for the
distance curve and the y-values of the distance curve are an order
of magnitude larger than the y-values of the tuning preference
curve, to ensure both curves are equally well-fitted, we compute
a weighted root-mean-square loss where the data points on each
curve are weighted inversely proportional to the number of data
points as well as the variance of the corresponding curve.

There are 13 relevant parameters for fitting: four connectivity
strength parameters wαβ , four connectivity width parameters σαβ ,
four feature tuning parameters καβ , and the perturbation strength
h. Since the perturbation strength h does not affect the shape
of the response curve (response as a function of distance) and
only affects its overall amplitude, we eliminate this parameter by
normalizing both the model perturbation response as well as the
data to unit norm during fitting. This leaves 12 free parameters
wαβ , σαβ , καβ which are fitted to minimize the loss. We impose
several constraints on the 12 parameters during optimization.

Specifically we constraint: 1) the signs of wαβ (wαE > 0,
wαI < 0), 2) the magnitudes of wαβ to prevent unrealistically
strong connections (|wαβ | < 10), 3) the magnitudes of καβ to
ensure compliance with Dale’s law (|κ| < 0.5) 4) σIE and σEI
to be within 2 standard deviations of the estimated values of
σE and σI respectively as obtained from the Methods subsection
Fitting of the spatial connectivity kernel, 4) σEE and σII to be
between 75 µm and 175 µm, 5) min{σEE, σII} > max{σEI, σIE},
based on connection probability data (20), 6) κEE to be within
2 standard deviations of the estimate value from the Methods
subsection Estimation of κEE from data, 7) the network being an
ISN (wEE > 1), and 8) the stability of the network dynamics (see SI
section 5 on how the stability condition is approximately computed).
Optimization is performed using the optimize.minimize function
in the scipy library (51) with the SLSQP (Sequential Least
SQuares Programming) method, with the gradient vector being
computed with PyTorch’s automatic differentiation engine (54).

Once the optimization algorithm has converged, the validation
loss is computed as the weighted root-mean-square error (using
the same weights as previously described) between the data and
the average single-cell perturbation response obtained with 50
numerical simulations (5 random single-cell perturbations in 10
random instantiations of the model). This validation loss is
further normalized such that a value of 1 is achieved by a model
predicting zero perturbation response for every neuron. A random
instantiation of the model is defined as a random assignment of
the cell type and spatial location of each neuron, with connectivity
strength from neuron j to neuron i defined by

W dis
ij =

{
Wαiαj (1, 1, xi − xj , θi − θj)∆Vαj , xi ̸= xj

0, otherwise [21]

where Wαβ is the connectivity function equation 8 with 2π replaced
by π and cos(θ − ϕ) replaced by cos(2(θ − ϕ)). Each numerical
simulation is performed using the same procedure as described
in the Methods subsection Comparison of theory and simulations.
If the network dynamics fail to converge for any one of the 50
simulations, the fitted parameters are discarded. This may occur
despite the stability constraint imposed during optimization since
the randomness of each neuron’s spatial location causes variance
in the spectral abscissa of the Jacobian that cannot be accounted
for by our analysis of the continuum model. We also discard the
fitted parameters if the validation loss is greater than 0.75.

To generate a reasonable distribution of fitted model parameters,
instead of fitting the parameters directly to the mean perturbation
response curve, we fit the parameters to a randomly sampled
curve defined by the collection of points {(xi, yi)}i, where yi is
an independent sample from the Gaussian distribution N (µi, σi)
and µi, σi are the mean and standard error of the perturbation
response at distance xi respectively. Due to the large bin widths
used in the data analysis procedure by (1), nearby data points on
the perturbation response curves are correlated. This is addressed
by simply only fitting the model to data points which are separated
roughly 60 µm apart for the distance curve and 25◦ apart for the
tuning preference curve. The optimization procedure is repeated
with different random samples of the perturbation response curve,
different random initializations of model parameters, and different
random instantiations of cell types and spatial locations of neurons
until 200 sets of fitted parameters are obtained. Since the
optimization algorithm may sometimes be stuck at a local minimum
of the loss function, only the top 50 models are kept.

Data, Materials, and Software Availability. Code for reproducing all
figures is available at https://github.com/hchau630/chau-2024-exact.
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