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Abstract

Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging
modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of
animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be
of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences
using MRI, CT and mCT to create advanced representation of animal anatomy, including bones, inner organs and blood
vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality
to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures,
where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals
are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of
three-dimensional graphical representations of internal structures.
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Introduction

The internal structures of the animal body can be difficult to

visualise, and classic dissections require the unique combination of

a researcher who is skilful, patient and endowed with appropriate

artistic skills. Today, however, three-dimensional computer

modelling can provide morphological and anatomical information

in a minimal-invasive and much faster fashion [1]. Magnetic

resonance imaging (MRI) and computed tomography (CT) are

two modalities routinely used to scan cross-sectionally for various

diseases in humans, and smaller versions are now manufactured

for dedicated animal research. These techniques can image the

entire body with little distortion [2,3]. In addition to static images

or movies, computer graphics allow for creation of naturalistic

interactive three-dimensional models of the anatomy, where

dynamic processes can be simulated and visualised, enabling the

researcher to extract skeleton, organs, vascular structures, etc.

While both MR and CT have been used extensively to describe

human anatomy [4,5] and the anatomy of classic experimental

animal models in experimental medicine (e.g. mouse, rat, rabbit,

pig), these techniques have been employed much less in the realm

of comparative anatomy [6–17]. Amphibian and reptilian

anatomy, for example, is today mostly presented in the form of

illustrative drawings and pictures [18–20]. High-field MRI and

micro-CT (mCT) have, nevertheless, been used to characterise the

internal morphology of polychaetes [21] and echinoderms [22–

24]. Paleontologists have used mCT to study fossil invertebrates

preserved in amber [25], and high-resolution CT images have

been used to compliment molecular data in the construction of

phylogenetic relationships amongst squamate reptiles [26]. The

web-based library www.digimorph.org hosts a comprehensive

collection of three-dimensional representation of animal morphol-

ogy based on high-resolution CT imaging with particular focus on

cranial morphology [27]. In addition, the Digital Fish Library

www.digitalfishlibrary.org describes the morphological diversity of

fishes using MRI [28].

In the present study, we selected animals from various Classes to

illustrate the broad applicability of MR and CT to produce three-

dimensional representations of animal anatomy. We demonstrate

that MRI and CT are useful techniques to create exact three-

dimensional representations (static models, movies and interactive

presentations) of various soft and hard tissues and vascular

anatomy in various animals.

Methods

Animals
Animal procedures were conducted in accordance with the

guidelines of the European Communities, Directive 86/609/EEC

regulating animal research and approved by the national ethical

committee (approval: #2006/561-1192). The animals used were

obtained from commercial dealers or imported directly to the

Department of Biological Sciences (Aarhus University), where

they were maintained for physiological studies. The animals used
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in this study are presented in Table 1, including anaesthetics

used.

For ex vivo angiography, the vascular beds of the rice field eel

were perfused with a commercially available CT contrast agent

(Microfil; Flow Tech Inc., Carver, MA). Vascular fillings of cane

toad, anaconda, red-eared slider, pig, and giraffe heart were

accomplished with a mixture of gelatine and MRI (Dotarem;

Guerbet, Paris, France) and CT (Mixobar Colon; Astra Tech,

Mölndal, Sweden) contrast agent as described by Rasmussen et al.

[7]. Arterial and venous injections were performed on deeply

anesthetised animals, terminated in anaesthesia, with a pressure-

controlled pump after initial flushing with heparinised saline.

Physiological pressure was used as the intentional injection

pressure. After filling of the entire vasculature, the animal was

cooled on ice to rapidly solidify the injected contrast agents.

Computed Tomography (CT)
CT provides radiography-based thin cross sectional images

without disturbing internal structures. The Röntgen tube,

detectors and associated electronics are contained within the

gantry that rotates around the animal, which is positioned in the

centre of the scanner. During CT scanning, electromagnetic

radiation (x-rays) penetrates the study object from 360u. Because

some radiation is absorbed by the tissues, the initial data processed

by the CT computer system is in fact shadow projections of the

absorption from various angles. The pre-defined field of view is

divided into volume elements (voxels) and the absorption

coefficients, measured in Houndsfield units (HU), of these voxels

are computed into elements (pixels), creating thin cross-sectional

images of the study object that are displayed as individual grey

shades on a screen. These grey shades finally allow differentiation

between tissues and structures according to their radiodensity.

In this study, CT scans were performed using a 64-slice Siemens

Somatom Definition (Siemens Medical Solutions, Germany).

Acquisition parameters included a slice collimation of 4 mm; a

pitch of 2u; 32 rotations, a spatial resolution of 0.216 mm3/voxel

(reconstructed to 0.027 mm3/voxel) and a scan duration of 10–

30 s (depending on the size of the object). Additional mCT scans

were performed using a Scanco Medical mCT 40 scanner (Scanco

Medical, Zürich, Switzerland) containing an x-ray source at 80 kV

and 160 mA. The mCT images were reconstructed three-

dimensionally with an isotropic voxel size of 646106 mm3/voxel.

Magnetic resonance Imaging (MRI)
MRI provides detailed images of the body in any directional

plane by aligning the spin of hydrogen nuclei in the study object by

aid of a strong external magnetic field. The study object is divided

into voxels by coding field strength, spin frequency and spin phase

in three-dimensional space. Hydrogen nuclei situated in various

environments, i.e. tissue types, differ by intrinsic magnetic

relaxation times, and this physical characteristic is used to produce

contrast between different soft tissues. The ability to translate these

magnetic relaxation times to grey-white signal intensities makes

MRI particularly sensitive to delineate all anatomical structures

other than air-filled regions and calcified compounds (skeleton and

bones) [29]. In this study, MRI was performed with two clinically

available 1.5 Tesla systems (Philips Medical Systems, Netherlands;

and Siemens Medical Solutions, Germany). The animal was

positioned in a quadrature radiofrequency receiver-coil. A fast

localizer scan was followed by a high-resolution 3D gradient–echo

sequence with the following parameters: field-of-view depending

on animal size; thickness 0.5 mm; TR 23.1 ms; TE 1.6 ms and

excitation flip angle 30u. A stack of multiple slices (with no gaps)

was acquired, covering the entire specimen of interest with scan

durations of 10–60 min. Images were isotropically acquired with a

spatial resolution of 0.125 mm3/voxel.

Image analysis
Data acquired both by MRI and CT were exported in DICOM

format and 3D reconstructions were generated using the free

Table 1. List of animals undergoing CT, mCT, and MRI scanning and the use of anaesthetics.

Animal Anaesthesia Image modality Contrast enhancement

Whiteknee tarantula (Acanthoscurria
geniculate)

Anaesthesia with 100% CO2 MRI Gastrointestinal structures enhanced by
ingestion of Dotarem-filled cockroach

Rice field eel (Monopterus albus) Anaesthesia and termination with 3 g/kg ethyl
p-aminobenzoat in water

mCT Vascular filling with Microfil

African lungfish (Protopterus annectens) Anaesthesia with 3 g/kg ethyl p-aminobenzoat
in water

CT No contrast enhancement applied

Cane toad (Rhinella marina) Anaesthesia and termination with 1% ethyl
p-aminobenzoat in water

CT Vascular filling with Mixobar in gelatinous
solution

Monitor lizard (Varanus exanthematicus) Termination with 100 mg/kg pentobarbital CT No contrast enhancement applied

American alligator (Alligator mississippiensis) Termination with 100 mg/kg pentobarbital CT Vascular filling with Mixobar in gelatinous
solution

Ball python (Python regius) Termination with 100 mg/kg pentobarbital CT No contrast enhancement applied

Yellow anaconda (Eunectes notaeus) Termination with 100 mg/kg pentobarbital CT and mCT Vascular filling with Mixobar in gelatinous
solution

Red-eared slider (Trachemys scripta) Termination with 100 mg/kg pentobarbital CT and MRI Vascular filling with Mixobar in gelatinous
solution

Domestic pig (Sus scrofa domesticus) Premedication with ketamin and midazolam
followed by ventilation with 1% isoflurane
and termination with pentobarbital

CT Vascular filling with Mixobar in gelatinous
solution

Giraffe (Giraffa camelopardalis) Heart delivered perfusion fixed from an
expedition to Africa

CT Vascular filling with Mixobar in gelatinous
solution

doi:10.1371/journal.pone.0017879.t001
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DICOM-viewer OsiriX software (www.osirix-viewer.com) for

Macintosh computers. In OsiriX, DICOM-files were developed

as both still-images and animations, and more advanced features

were applied: segmentation for highlighting of individual struc-

tures, representations of objects as 3D-rotations, determination of

flythrough routes, and cropping (in multiple depths, planes, and

directions). Quantitative measures (angles, lengths, and volumes)

can easily be extracted from the digital models, although we have

not included those in this study. Images were exported as tagged

image file format (TIFF) in 300 dpi. Movies were exported in

QuickTime file format (MOV). As no general agreement exists

about the visual enhancement of zoological structures, the

computed images and movies were adjusted with regards to

brightness, contrast and colour according to personal experiences.

Results

Images of a turtle using MRI and CT imaging, respectively, are

shown in Figure 1a–g to highlight the differences between these

two modalities. As shown in Figure 1c, MRI allows for detailed

visualisation of the various organs at a thin sectional level, whereas

CT is particularly useful for harder structures (note for example in

Figure 1b the intraabdominal eggs in the thin section with CT)

and for radio-density contrasts such as the difference between

tissue and air, enabling the lungs to be visualised clearly (Figure 1f).

Both MRI and CT allow for visualisations of the vasculature

(Figure 1d,1e), however it must be stressed that the vessel and

organ structures in the CT image (Figure 1d) are visible only

because a CT contrast agent has been injected into the

vasculature. Also, an MRI contrast agent was used to enhance

the vessel structure in Figure 1e. The subsequent figures provide

images of skeletal elements (Figure 2 and Movie S1, S2), organ

structures (Figure 3 and Movie S3) and vasculature (Figure 4, 5

and Movie S4, S5). Using volume rendering software, three-

dimensional representations of anatomical structures were con-

structed from cross-sectional images, thereby creating digital

models movable in space (Movie S1–S5).

Both CT and MRI were capable to generate visualisations of

soft tissues (Figure 3). The use of an ingested MRI contrast agent

in the white knee tarantula increased the detectable signal from the

gastrointestinal tract (Figure 3c, 3d and Movie S3–S5). Irrespective

of the smaller sensibility of the CT modality to soft tissue

structures, visualisation of major organ structures was still possible,

indeed after vascular filling with a contrast agent, exemplified in

Figure 3a–b, where the heart and the closely aligned lungs and

liver of the alligator are easily distinguished. In cases where

adjacent tissues exhibit big differences in radio-absorbance, e.g. air

and tissue in lungs and trachea, high-resolution representations of

borderline areas can be produced using CT (Figure 1f, 3a, 3b).

The intravenous use of contrast agents, such as gadolinium-

containing agents for MRI and lead oxide or barium sulphate for

CT in solidifying solutions, made it possible to produce ex vivo

angiographies (Figure 4, 5 and Movie S4, S5). Perfusion of the

cane toad’s lungs with barium sulphate prior to CT allowed

visualisation of the pulmonary vessels (Figure 4b). Post-processing

and analysis allow for at digital dissection of the animal, thereby

isolating the cane toad’s lungs from the surrounding tissue

(Figure 4c). Whole body angiography can be performed with a

similar method, exemplified with the yellow anaconda and the

domestic pig (Figure 4d, 5a and Movie S4, S5). Additionally, by

preparing the contrast agent to a suitable viscosity, making it

impenetrable to the capillary barrier, either the arterial or the

venous side of the vasculature can be visualised separately as

exemplified by the MRI venography of the red-eared slider

(Figure 1c). High-resolution mCT imaging allows for detection of

minute vessel structures, facilitating a complete representation of

the vasculature in the head region of the air-breathing rice field eel

(Figure 4a). The use of vascular contrast agents and mCT imaging

revealed the microvasculature of the coronary arteries in the heart

of the yellow anaconda (Figure 5c). Coronary arteriography of a

giraffe heart (Figure 5b), as well as a whole body angiography of

the domestic pig (Figure 5a and Movie S5), were conducted to

display the mammalian vasculature.

Discussion

This methodological study demonstrates that MRI and CT with

appropriate post-processing methods can provide anatomical

descriptions of various structures in animals in quality comparable

with traditional dissection techniques [18–20,30–33]. Main

skeletal architecture was easily visualised (Figure 2 and Movie

S1, S2), and it was possible to identify the structure and position of

major visceral organs, such as heart, liver, lungs and gastrointes-

tinal tract (Figure 1d, Figure 3 and Movie S3). The vasculature

could be visualised using solidifying contrast agents (Figure 1d, 1e,

4, 5 and Movie S4, S5). Further, we demonstrated the ability of

mCT to acquire images with very high spatial resolution,

exemplified by visualisation of the rice field eel vasculature

(Figure 4a) and the coronary microvasculature of the anaconda

heart (Figure 5c).

Both MRI and CT are non-invasive techniques, leaving the

animal intact, except in situations where angiographic procedures

require vascular filling with a solidifying contrast agent. In fact,

because both modalities can be used on live animals, MRI and CT

allow for repeated measures on the same individual, which call for

longitudinal investigations of anatomical phenomena, e.g. inves-

tigations of tissue regeneration and volumetric changes in the

digestive system during digestion [34]. Note, however, that both

CT and MRI require that the animal is completely immobilized

during the entire scan procedure, which necessitates respiratory or

heart-beat triggering to avoid most artefacts.

MRI and CT complement each other well [35], where MRI is

useful to reveal soft tissue structures with subtle differences in

composition and can provide images from various angles, and

multi-slice CT can produce excellent images of hard calcified

structures. The two techniques differ considerably in the speed at

which the images can be obtained. While a high-resolution CT

acquisition can be performed in less than a minute, a high-

resolution MRI usually requires up to hours depending on

inherent sequence parameters, magnet field strength, etc. Yet,

this technique is relatively fast compared to traditional preserva-

tion and dissection procedures. Modern clinical MRI and CT

modalities are able to generate images with a maximum resolution

of approximately 0.09–0.25 mm2 with an acceptable signal-to-

noise ratio. Introduction of experimental high-field MRI or mCT is

a way to increase the spatial resolution, allowing MRI image

Figure 1. CT and MRI of a red-eared slider. CT (a, b, d, f, g) and MRI (c, e) in red-eared slider (Trachemys scripta). CT and MRI have different
capacities in visualising vasculature (d, e), soft tissue (c, f) and skeleton (a, g). (b, c): Both of the scanning modalities produce thin cross sectional
images of the red-eared slider under study. (a, d, e, f, g): Further processing of the thin cross sectional images leads to a three dimensional digital
model of the animal by the aid of volume rendering software.
doi:10.1371/journal.pone.0017879.g001
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Figure 2. mCT and CT representations of skeletal anatomy. mCT (a) and CT (b, c, d) representations of skeletal anatomy. (a): Lateral view of
Vietnamese rice field eel (Monopterus albus). (b): Dorsal view of African lungfish (Protopterus annectens). (c): Dorsal view of African Savannah monitor
(Varanus exanthematicus). (d): Dorsal view of ball python (Python regius).
doi:10.1371/journal.pone.0017879.g002
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Figure 3. CT and MRI of organ structures. CT (a, b) and MRI (c, d) representations of organ structures. (a): Ventral view of American alligator
(Alligator mississippiensis) with lungs (gray), liver (yellow) and heart (red) highlighted. (b): Ventrolateral view of American alligator (Alligator
mississippiensis) with air-filled structures (lungs and trachea) highlighted blue. (c) and (d): Coronal (c) and lateral (d) view of whiteknee tarantula
(Acanthoscurria geniculate) with the gastrointestinal tract enhanced following ingestion of MRI contrast agent.
doi:10.1371/journal.pone.0017879.g003
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Figure 4. mCT and CT of contrast agent filled vasculatures. mCT (a) and CT (b, c, e) representations of contrast agent filled vasculature. (a):
Ventral view of the head region of a Vietnamese rice field eel (Monopterus albus) with contrast agent filled vascular beds. (b): Ventral view of South
American cane toad (Rhinella marina) with lung arteries outlined. (c): Lungs of the South American cane toad (Rhinella marina) digitally isolated. (d):
Ventrolateral view of the vasculature in a yellow anaconda (Eunectes notaeus).
doi:10.1371/journal.pone.0017879.g004
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resolution in the order 1000–3000 mm2 [36] and mCT images

down to a voxel size of 1–10 mm2. In the present study, mCT was

used to reveal minute structures of the rice field eel vasculature

(Figure 4a) and coronary architecture of arteries in the yellow

anaconda heart (Figure 5c). These delicate structures are prone to

collapse and disintegrate during a thorough dissection under the

microscope. The same is true for lung tissue in the turtle (Figure 1f)

and toad (Figure 4b, c) as well as the gastrointestinal tract in the

tarantula (Figure 3c, d).

As discussed by Ziegler et al. [37], a challenge us the enormous

amount of data generated, and there is a current need for

dedicated databases, where data are stored in a standardized

fashion. Besides whole animal reproductions, detailed reproduc-

tions of specific organs can be derived from segmentation and

manual cropping (Figure 3b and 4c). The development in

processing algorithms is likely to facilitate automatic segmentation

of entire animals based on geometric definitions of vascular,

skeletal and organ structures. However, such automatic process

requires specialized information about specific anatomical struc-

tures of each species of interest in order to delineate anatomical

structures. If such laborious step is feasible, we hypothesise that

future anatomical visualisations could be processed relatively fast

due to the swiftness in modern electronic data processing.

An important benefit of performing dissection on a computerised

digital model compared to a real specimen is the forgiveness of this

technique. A wrong cut does not wreck a whole, possibly rare,

specimen. Digitalized catalogues of museum’s type specimens would

allow for various investigations of anatomical characters and may

increase the accessibility of phenotypical data, exemplified by

Ziegler and colleagues [22–24] who include museum specimens in

their morphological research on echinoderms, as well as the

impressive catalogue of skeletal and especially cranial morphology

in the animal kingdom presented by the Digital Morphology library

[27]. Visualisations of inflated lungs (Figure 1f, 3a, 3b and 4b, 4c)

are examples of structures that would normally collapse during

dissection due to the change in intrathoracic pressure, and thus

cause a major dissection artefact. However, this is not the case with

non-invasive CT, where the thorax is left unopened and no

geometric artefacts appear. Traditional dissections remain neces-

sary for many purposes, but digital pre-dissection with MRI and CT

could improve the planning of the dissection as well as contribute

with valuable additional knowledge.

In conclusion, given that clinical scanners found in the majority

of larger hospitals are fully suitable for these purposes, we

encourage biologists to take advantage of these imaging techniques

in creation of three-dimensional graphical representations of

internal structures.

Supporting Information

Movie S1 CT movie of red-eared slider (Trachemys
scripta). Initially the animal is turned 360u along its long axis

with a slight change in contrast settings halfway, subsequently the

plastron is digitally dissected away to reveal internal skeletal

architecture.

(MP4)

Movie S2 Interactive CT movie of African Savannah
monitor (Varanus exanthematicus). (Opened in QuickTime

Player it is possible to rotate the three dimensional model).

(MOV)

Movie S3 MRI movie of whiteknee tarantula (Acanthos-
curria geniculate). Initially the animal is turned 360u along its

long axis, then contrast settings are changed to reveal the contrast

agent filled gastrointestinal tract.

(MP4)

Movie S4 CT movie of the vasculature of a yellow
anaconda (Eunectes notaeus). Initially contrast settings are

changed slightly to present only vertebrae and contrast agent filled

vasculature, followed by a quick survey of the entire snake’s body.

(MP4)

Movie S5 CT movie of the vasculature of a domestic pig
(Sus scrofa domesticus). Initially the animal is turned 360u
along its long axis, then contrast settings are changed to reveal the

contrast filled vasculature, followed by a quick survey of the pig

body.

(MP4)
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