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Abstract: Starch provides plants with carbon and energy during stressful periods; however, relatively
few regulators of starch metabolism under stress-induced carbon starvation have been discovered.
We studied a protein kinase Ser/Thr/Tyr (STY) 46, identified by gene co-expression network analysis
as a potential regulator of the starch starvation response in Arabidopsis thaliana. We showed that
STY46 was induced by (1) abscisic acid and prolonged darkness, (2) by abiotic stressors, including
salinity and osmotic stress, and (3) by conditions associated with carbon starvation. Characterization
of STY46 T-DNA knockout mutants indicated that there was functional redundancy among the STY
gene family, as these genotypes did not show strong phenotypes. However, Arabidopsis with high
levels of STY46 transcripts (OE-25) grew faster at the early seedling stage, had higher photosynthetic
rates, and more carbon was stored as protein in the seeds under control conditions. Further, OE-25
source leaf accumulated more sugars under 100 mM NaCl stress, and salinity also accelerated root
growth, which is consistent with an adaptive response. Salt-stressed OE-25 partitioned 14C towards
sugars and amino acids, and away from starch and protein in source leaves. Together, these findings
suggested that STY46 may be part of the salinity stress response pathway that utilizes starch during
early plant growth.
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1. Introduction

Many plants experience unfavorable environments during their lifecycle [1]. These environments
often alter plants’ ability to assimilate, partition, allocate, and store carbohydrates [2–4]. When
photosynthetic efficiency is inhibited by adverse conditions, the sugars produced may be insufficient
to drive normal growth [5], and if the stressful conditions progress, the cellular sugar content may
become exhausted to levels lower than those needed for sustenance [6,7].

Plants have evolved a myriad of coping mechanisms to survive low carbon availability, which
often occurs during environmental stress [8–10]. Once sugar starvation is detected, signal transduction
cascades are activated, which alter gene expression [11], leading to the metabolism of cytosolic
and storage proteins [8,12–16]. If starvation persists, structural biomolecules, such as cell wall
polysaccharides and proteins are then degraded [17,18]. The sugars produced at the expense of these
growth components gradually replace the depleted carbohydrates. If control conditions are restored
in a timely fashion, plants may resume growth. These series of events, called the sugar starvation
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response (SSR), are aimed to acquire the energy necessary for immediate survival until more favorable
conditions prevail [19,20].

The SSR is a complex process that is important for plant stress survival, but its regulation is poorly
understood [20]. To identify regulators involved in the SSR, a gene co-expression network analysis
was performed with public transcriptomic data [21]. Genes within co-expression modules, i.e., that are
similarly expressed under different conditions, may share conserved biological functions [22]. Within
this network, the transcript of Ser/Thr/Tyr kinase isoform 46 (STY46) connected two large modules,
one containing genes involved in amino acids, lipid, cell wall metabolism, and sugar signaling, and the
other containing genes associated with transcriptional regulation [21]. Genes that are highly connected
to many other genes of the network are defined as hub genes and usually play a key role in the
biological system [23]. Therefore, STY46, which is a hub gene in this SSR network [21], was considered
as a potential master regulator in SSR.

The STY kinase family has not been extensively studied, but evidence suggests that some isoforms
could regulate SSR [21]. Members of the STY kinase family are dual-specificity kinases that possess
catalytic Ser/Thr and Tyr domains, and they regulate some plant metabolic and developmental
processes through phosphorylation of target proteins [24,25]. For example, STY protein kinases
appear to have important roles in ammonium transport in rice seedling roots [26], in storage oil
accumulation in Arabidopsis siliques [27], and in stress response and seed development in cucumber
and peanuts [28–30].

In Arabidopsis, there are 57 STY isoforms grouped into nine subfamilies, but few have been
studied [24]. Three STY-like kinases, e.g., STY8, STY17, and STY46, phosphorylate the transit peptides
of chloroplast-targeted pre-proteins in cotyledons [25]. Each of the single, double, and triple mutants
of STY46 with STY8 and STY17 all showed reduced nuclear-encoded chloroplast proteins, retarded
photosynthetic establishment and lower chlorophyll content during the early stages of de-etiolation
(greening) [25]. Thus, STY46 influence on chloroplast function could have repercussions for source
activity. STY46 was recently shown to be involved in the translocation of some mitochondrial
pre-proteins, suggesting a potential role in plant energy generation [31].

When all of these data are considered, it is reasonable to hypothesize that STY46 could be a
potential regulator of the SSR in Arabidopsis through changes in source leaf metabolism. This may
be due to the regulation of chloroplast imported proteins, including those needed for photosynthesis
and carbon fixation. STY46 could therefore affect carbon, and perhaps energy availability, and could
have a role in response to sugar starvation. If so, transgenic lines with different levels of STY46
transcripts would be expected to show differential growth and response to environmental stresses
that lead to sugar starvation. Therefore, the objective of this study is to characterize transgenic lines
with differential levels of STY46 under normal and abiotic stress conditions to test if STY46 affects
growth and abiotic stress response. This work could inform on mechanisms integrating carbon use in
plant response and adaptation to adverse environmental stress and could enable better engineering
strategies to develop crops that show more robust growth under abiotic stress.

2. Results

2.1. In Silico Sequence and Expression Analysis of STY46

Genevestigator® analyses [32] of A. thaliana STY46 suggested that STY46 is expressed at low levels
at distinct stages of the lifecycle, but that transcripts are stimulated by stress. STY46 expression was
highest in germinating seeds, seedlings, and young rosettes (Supplementary Figure S1A). Spatially,
expression of STY46 was highest in sperm cells, anthers, embryos, and endosperm (Supplementary
Figure S1B). STY46 transcript was affected by hormones, light intensity and quality, nutrient status,
photoperiodicity, and some abiotic stresses. Further, STY46 transcript was up-regulated by nitrate
deficiency (3.5-fold), salicylic acid (3–5-fold), dark (4-fold), extended dark (4–6-fold), and hypoxia
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(3–14-fold), but was down-regulated by glucose (37-fold), sucrose (7–9-fold), and cold (3–12-fold)
(Supplementary Figure S1C).

2.2. Expression Analysis of STY46 in Arabidopsis thaliana Rosettes

To confirm that STY46 is responsive to sugar starvation in vivo, three-week-old Arabidopsis thaliana
ecotype Columbia (Col-0) plants were exposed to extended darkness. The study period spanned 48 h,
and included an additional 24 h dark period after the 12 h/12 h day/night photoperiod to induce a
sugar deficit. Expression of STY46 in rosette was not regulated by the diurnal cycle but was induced
by extended darkness (Figure 1).
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Figure 1. Changes in Ser/Thr/Tyr kinase isoform 46 (STY46) transcripts in wildtype plants (Col-0)
under stress. The transcript level of STY46 at 0 h was set as 1. The Y-axis indicates the fold change of
STY46 mRNA at different time-points compared to 0 h. Arabidopsis Col-0 plants were treated with 300
mM mannitol, 200 mM NaCl, and 100 µM ABA at 0 h (the beginning of day), 6 h (midday), 12 h (end
of day), and 24 h (end of day), respectively. For darkness treatments, the Col-0 plants were exposed
to 24 h extended dark (48 h). The asterisks indicate that there is statistically significant difference of
transcripts level in stress-treated plants compared with 0 h (‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01;
‘***’, 0 < p < 0.001).

The data mined from Genevestigator® suggested that STY46 was responsive to abiotic stress,
but there was no data for salinity or osmotic stress (the latter used as a proxy for water-deficiency),
which are major factors limiting plant productivity [33]. Therefore, changes in STY46 transcript levels
were measured in the rosette of three-week-old Arabidopsis exposed to 200 mM NaCl and 300 mM
mannitol, conditions that our previous work indicates, trigger the most dynamic changes in the carbon
flux [34]. As Figure 1 shows, the transcript level of STY46 was induced 12 h post exposure to 300 mM
mannitol. Similarly, STY46 was induced 24 h after 200 mM NaCl treatment.

Since the expression of STY46 was up-regulated by sugar starvation conditions and abiotic stresses,
including salinity and osmotic stress, STY46 responsiveness to abscisic acid (ABA), a hormone that
is well known for its role in environmental stress response, was tested. Three-week-old Arabidopsis
was exposed to ABA at a concentration of 100 µM, identical to that previously used to study a peanut
STY-homologue [28]. Here, STY46 transcript levels in the rosette were up-regulated 6 h and 12 h post
exposure (Figure 1).
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2.3. Generation of STY46 Transgenic Plants

To functionally test the role of STY46 in plant growth and abiotic stress response, lines with
varying levels of STY46 were generated. Two stable homozygous STY46 T-DNA insertion mutant lines
were obtained: STY46-1 (SALK_112195) with the insertion in the 12th exon and STY46-2 (SALK_116340)
with the insertion in the 9th exon (Figure 2A). Three transgenic Arabidopsis lines, homozygous for the
presence of the STY46-overexpressing construct (Figure 2B), were generated.

Leaf STY46 expression in the STY46-1 and STY46-2 mutants were 2.5-fold and 13.9-fold lower than
the Col-0 control (Figure 2C). The 35S::STY46-25 genotype (called OE-25), 35S::STY46-52 (called OE-52),
and 35S::STY46-26 (called OE-26), had 55-fold, 28-fold, and 23-fold higher STY46 transcripts compared
with Col-0 (Figure 2C). The STY46 T-DNA insertion mutants (STY46-1, STY46-2), overexpressing lines
(OE-25, OE-52, and OE-26), and Col-0 represent Arabidopsis lines with low, high, and normal STY46
expression were used in subsequent experiments.

Plants 2020, 9, x FOR PEER REVIEW 4 of 18 

 

2.3. Generation of STY46 Transgenic Plants 

To functionally test the role of STY46 in plant growth and abiotic stress response, lines with 
varying levels of STY46 were generated. Two stable homozygous STY46 T-DNA insertion mutant 
lines were obtained: STY46-1 (SALK_112195) with the insertion in the 12th exon and STY46-2 
(SALK_116340) with the insertion in the 9th exon (Figure 2A). Three transgenic Arabidopsis lines, 
homozygous for the presence of the STY46-overexpressing construct (Figure 2B), were generated. 

Leaf STY46 expression in the STY46-1 and STY46-2 mutants were 2.5-fold and 13.9-fold lower 
than the Col-0 control (Figure 2C). The 35S::STY46-25 genotype (called OE-25), 35S::STY46-52 (called 
OE-52), and 35S::STY46-26 (called OE-26), had 55-fold, 28-fold, and 23-fold higher STY46 transcripts 
compared with Col-0 (Figure 2C). The STY46 T-DNA insertion mutants (STY46-1, STY46-2), 
overexpressing lines (OE-25, OE-52, and OE-26), and Col-0 represent Arabidopsis lines with low, 
high, and normal STY46 expression were used in subsequent experiments. 

 

Figure 2. Generation of stable STY46 transgenic lines. (A) A gene model showing the position of the 
T-DNA insertion. Two stable homozygous STY46-mutant lines: STY46-1 (SALK_112195, T-DNA 
insertion in the 12th exon) and STY46-2 (SALK_116340, T-DNA insertion in the 9th exon). (B) 
Schematic diagram of the STY46 overexpressing construct. Left border (LB); CaMV35SPolyA: 
Untranslated region of CaMV 35S gene; Hyg (R): Hygromycin phosphotransferase gene that confers 
Hygromycin resistance; CaMV35Sp: CaMV 35S promoter; NOS: transcriptional terminator sequence 
of the nopaline synthase gene; STY46-c-Myc: a c-Myc-epitope-tagged full-length cDNA of STY46; 
right border (RB). (C) qRT-PCR showing relative amounts of mRNA levels in STY46 knockout (KO), 
and overexpressing (OE) lines. Average qPCR data were derived from nine data measurements for 
each sample. Error bars represent the standard deviation. The asterisks indicate the statistically 
significant differences of transcripts levels between genes in the control and stress-treated plants (n = 
3, ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01; ‘***’, 0 < p < 0.001). 

Figure 2. Generation of stable STY46 transgenic lines. (A) A gene model showing the position of
the T-DNA insertion. Two stable homozygous STY46-mutant lines: STY46-1 (SALK_112195, T-DNA
insertion in the 12th exon) and STY46-2 (SALK_116340, T-DNA insertion in the 9th exon). (B) Schematic
diagram of the STY46 overexpressing construct. Left border (LB); CaMV35SPolyA: Untranslated region
of CaMV 35S gene; Hyg (R): Hygromycin phosphotransferase gene that confers Hygromycin resistance;
CaMV35Sp: CaMV 35S promoter; NOS: transcriptional terminator sequence of the nopaline synthase
gene; STY46-c-Myc: a c-Myc-epitope-tagged full-length cDNA of STY46; right border (RB). (C) qRT-PCR
showing relative amounts of mRNA levels in STY46 knockout (KO), and overexpressing (OE) lines.
Average qPCR data were derived from nine data measurements for each sample. Error bars represent
the standard deviation. The asterisks indicate the statistically significant differences of transcripts levels
between genes in the control and stress-treated plants (n = 3, ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01;
‘***’, 0 < p < 0.001).
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2.4. Characterization of STY46 Transgenic Plants under Control Conditions

Carbon availability impacts plant growth, including cell division, cell expansion,
and morphogenesis, determining growth rate, biomass production, and yield [8]. If STY46 has
a role in regulating carbon availability, differences in the growth of source and sink tissues of STY46
transgenic lines with differential STY46 transcript levels would be expected.

First, to examine whether STY46 affects growth in source tissue, the rosette size of transgenic
plants was measured using 16-, 20-, and 23 days-old plants, and the rosette growth rates during 0 to
16 days (growth rate 1), 16 to 20 days (growth rate 2), and 20 to 23 days (growth rate 3) were determined.
Among the transgenic lines, OE-25 had a larger size, shown as a greater rosette area (82.8%, 45.5%,
27.6%) at each time-point compared to the control (Figure 3A). At the early seedling stage (day 0–16),
OE-25 also had a higher rosette growth rate. However, no difference in the daily growth rate of the
OE-25 rosette was detected after day 16 (Figure 3B), which suggested that the impact of STY46 on
growth is more significant during the younger seedling stage.

Second, to investigate if STY46 expression affects the biomass of source tissue, rosette fresh
weight, dry weight, and the fresh/dry weight ratio (FW/DW) were determined in four-week-old STY46
transgenic plants. Compared with Col-0, STY46-2, one of the STY46 mutant lines, had a lower fresh
weight and dry weight, while OE-25, one of the three overexpression lines, had a higher fresh weight,
but there was no difference in fresh or dry weight in the other transgenic lines (Figure 3C,D). For the
FW/DW ratio, the two mutant lines was not different from Col-0; however, all three OE lines were
higher than Col-0 (Figure 3E).
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Figure 3. Change in rosette growth parameters. Rosette (A) surface area, (B) growth rate, (C) fresh
weight (FW), (D) dry weight (DW), and (E) FW/DW, of STY46 transgenic genotypes. The rosette area
was measured at 16 days, 20 days, and 23 days, respectively, and the growth rate during 0–16 days
(growth rate 1), 16–20 days (growth rate 2), and 20–23 days (growth rate 3) was calculated. The asterisks
in (A,B) indicate the statistically significant differences between transgenic lines and the wild type
control (n = 12, ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01; ‘***’, 0 < p < 0.001). The asterisks in (C–E)
indicate the statistically significant differences between transgenic lines and the wild type control
(n = 16, p < 0.05).
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If STY46 is involved in the SSR, altering its expression may affect the carbon available for
partitioning to the sink tissues, especially the primary sink, the seeds. Therefore, seed size and seed
biomass were determined in STY46 transgenic lines. Microscopic observation of the seeds indicated that
the overexpression lines were enlarged relative to the wild type (Figure 4A), and this was manifested as
both increased seed length (Figure 4B) and width (Figure 4C). In agreement with the visual observation,
quantitative assessments of OE-25 and OE-52 seeds showed that they were larger (p < 0.001) (Figure 4D)
and had a higher protein content (Figure 4E) compared to the wild type control. However, the STY46
mutant lines did not differ in seed size or weight.
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Figure 4. Characteristics of seeds harvested from the STY46 transgenic lines. Shown are (A) seeds as
visualized under a microscope, and (B), seed length, (C) seed width, (D) seed weight and (E) total seed
protein content The asterisks indicate statistically significant differences between transgenic lines and
the wild type control. For (A–C) (n = 30); for (D,E) (n = 3) ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01;
‘***’, 0 < p < 0.001).

2.5. Characterization of STY46 Transgenic Plants under Stress

Since the transcript of STY46 was induced by sugar starvation conditions (Figure 1), T-DNA
insertion mutants and OE lines were used to test the role of STY46 under these conditions, i.e., extended
darkness, salinity, and osmolarity. Transgenic plants were also exposed to exogenous ABA to determine
if this stress hormone could interact with a pathway influenced by STY46 and affect growth. Wild
type Col-0 and STY46 transgenic lines (STY46-1, STY46-2, OE-25) were grown in 1

2 Murashige and
Skoog (MS) medium without sucrose and 1

2 MS with 1 µM ABA, 100 mM NaCl, or 150 mM Mannitol.
Among these genotypes, OE-25 showed better performance under sugar deficit (Figure 5A), 1 µM
ABA (Figure 5B), and 100 mM NaCl (Figure 5C). Sugar starvation due to environmental stress is
accompanied by a very rapid inhibition of root extension growth [8]; therefore, the root length of
three-week-old plant exposure stress was measured. There was no significant difference between
STY46 mutant lines and Col-0; however, the root length of OE-25 grown under sugar deficit, salinity,
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and ABA was 71.6%, 36.0%, and 287.8% longer than Col-0, respectively (Figure 5E–H). The root growth
reflects that OE-25 had better ability to survive abiotic stress and a temporary carbon and energy deficit.
Plants 2020, 9, x FOR PEER REVIEW 7 of 18 

 

 

Figure 5. The morphology and root length of STY46 transgenic seedlings grown under stress. Wild 
type Col-0, STY46 mutant lines (STY46-1, STY46-2), and STY46 overexpression lines (35S:STY46-25) 
were germinated and grown in ½ MS medium without sucrose (A,E), ½ MS with 1 µM abscisic acid 
(ABA) (B,F), ½ MS medium with 100 mM NaCl (C,H), and ½ MS medium with 150 mM mannitol 
(D,G). Root length in seedling growing under stress. The photos were taken at 21 days old. 
Differences in root length were determined by quantitative analysis of 15-roots. Shown here is a 
random sampling of plants. The asterisks indicate statistically significant differences of root length 
(E–H) between transgenic lines and the wild type control (n = 15, ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 
0.01). 

T-DNA insertion mutants (STY46-1, STY46-2) and OE line (OE-25, OE-52, and OE-26) response 
to abiotic stress was examined. Two-week-old plants were exposed to 150 mM Mannitol and 100 mM 
NaCl for 10 days. The rosette diameter was measured after each stress treatment and was used as an 
indicator of rosette size. Under the non-stressed condition, OE-25 had a significantly (p < 0.05) larger 
rosette size compared with Col-0 (Figure 6A). Under salinity stress, OE-25 rosette size was still larger 
compared to Col-0 (Figure 6A). However, under osmotic stress, there was no significant difference 
between OE-25 and Col-0 (Figure 6A). Because OE-25 rosette had a higher fresh weight (Figure 3), 
the decreased rosette growth might have been due to the reduced cell expansion rate during osmotic 
stress. 

Figure 5. The morphology and root length of STY46 transgenic seedlings grown under stress. Wild
type Col-0, STY46 mutant lines (STY46-1, STY46-2), and STY46 overexpression lines (35S:STY46-25)
were germinated and grown in 1

2 MS medium without sucrose (A,E), 1
2 MS with 1 µM abscisic acid

(ABA) (B,F), 1
2 MS medium with 100 mM NaCl (C,H), and 1

2 MS medium with 150 mM mannitol (D,G).
Root length in seedling growing under stress. The photos were taken at 21 days old. Differences in
root length were determined by quantitative analysis of 15-roots. Shown here is a random sampling of
plants. The asterisks indicate statistically significant differences of root length (E–H) between transgenic
lines and the wild type control (n = 15, ‘*’, 0.01 < p < 0.05; ‘**’, 0.001 < p < 0.01).

T-DNA insertion mutants (STY46-1, STY46-2) and OE line (OE-25, OE-52, and OE-26) response to
abiotic stress was examined. Two-week-old plants were exposed to 150 mM Mannitol and 100 mM
NaCl for 10 days. The rosette diameter was measured after each stress treatment and was used as
an indicator of rosette size. Under the non-stressed condition, OE-25 had a significantly (p < 0.05)
larger rosette size compared with Col-0 (Figure 6A). Under salinity stress, OE-25 rosette size was
still larger compared to Col-0 (Figure 6A). However, under osmotic stress, there was no significant
difference between OE-25 and Col-0 (Figure 6A). Because OE-25 rosette had a higher fresh weight
(Figure 3), the decreased rosette growth might have been due to the reduced cell expansion rate during
osmotic stress.
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Figure 6. Growth and carbohydrate content of STY46 transgenic lines grown under control conditions
and abiotic stress. Rosette diameter (A), starch content (B), and reducing sugar content (C) of
two-week-old plants were exposed to 150 mM mannitol and 100 mM NaCl for 10 days. Samples for
carbohydrate measurements were harvested at the end of the day. The asterisks indicate statistically
significant differences between transgenic lines and the wild type control (n = 6, p < 0.05).

The idea that STY46 may be part of a biological pathway integrating carbon availability and
abiotic stress was directly tested. The STY46 genotypes were exposed to 150 mM mannitol and 100 mM
NaCl stress, and carbohydrates were assayed in rosettes and harvested at the end of the light period,
when carbohydrate content was highest [34]. There were no differences in starch and reducing sugar
contents among genotypes under non-stressed conditions (Figure 6B,C). However, after ten days of
exposure to 100 mM NaCl, the STY46 mutant lines (STY46-1, STY46-2) had higher starch, but decreased
reducing sugar contents, respectively (p < 0.05). The three STY46 overexpressing lines had no changes
in starch content, but OE-25 leaves had higher reducing sugars. Ten days after 150 mM mannitol
treatment, there was no difference in starch content (Figure 6B) among the transgenic lines; however,
OE-25 showed significantly (p < 0.05) higher reducing sugar content (Figure 6C).

STY46 regulates the chloroplast pre-protein import and photosynthetic capacity in deetiolated
seedlings [25]. This knowledge, plus our observations of a better response of OE-25 under stress,
opens the possibility that in adult plants, STY46 may alter plant photosynthetic capacity under stress.
We chose to expose OE-25 plants to salinity stress because there was a clear carbohydrate phenotype
and better growth response under this condition, compared to the control. The transgenic lines were
exposed to 100 mM NaCl for one week, and various indicators of photosynthetic performance were
measured. Compared with the control, OE-25 had a higher photosynthetic rate under 100 mM NaCl
stress. There were no changes in water conductance, intercellular CO2 concentration, or transpiration
rates (Figure 7), suggesting that the changes in photosynthetic rate were not from alterations in stomatal
conductance, but more likely from changes in the photosynthetic capacity of the chloroplasts.
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Figure 7. Photosynthetic performance of STY46 transgenic lines under control conditions and salinity
stress. The transgenic lines were exposed to 100 mM NaCl for one week and the photosynthetic rate,
water conductance, intercellular CO2 concentration, and transpiration rate were measured. The asterisks
indicate statistically significant differences between transgenic lines and the wild type control (n = 5,
p < 0.05).

2.6. 14CO2 Partitioning and Allocation in Stress-Treated Plant Tissues

Carbon partitioning into major metabolite pools changes dynamically in response to various
abiotic stresses [34]. To further investigate if STY46 could regulate carbon partitioning and allocation
under abiotic stress, four-week-old Arabidopsis seedlings were exposed to 100 mM NaCl for one
week, and a single mature source leaf was fed with 14CO2 at the beginning of the day for 30 min,
as previously described [34]. The labeled source leaf, unlabeled sink leaves, and the silique were
harvested separately at the middle of the day. Within each tissue, the incorporation of 14C into the
main metabolite pools (sugars, amino acids, organic acids, starch, protein, and the remaining insoluble
compounds (RICs)) was determined. Under control conditions, carbon partitioning in source leaf was
the same across genotypes. However, in the sink leaf and siliques, more 14C was partitioned into
amino acids and sugars in OE-25 compared to the Col-0. Further, when the plants were exposed to
100 mM NaCl, 14C partitioning into amino acids and sugar in OE-25 was amplified, while less was
diverted into starch and protein (Figure 8).

3. Discussion

The aim of this work was to test a potential role for STY46 in plant growth and abiotic stress
as part of an integrated response to reduced carbon availability. Transgenic Arabidopsis lines with
varying transcript levels of STY46 were developed. The impact of STY46 on growth in source (rosette)
and sink (seed) tissue of these transgenic lines with varying levels of STY46 transcripts was evaluated
under control conditions. Further, the role of STY46 in regulating carbon use under abiotic stress
was examined.
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Figure 8. 14C partitioning in Arabidopsis source and sink tissues under normal and salinity stress.
The incorporation of 14C into sugars, starch, amino acids (AA), protein, organic acids (OA), and pellets
in the source leaf, sink leaves, and silique at midday was determined. The total label in each tissue was
set to 100%. The asterisks indicate a significant difference between the control and salt-treated plants
(n = 5, p < 0.05).

3.1. Expression Analysis of STY46 under Stressed Conditions

The expression of STY46 was up-regulated in response to salt and osmotic stress (Figure 1).
The activation was detected 12 to 24 h after exposure, which indicates that STY46 may participate in
the adaptive process to stress conditions instead of functioning in an initial response to these adverse
environments. STY46 was also induced by ABA (Figure 1), a key regulator of multiple environmental
stress response [35]. Stress response in plants can be divided into two pathways: ABA-dependent and
ABA–independent [36]. A closely-related STY46 orthologue in peanut cotyledon was not altered after
two days of exposure to 100 µM ABA, which suggested that it may be part of an ABA-independent
salt-signaling pathway [28]. However, in our study, the STY46 transcript was up-regulated by 100 µM
ABA 6 h after exposure, earlier than the salt and osmotic response, which suggests that STY46 might
be involved in an ABA-dependent osmotic and salt signaling pathway.

3.2. STY46 Has a Role in Regulating Growth of Arabidopsis Source and Sink Tissues

In most experiments performed in this study, the STY46 T-DNA mutant lines, STY46-1 and
STY46-2, did not show a significant phenotype compared to the wild-type Col-0. This is likely due to
gene redundancy, since there are 57 isoforms in the STY family, such as STY8 and STY17, that may
have overlapping functions [25]. Interestingly, these isoforms did not appear to be regulated similarly
to STY46 in the SSR gene co-expression network. Among the three STY46 OE lines, OE-25 showed a
more contrasting phenotype, which might be due to the very high STY46 transcript level in the OE
lines. As shown in Figure 2C, OE-25, OE-52, and OE-26 had 55.7-, 28.1-, and 23.6-fold higher STY46
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transcript relative to Col-0, respectively; therefore, STY46 transcripts had to be dramatically high
before an effect could be detected. A Pearson’s correlative analysis of the data showed that STY46
transcript levels changed in synchrony with seed protein content (R2 = 0.868, p < 0.05). There were
also weak but significant correlations between STY46 expression and water conductance under control
conditions (R2 = 0.230, p < 0.05) and intercellular CO2 concentration under 100 mM NaCl (R2 = 0.119,
p < 0.05). Furthermore, the correlation of changes in root growth on MS media (R2 = 0.836) and root
growth under salinity (R2 = 0.655) with the STY46 transcript were suggestive (p = 0.051 and p = 0.064,
respectively). Correlation is not causation, but in the context of the hypothesis tested, it provides
support to the theory that STY46 may have a role in plant response to some stresses.

Under control conditions, OE-25 had a larger rosette size (Figure 3) and higher rosette growth rate
during the early seedling stage (Figure 3), which suggested that STY46 at high levels of expression
influences rosette growth. There were no changes in rosette growth rate during days 16–23, which
suggests that the effect of STY46 was significant in younger, but not in adult tissues. This is consistent
with a previous study, which suggested that STY46 function is more pronounced during developmental
stages that require a massive influx of preprotein into chloroplast, e.g., cell differentiation and expansion
in leaves, rather than stages associated with growth maintenance, e.g., adult leaf tissue [25].

Interestingly, all three OE lines showed a higher FW/DW ratio compared to Col-0 (Figure 3).
Therefore, STY46 might affect relative water content or dry matter content in rosette. This could also be
due to endoreduplication or somaclonal variation due to transgenesis [37]. Whether STY46 increases
the relative water content of the entire plant or only in source tissues needs to be further studied.

During the early stages of embryo development, a higher amount of sugars are transported from
the phloem to supply seeds with the carbon needed for growth, which occurs through rapid cell
division and cell enlargement [38]. During the maturation stage, cell division ceases and lipids and
protein are deposited [38] and are responsible for seed dry weight [39,40]. Therefore, the increased
seed size and dry weight (Figure 4) in OE-25 and OE-52 indicate that more carbon was imported into
the seed during early embryo growth compared to Col-0. Genevestigator analysis showed that STY46
is highly up-regulated in chalazal endosperm, which connects the seed to the maternal tissue [41,42]
and regulates resource uptake from the parent into the developing seed [39,43]. These data, and the
results presented here, collectively suggest that STY46 might have a role in regulating carbon resource
accumulation in seed, but this would need to be directly tested.

3.3. The Role of STY46 in Abiotic Stress Response

The up-regulation of STY46 expression (Figure 1), together with the better growth performance
of OE-25 under abiotic stress and ABA treatment (Figure 5), suggest that STY46 has a positive role
in plant abiotic stress response and this response might be mediated by the ABA signaling pathway.
A previous study showed that the SnRK2.3 transcript was down-regulated in STY46STY8STY17 triple
mutants [25]. SnRK2.3 is a protein kinase that mediates the ABA signaling pathway to regulate seed
germination, root growth, seedling growth, and proline accumulation [44]. Whether the involvement
of STY46 in the ABA signaling pathway is mediated by SnRK2.3, and how STY46 interacts with
SnRK2.3, needs further investigation. Genevestigator analysis showed that STY46 expression closely
correlates with that of AT1g23870, a gene encoding trehalose-phosphatase synthase 9, which is involved
in trehalose-6-phosphate (T6P) metabolism (Supplementary Figure S2A). STY46 was also induced in
Arabidopsis mesophyll protoplasts transiently expressing At3g01090, a gene encoding SnRK1.1, which
is responsive to sugar starvation (Supplementary Figure S2B). Therefore, STY46 might be involved in
the T6P/SnRK1 pathway and deserves further study.

Changes in carbohydrate metabolism under abiotic stress depend on many factors, such as the
duration and intensity of different stresses, the different tissue types, and the tissue developmental
stage [6]. Under osmotic and salinity stress and the overexpression line, OE-25 accumulated more
sugars in the rosette. In contrast, the mutant lines (STY46-1, STY46-2) had decreased sugar content
under salinity stress (Figure 6C). The accumulation of sugars is one mechanism of plant response
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to environment stress, primarily by acting as compatible solutes to protect cellular membranes and
proteins under stress [6,45,46] and as reactive oxygen species scavengers [47]. The accumulated
reducing sugars may also act as sources of energy and as carbon building blocks, directly through the
respiratory cycle for the biosynthesis of metabolites necessary for stress response [20]. Changes in
sugar levels under stress can be sensed by stress signaling pathways and lead to the activation of genes
involved in a stress response [48,49].

Under salinity stress, the carbohydrate content in the rosettes, at the end of the day, differed
in the mutants compared to OE-25. Starch content in OE-25 was the same as the control, but there
was an increase in sugars, whereas in the mutant lines, there was decreased sugar but higher starch
content (Figure 6). The lower sugar and higher starch content mutants might be due to defective starch
degradation caused by the loss of STY46 expression. Starch can act as a “sugar-source” when carbon is
deficient [50], and, under environmental stress, starch metabolism is often regulated to supply optimal
sugar levels necessary for stress response [6]. Previous studies in Arabidopsis showed that 150 mM
salt stress results in increased sugar accumulation and reduced starch content [51], highlighting that
STY46, is necessary for this physiological process. Our work suggests the activation of a regulatory
mechanism, whereby carbon is preferentially partitioned into osmoprotectants (sugars, amino acids,
organic acids) at the expense of storage compounds (starch or protein) as a positive way to respond to
salinity stress [34]. The 14CO2 labeling experiment reinforced this and showed that OE-25 partitioned
more 14C into amino acids (AA) and sugars, while it partitioned less into starch and protein in source
leaf, which suggested that OE-25 is more responsive to salinity stress than the wild type.

4. Materials and Methods

4.1. Analysis of STY46 T-DNA Mutant Lines

Seeds of Arabidopsis thaliana Columbia-0 ecotype (wild type) and two independent T-DNA insertion
mutants of STY46 (SALK_112195: sty46-1, SALK_116340: sty46-2) were obtained from the Arabidopsis
Information Resource (Ohio State University, Columbus, OH, USA). T-DNA mutant lines were screened
and self-pollinated to homozygosity and tested by PCR. Primers used are listed in Supplementary
Table S1.

4.2. Generation of STY46 Overexpressing Transgenic Arabidopsis Lines

A myc-epitope-tagged STY46 (GenBank Accession: NM_120008.2) full-length cDNA was amplified
from the cDNA library of Arabidopsis Columbia ecotype (Col-0) rosette as a BamHI/PstI fragment,
using the primers in Supplementary Table S2. The STY46 PCR fragment was digested and cloned to
the multiple cloning sites located between the 35S Cauliflower mosaic virus (CaMV) and the NOS
terminator of the pCAMBIA1300 (Center for the Application of Molecular Biology of International
Agriculture, Canberra, Australia). The recombinant construct the pCAMBIA1300 was electroporated
(Gene Pulser, BIO-RAD, Hercules, CA, USA) into Agrobacterium tumefaciens strain EHA105. Positive
transformants were selected on left border (LB) agar plates, supplemented with 50 µg/mL kanamycin
sulfate (Sigma-Aldrich, St. Louis, MO, USA) and 10 µg/mL Rifampicin (Sigma-Aldrich, St. Louis,
MO, USA) and double-checked by restriction enzyme digestion. Agrobacterium tumefaciens cell
harbor transformation constructs were cultured and resuspended into 5% (w/v) sucrose solution,
containing 0.05% (v/v) Silwet L-77. Developing inflorescences of Arabidopsis Col-0 were dipped in
the cell suspension for 5 s. Seeds from transformed Arabidopsis were selected using the MS media,
supplemented with 2 mg/L hygromycin B (Sigma-Aldrich, St. Louis, MO, USA). The transgenic lines
were self-pollinated and genotyped until stable lines homozygous for the construct were identified
(T3). The levels of STY46 transcripts were compared between the transgenic plants transformed with
STY46 and Col-0 using a quantitative real-time PCR approach with primers listed in Table S3.
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4.3. Stress Treatments

For gene expression analysis: Col-0 was grown on a 1
2 Murashige and Skoog ( 1

2 MS) agar medium
( 1

2 MS salts, 1% (w/v) agar, 1% (w/v) sucrose, pH 5.7). Three-week-old seedlings were taken out from
the medium and submerged into Hoagland solution [52] (12 h/12 h day/night, 21/23 ◦C), containing
300 mM mannitol, 200 mM NaCl, or 100 µM ABA for 0, 2, 6, 12, and 24 h. For darkness treatment,
the Col-0 plants were exposed to 24 h of extended dark (48 h). Rosettes were harvested from each plant.

Characterization of transgenic lines, Col-0 and STY46 transgenic seeds, were initially sterilized
and grown vertically in a 9 × 9 cm petri dish with 1

2 MS, containing either 100 mM NaCl, 150 mM
mannitol, or 1 µM ABA. Three replicate plates were used for each treatment. Plants were also grown
in soil in a growth chamber at 21 ◦C with 16 h/8h day/night, 150 µmol photon m−2 s−1 light intensity,
and 60% relative humidity. Two-week-old plants were irrigated with nutrient solution, containing
either 150 mM mannitol or 100 mM NaCl.

4.4. Genomic DNA Extraction

A genomic DNA extraction method was modified based on a previous study [53]. Two young
Arabidopsis leaves were harvested into 2 mL Eppendorf tubes and ground into a powder with liquid
nitrogen. Approximately 500 µL of DNA extraction buffer (prewarmed to 65 ◦C) was added and mixed
with 500 µL of chloroform: isoamyl alcohol, 24:1 (v/v). The homogenate was centrifuged for 10 min at
13,500× g and 400 µL of the supernatant was transferred to a new sterile 1.5 mL tube. Approximately
400 µL of isopropanol was added then centrifuged at 13,500× g for 10 min. The pellet was washed
with 100 µL of 70% (v/v) ethanol, air-dried, and then resuspended in 50 µL ddH2O.

4.5. Quantitative Real-Time Reverse Transcript-PCR

RNA extraction was done as described [34]. Arabidopsis tissue (100 mg) was ground into a
fine powder with liquid nitrogen in a 2 mL Eppendorf tube, and 1 mL TRIzol® reagent (Invitrogen,
Carlsbad, CA, USA) was added. cDNA was synthesized using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Vilnius, Lithuania). Actin2 was used as the reference to
normalize gene expression. The primers for gene amplification are shown in Supplementary Table S3.
Primers were optimized and the efficiency was determined by making a standard curve with different
dilutions of cDNA. The ddCt method [54] was used to analyze the expression of each gene based
on the fold-changes of transcripts in the experimental sample compared with the control sample.
All procedures were as previously described [34].

4.6. Carbohydrate Analysis

Approximately 100 mg of rosettes from each plant was ground to a fine powder and boiled in
1 mL 80% (v/v) ethanol for 10 min and centrifuged, and the supernatant was poured into a separate
4 mL tube. This process was repeated twice more; each time, the supernatant was pooled, and the
pellet was kept for starch measurement. Assay of starch and sugars followed our previously used
procedure [34].

4.7. 14CO2 Pulse-Chase Labeling and Fractionation of 14CO2-Labelled Plant Tissue

The 14CO2 feeding was carried out on the 8th mature leaf of each plant after stress-treatment
or non-treatment control in the “leaf chamber” at the beginning of the day for 30 min. 14CO2 was
generated from 0.08 MBq NaH14CO3 and acidified with 200 µL of 10% (v/v) lactic acid in the reservoir
chamber. The generated 14CO2 was pumped into a leaf chamber via the tubing system, where a single
leaf of a plant was exposed to 14CO2. After each 5 min pulse, the stopcocks were turned and the new
plants were replaced successively. At the end of the feeding, 500 µL of 10% (v/v) potassium hydroxide
was used to stop 14CO2 generation and capture the residue 14CO2 in the chamber. The labeled leaf,
unlabeled leaves, and siliques of each plant were harvested separately. Each sample was homogenized
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in liquid nitrogen, boiled for 10 min in successive 80%, 50%, and 20% (v/v) ethanol, and then separated
into the soluble and insoluble fractions by centrifugation. The 14C in each fraction (organic acids,
amino acids, sugars, starch, protein, and cell wall) was measured, following our previously used
procedure [34].

4.8. Photosynthesis Measurements

Photosynthesis was measured following the method previously used [55]. An Arabidopsis leaf
was placed inside a controlled-environment chamber using a Li-6400 portable gas-exchange system
(Li-6400, Li-Cor, Inc., Lincoln, NE, USA) with saturating light (1200 µmol·m−2 s−1) and 400 µmol·mol−1

CO2. The temperature was set to 28 ◦C.

4.9. Assay of Rosette Size and Biomass

Col-0, STY46 T-DNA insertion mutants, and OE lines were grown in a growth chamber with
conditions described in Section 4.3. The rosette of each plant was photographed at day 16, day 20,
and day 23, and the rosette area was determined by ImageJ [56]. The rosette growth rates during 0 to
16 days (growth rate 1), 16 to 20 days (growth rate 2), and 20 to 23 days (growth rate 3) were determined
by calculating the increase in the rosette area. When plants were four weeks old, the rosettes of each
plant were harvested, weighed, and dried in an 80 ◦C oven for 2 weeks. From these, tissues, dry weight
measurements, and the fresh/dry weight ratio was determined.

4.10. Assay of Seed Size and Seed Weight

Approximately 30 Arabidopsis seeds were fixed on the microscope slide with transparent tape.
The slide was viewed with a microscope and photographed. Seed length and width was measured
using ImageJ analysis software (https://imagej.nih.gov/ij/index.html), according to the instructions.
For seed weight measurement, 100 Arabidopsis seeds were weighed, and each genotype was repeated
three times.

4.11. Total Protein Extraction and Quantification

Protein content was assayed as described [57]. A total of 20 seeds (three biological replicates) were
ground into a fine powder, homogenized in 250 µL acetone, and centrifuged at 16,000× g for 10 min.
The vacuum-dried pellet was resuspended in 250 µL of extraction buffer, containing 50 mM Tris-HCl
pH 8.0, 250 mM NaCl, 1 mM ethylenediaminetetraacetic acid, and 1% (w/v) sodium dodecyl sulfate,
and then incubated for 2 h at 25 ◦C, before it was centrifuged at 16,000× g for 5 min. Approximately
100 µL of the supernatant was used for protein measurements using the Bradford Method Protein
Assay Kit (VWR Life Science AMRESCO, Solon, OH, USA), following the manufacturer’s instructions.

4.12. Statistical Analysis

All tests for significant differences between transgenic lines and Col-0 control data were done
using one-way ANOVA in the R environment. Public STY46 gene expression data were generated
using an online expression data exploration platform Genevestigator® [32]. Pearson’s Correlation
analysis was performed in Microsoft Excel.

5. Conclusions

The present study showed that STY46, a hub gene in the SSR network, has a role in plant growth
and abiotic stress response via regulating carbon use. STY46 is induced by ABA and abiotic stress.
Under control conditions, the source and sink tissues of a transgenic line with high levels of STY46
transcripts accumulated more biomass compared to the wild type under osmotic and salinity stress,
and carbohydrate metabolism was altered. We propose a model for STY46 in plants based on published
and current data. STY46 is able to phosphorylate pre-proteins targeted to both the chloroplast [25] and

https://imagej.nih.gov/ij/index.html
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the mitochondria [31] and can bind amino acid ligands during chloroplast biogenesis [58], thus helping
to translocate proteins to the chloroplast and mitochondria. STY46 is thus part of integral carbon and
energy generation processes that support emerging seedling transition from autotrophy to heterotrophy
and, in adult plants, influence carbon and energy use via carbohydrate metabolism under stress.
These roles may be performed collaboratively with other STY kinases and are highly regulated, because
neither severe reductions nor moderate increases in STY46 cause visible changes in the phenotype.
Although STY46 is likely to have a multiplicity of roles in the plant lifecycle, understanding how STY46
specifically connects plant stress signaling pathways to plant carbon use is important, because of the
consequences for plant growth, development, and production under non-ideal conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/1/57/s1.
Sheet 1: Correlation analysis of STY46 transcripts and characterized phenotypes. The following are available
online in the Supplementary Materials. Table S1: Primer sequences for T-DNA verification. Table S2: Primer
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