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ORIGINAL RESEARCH

Acclimation to a High- Salt Diet Is Sex 
Dependent
Eman Y. Gohar , PhD; Carmen De Miguel , PhD; Ijeoma E. Obi, PhD; Elizabeth M. Daugherty;   
Kelly A. Hyndman, PhD; Bryan K. Becker, PhD; Chunhua Jin, MD, PhD; Randee Sedaka, PhD;   
Jermaine G. Johnston, PhD; Pengyuan Liu, PhD; Joshua S. Speed, PhD; Tanecia Mitchell , PhD;   
Alison J. Kriegel, PhD; Jennifer S. Pollock, PhD; David M. Pollock , PhD

BACKGROUND: Premenopausal women are less likely to develop hypertension and salt- related complications than are men, 
yet the impact of sex on mechanisms regulating Na+ homeostasis during dietary salt challenges is poorly defined. Here, we 
determined whether female rats have a more efficient capacity to acclimate to increased dietary salt intake challenge.

METHODS AND RESULTS: Age- matched male and female Sprague Dawley rats maintained on a normal- salt (NS) diet (0.49% 
NaCl) were challenged with a 5- day high- salt diet (4.0% NaCl). We assessed serum, urinary, skin, and muscle electrolytes; 
total body water; and kidney Na+ transporters during the NS and high- salt diet phases. During the 5- day high- salt challenge, 
natriuresis increased more rapidly in females, whereas serum Na+ and body water concentration increased only in males. 
To determine if females are primed to handle changes in dietary salt, we asked the question whether the renal endothelin- 1 
natriuretic system is more active in female rats, compared with males. During the NS diet, female rats had a higher urinary 
endothelin- 1 excretion rate than males. Moreover, Ingenuity Pathway Analysis of RNA sequencing data identified the enrich-
ment of endothelin signaling pathway transcripts in the inner medulla of kidneys from NS- fed female rats compared with male 
counterparts. Notably, in human subjects who consumed an Na+- controlled diet (3314– 3668 mg/day) for 3 days, women had 
a higher urinary endothelin- 1 excretion rate than men, consistent with our findings in NS- fed rats.

CONCLUSIONS: These results suggest that female sex confers a greater ability to maintain Na+ homeostasis during acclimation 
to dietary Na+ challenges and indicate that the intrarenal endothelin- 1 natriuretic pathway is enhanced in women.
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Maintenance of Na+ homeostasis has a funda-
mental role in blood pressure regulation, and 
the kidney is crucial in this process. In particu-

lar, the kidney tightly regulates natriuresis and has the 
capacity to acclimate to dietary salt challenges, thus 
ensuring that fluid- electrolyte balance is maintained.1 
Although there have been extensive studies over many 
years, the complex molecular interactions that con-
trol Na+ handling in the kidney remain incompletely 
defined. This has severely complicated the develop-
ment of therapeutic strategies to prevent salt- sensitive 
hypertension.

Despite evidence for male- female differences in hy-
pertension prevalence and pathophysiology,2 the vast 
majority of studies focused on Na+ handling have been 
restricted to men. Therefore, a clear understanding of 
sex- dependent regulation of Na+ homeostasis is criti-
cally lacking. Recent studies demonstrated that acute 
natriuretic responses to an intraperitoneal saline load are 
more rapid in female than in male rats.3 Similarly, intra-
venous infusion of hypertonic saline to humans evoked 
a more pronounced natriuretic action in women than in 
men.4 However, sex discrepancies in mechanistic path-
ways involved in natriuresis remain poorly characterized.
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Of the myriad Na+- regulatory pathways, the kidney 
endothelin- 1 signaling system plays an important role 
in controlling Na+ homeostasis5 and contributes to sex 
discrepancies in blood pressure control and fluid and 
electrolyte homeostasis.6– 10 The renal inner medulla 
contains the highest concentration of endothelin- 1 in 
the body.11 Upon release from collecting duct cells, 
endothelin- 1 inhibits tubular Na+ transport, promoting 
natriuresis through activation of endothelin receptors 
and production of NO.5 Endothelin- 1– induced natriure-
sis is mediated mainly through activation of endothe-
lin receptor subtype B (ETB) receptors.5 Interestingly, 
evidence now indicates a contribution of medullary 
endothelin receptor subtype A (ETA) receptors in facili-
tating endothelin- 1– mediated natriuresis in female rats 
only.12 However, our previous study revealed that male 
rats have greater expression of ETA in inner medullary 
collecting duct (IMCD) cells than females do, whereas 
no sex difference in ETB receptor expression was de-
tected in these cells.13

The goal of the current study was 2- fold. First, we 
tested the hypothesis that female rats have a more effi-
cient capacity to acclimate to increased dietary salt in-
take challenge. To address this question, we assessed 
serum, urinary, skin, and muscle electrolyte levels and 
the abundance of Na+ transporters in male and female 
Sprague Dawley rats on a normal- salt (NS) diet and 
during the initial several days transitioning to a high- salt 
(HS) diet. Second, we determined whether the renal 
endothelin- 1 natriuretic system is more active in female 
rats, compared with males. This was achieved by mea-
surement of urinary endothelin- 1 excretion, renal ETA 
and ETB receptor expression in rats during the NS or 
HS diet phases. We assessed sex- specific differential 
expression of the renal inner medullary transcriptome 
in NS- fed rats. To begin determining the clinical rele-
vance of our findings in rats, we assessed sex discrep-
ancies in urinary excretion rates of endothelin- 1 and 
other Na+- regulatory factors in healthy humans.

METHODS
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

Animals
Male and female age- matched (13– 15  weeks old) 
Sprague Dawley rats were purchased from Envigo 
(Indianapolis, IN). Rats were maintained on an NS diet 
(0.49% NaCl, TD 96208; Envigo) for 2  weeks. Then, 
a nutrient- matched HS diet (4% NaCl, TD 92034; 
Envigo) was introduced for 5 consecutive days. During 
the entire experimental period, animals were housed 
in a temperature- controlled room (22– 24 °C) with a 
12:12- hour light- dark cycle, with free access to water. 
Experiments were conducted over 4 sequential days 
to ensure that different stages of the estrus cycle were 
presented in female rats. All animal protocols were in 
accordance with the Guide for the Care and Use of 
Laboratory Animals and were approved in advance by 
the University of Alabama at Birmingham Institutional 
Animal Care and Use Committee.

Clinical Studies
Healthy men and women (age, 33.6±1.8 years; body 
mass index, 25.8±0.8  kg/m2) consumed controlled 
diets for 3  days (Na+ intake, 3314– 3668  mg/day). 
Specifically, Na+ intake in all meals, snacks, and drinks 
was 3314 to 3668 mg/day (3668, 3314, and 3387 mg/
day on the first, second, and third day, respectively). 
On the fourth day and after fasting overnight, the first 
morning void was discarded. Participants then con-
sumed 4 cups of water. Two hours later, a second urine 

CLINICAL PERSPECTIVE

What Is New?
• We report that women have a greater ability to 

maintain sodium balance during acclimation to 
dietary sodium challenges.

• This study also identifies sex- specific discrep-
ancies in the renal endothelin system, which 
plays a critical role in the regulation of sodium 
excretion and blood pressure.

What Are the Clinical Implications?
• This study underscores the importance of study-

ing sex- specific differences in the mechanisms 
regulating blood pressure and sodium excretion.

• The renal endothelin- 1 system may play an im-
portant role on the advanced ability of the female 
kidney to excrete sodium.

Nonstandard Abbreviations and Acronyms

ETA endothelin receptor subtype A
ETB endothelin receptor subtype B
HS high salt
IMCD inner medullary collecting duct
IPA Ingenuity Pathway Analysis
NCC Na+/Cl− cotransporter
NHE3 Na+/H+ exchanger isoform 3
NOx NO metabolites (nitrite and nitrate)
NS normal salt
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void was collected to assess urinary Na+, endothelin- 1, 
NO metabolites (nitrite and nitrate [NOx]), aldosterone, 
and norepinephrine. Na+ intake in the current human 
study was based on National Health and Nutrition 
Examination Survey 2013– 2016 data, which reported 
that Americans consume an average of 3361  mg of 
sodium per day.14 Studies involving humans were per-
formed with approval from the University of Alabama at 
Birmingham Institutional Review Board for Human Use 
and in accordance with the Declaration of Helsinki. 
Study participants provided written informed consent 
before inclusion in the study.

Statistical Analysis
Values are presented as mean±SEM in all figures and 
Table 1. Values in Table 2 are presented as mean±SD. 
Statistical tests used for each data set are specified in 
the figure legend. P<0.05 was considered significant.

Detailed methodology for all protocols used in this 
study, including metabolic cage experiments, teleme-
try, RNA sequencing and pathway analysis, are pro-
vided in Data S1. Table S1 lists all primary antibodies 
used for Western blotting in the present study.

RESULTS
Urinary Electrolyte Excretion
Under steady- state conditions, no sex differences in 
water or Na+ intake or in urine electrolyte excretion or 
flow were observed in animals on an NS diet when 
normalized to body weight (Figure  1A through 1D, 
Figure S1A through S1C). Upon challenge with an HS 
diet, the urinary excretion rate of Na+ increased gradu-
ally in males over the 5- day period, whereas the urinary 
excretion rate of Na+ in females reached a maximum 
steady state on day 1 of the HS challenge (Figure 1B). 

Over the 5- day HS challenge, males and females 
reached a positive Na+ balance of 87.2±22.2 and 
61.3±9.9 mmol/kg, respectively (P=0.3). Water intake 
and urine flow increased significantly in female rats 
(Figure 1C and 1D). In males, increases in urine flow 
and water intake did not reach statistical significance 
(Figure 1C and 1D). On day 1 of the HS, the difference 
between water intake and urine output was 20.3±0.9 
and 15.7±2.6  mL/day in males and females, respec-
tively (P=0.1). The urinary excretion rate of K+ did not 
change in either sex during the HS challenge, whereas 
the urinary excretion rate of Cl− in both sexes increased 
in a pattern similar to that of the urinary excretion rate 
of Na+ (Figure S1B and S1C).

Circulating Electrolyte Concentrations
In male rats, the serum Na+ concentration increased 
on day 1 of the HS challenge and remained high at day 
5 (Figure  1E). In contrast, the serum Na+ concentra-
tion in female rats did not change during the HS chal-
lenge (Figure  1F). Serum K+ concentration increased 
slightly in both sexes on day 5 of HS (Figure S1D and 
S1E). Serum Cl− concentration tended to increase 
during the HS challenge in male rats similar to serum 
Na+ (Figure S1F and S1G) but did not reach statistical 
significance (P=0.06 and P=0.07 at day 1 and day 5, 
respectively; Figure S1F). Serum Cl− concentration did 
not change in females during the HS challenge.

Blood Pressure
Consistent with previous reports,2,15 mean arterial 
pressure was lower in female rats than in male rats 
during the NS diet phase (Figure S2) and mean ar-
terial pressure did not change in either sex during 
the HS challenge compared with baseline values 
(Figure S2).

Table 1. Sex Differences in Na+- Regulatory Factors During Acclimation to an HS Diet Challenge

Urinary excretion 
rate

Males (n=5– 8) Females (n=6– 11)

ANOVA resultsNS Day 1 HS Day 5 HS NS Day 1 HS Day 5 HS

Endothelin- 1, pg/day 
per kg

5.6±0.8 10.2±0.5* 10.6±0.7* 11.8±3.9† 14.6±2.0 14.9±2.3 Pinteraction=0.9  
Pdiet=0.2  
Psex=0.006

NOx, µmol/day 
per kg

22.5±1.0 24.6±1.8 7.7±0.7* 20.1±3.5 32.7±4.7* 7.8±0.7* Pinteraction=0.08  
Pdiet<0.0001  
Psex=0.5

Aldosterone, µg/day 
per kg

14.1±2.3 5.8±0.9* 4.3±0.6* 17.3±2.9 13.3±1.5 5.3±0.7* Pinteraction=0.4  
Pdiet<0.0001  
Psex=0.18

Norepinephrine, 
µg/day per kg

5.2±0.3 4.6±0.2 4.9±0.5 4.0±1.0 6.8±1.1 5.9±1.1 Pinteraction=0.1  
Pdiet=0.4  
Psex=0.4

Statistical comparisons were performed by repeated- measures 2- way ANOVA with Sidak’s post hoc test for multiple comparisons. HS, high salt; and NS, 
normal salt.

*P<0.05 vs corresponding NS values.
†P<0.05 vs corresponding male values.
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Body Weight and Total Body Water
During the NS phase, males and females weighed 
406±3 and 247±3 g, respectively. Body weight did not 
change in either sex during the HS challenge. However, 
total body water relative to body weight increased in 
male rats on day 1 of the HS challenge (from 71.8±0.3% 
to 72.6±0.4%; P=0.02) and remained elevated on day 
5 (72.3±0.4%; P=0.03). In contrast, total body water 
relative to body weight did not change significantly in 
females during the HS challenge (NS, 70.6±0.7%; day 
1 HS, 71.2±0.8%; day 5 HS, 71.2±0.8%; P=0.3). No 
sex- related differences were observed in total body 
water relative to body weight.

Skin and Muscle Na+

Interestingly, recent findings suggest that skin is also a 
site of Na+ storage and serves as an extrarenal contrib-
utor to the maintenance of Na+ homeostasis and blood 
pressure regulation as well.16,17 In the present study, 
skin Na+ concentration in male rats did not change 
during the HS challenge (Figure 1G). A slight but non-
significant decline in skin Na+ concentration occurred 
in female rats on day 1 of the HS challenge (P=0.07; 
Figure  1H). Neither sex-  nor diet- related differences 
were observed in muscle Na+ concentrations on day 1 
of HS (Figure 2A and 2B).

Creatinine Clearance
To evaluate the effects of HS on kidney function, 
we determined creatinine clearance as an estimate 
of glomerular filtration rate. Creatinine clearance 

increased in both sexes on day 1 of the HS chal-
lenge, and this increase was maintained at day 5 
(Figure 2C and 2D).

Kidney Na+ Transporters
The actions of Na+ transporters along the nephron de-
termine tubular Na+ reabsorption and, consequently, 
Na+ excretion by the kidney. To assess the potential 
involvement of these transporters in mediating the sex 
differences in HS- induced natriuresis, we determined 
the protein abundance of Na+/Cl− cotransporter (NCC; 
total and phosphorylated), Na+/H+ exchanger isoform 3 
(NHE3; total and phosphorylated), epithelial Na+ chan-
nel α subunit, and Na+, K+- ATPase α subunit in renal 
cortices from rats on NS and day 1 of HS (the time at 
which sex differences in HS- induced natriuresis were 
most apparent). The abundance of total NCC and 
phosphorylated NCC were higher in female rats than in 
male rats, regardless of diet (Figure 3A and 3B). Total 
NHE3 was higher in females compared with males on 
an NS diet. However, neither sex-  nor diet- related dif-
ferences were observed in the ratio of phosphorylated 
NCC to total NCC, the abundance of phosphorylated 
NHE3 or Na+, K+- ATPase α subunit, or the ratio of phos-
phorylated NHE3 to total NHE3 (Figure 3A through 3E).

Urinary Excretion of Natriuretic/
Antinatriuretic Factors
To assess sex differences in the renal endothelin- 1 
pathway during the HS challenge, we measured the 
24- hour excretion rate of endothelin- 1 and NOx) in 

Table 2. Characteristics of Human Subjects

Men (n=9– 11) Women (n=12– 14)

P valuesMean±SD Mean±SD

Age, y 34.9±7.7 32.6±10.3 0.5

Weight, kg 85.9±11.2 66.1±9.9* 0.001

Body mass index, kg/m2 27.5±2.9 24.4±4.1* 0.04

Urine flow, mL/h per kg 0.5±0.2 0.6±0.3 0.2

UNaV, μmol/h per kg 26.6±22.1 33.6±23.6 0.7

Statistical comparisons were performed by unpaired Student t test. UNaV indicates urinary excretion of Na+.
*P<0.05 vs corresponding values in men.

Figure 1. Sex differences in the natriuretic response to a HS diet challenge in rats.
Na+ intake (A), UNaV (B), water intake (C), and urine flow (D) in male and female Sprague Dawley rats during the NS diet phase or the 
HS challenge. Serum levels of Na+ (E and F) and whole skin Na+ (G and H) relative to dry skin weight in male and female rats during 
the NS diet phase or on days 1 and 5 of the HS diet challenge (n=5– 8 rats in each group). Statistical comparisons were performed by 
repeated measures 2- way ANOVA with Sidak’s post hoc test for multiple comparisons (A through D) or two- way ANOVA with Sidak’s 
post hoc test for multiple comparisons (E through H). *P<0.05 vs corresponding NS values. ANOVA results: Na+ intake: Pinteraction=0.9, 
Ptime<0.0001, Psex=0.8; UNaV: Pinteraction=0.5, Ptime<0.0001, Psex=0.2; water intake: Pinteraction=0.6, Ptime=0.002, Psex=0.01; urine flow: 
Pinteraction=0.9, Ptime=0.001, Psex=0.03; serum Na+: Pinteraction=0.002, Pdiet=0.02, Psex=0.3; skin Na+: Pinteraction=0.3, Ptime=0.2, Psex=0.3. HS 
indicates high salt; NS, normal salt; and UNaV, urinary excretion of Na+.
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rats during the NS diet phase and on days 1 and 5 of 
HS. Among other factors involved in determining the 
natriuretic response to an HS diet, it is clear that re-
duced renal sympathetic activity (primarily mediated 

by norepinephrine) and aldosterone signaling inhibit 
natriuresis, whereas ANP (atrial natriuretic peptide) 
promotes natriuresis. Thus, we also measured the 24- 
hour excretion rate of aldosterone and norepinephrine 
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and serum ANP during the NS and HS diet phases. 
Interestingly, the urinary excretion rate of endothelin-
 1 was higher in females than in males during the NS 
diet phase (Table 1). No sex differences were observed 
in the urinary excretion rate of NOx, aldosterone, or 
norepinephrine (Table 1) or in the serum ANP concen-
tration under NS diet conditions (males, 0.12±0.04; fe-
males, 0.10±0.04 ng/mL).

In males, the urinary excretion rate of endothelin- 1 
increased on day 1 of HS, and this change was main-
tained on day 5 (Table 1). In contrast, the urinary ex-
cretion rate of endothelin- 1 did not change in females 
during the HS challenge (Table 1). The urinary excretion 
rate of NOx increased in females only on day 1 of HS. 
In both sexes, however, this rate decreased on day 5 
of HS, such that it was significantly lower than the rate 
during the NS diet phase (Table 1). The urinary excre-
tion rate of aldosterone decreased in males on day 1 
of the HS challenge, and this decrease was maintained 
on day 5 (Table 1). However, the urinary excretion rate 
of aldosterone decreased in females only on day 5 of 
the HS challenge (Table 1). Neither the urinary excre-
tion rate of norepinephrine (Table 1) nor the serum ANP 

concentration changed on day 1 of the HS challenge 
in either sex (males, 0.14±0.04; females, 0.11±0.03 ng/
mL).

RNA Sequencing and Ingenuity Pathway 
Analysis
Inner medullae, which have an important role in the 
fine- tuning of urinary Na+ excretion, were collected 
from NS- fed rats and subjected to RNA sequencing. 
Raw data files, a read summary with mapping rate, and 
a summary file of transcripts and statistical results from 
RNA sequencing have been deposited in the Gene 
Expression Omnibus database under the accession 
number GSE13 6387. A list of transcripts that met the 
following criteria were uploaded to Ingenuity Pathway 
Analysis (IPA; Qiagen) for core analysis: (1) detected in 
both male and female samples, and (2) identified to be 
differentially expressed by Cufflinks or at least a 1.5- 
fold different between the sexes. Transcripts meeting 
these criteria are represented by color- coded points 
in Figure S3. Of the 16 061 annotated transcripts de-
tected in the RNA sequencing analysis, 3.43% (551) 

Figure 2. Muscle Na+ and creatinine clearance during the HS diet challenge.
Ratio of muscle Na+ to water (A and B) and creatinine clearance (C and D) in male and female Sprague 
Dawley rats during the NS diet phase or on day 1 of the HS challenge (n=5– 8 rats in each group). Statistical 
comparisons were performed by 2- way ANOVA with Sidak’s post hoc test for multiple comparisons. 
ANOVA results: muscle Na+: Pinteraction=0.9, Ptime=0.5, Psex=0.2; creatinine clearance: Pinteraction=0.7, 
Ptime<0.0001, Psex=0.07. HS indicates high salt; and NS, normal salt.
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were exclusively expressed in females, 11.10% (1782) 
were expressed in both sexes but significantly higher 
‘and’ or ‘or’ 1.5- fold higher in females, 5.32% (855) 
were expressed in both sexes but significantly higher 
‘and’ or ‘or’ 1.5- fold higher in males, 2.37% (381) were 
exclusively expressed in males, and 77.78% (12 492) 
appeared to be similarly expressed in both sexes 
(Figure 4A).

The signaling pathways with the most differentially 
expressed genes were ranked by −log (P value) in the 
IPA software and are reported in Table S2. The top 10 
highly differentially expressed genes between sexes 
in the renal inner medullary transcriptome are listed in 
Table  S3. Figure  4B presents changes in transcripts 
found within enriched IPA pathways that have an estab-
lished role in natriuretic function, including “endothelin 
signaling,” “NO synthase 3 signaling,” and “NO signal-
ing in the cardiovascular system.” These pathways were 
predicted to be activated (positive z score) in females 
relative to males (Figure 4B). Other pathways that were 
enriched in females relative to males include G- protein 
coupled receptor signaling; cAMP- mediated signaling; 
calcium signaling; phospholipases; and interleukin- 8, 
- 9, and - 10 signaling (Table S2). IPA identified an enrich-
ment of transcripts of the endothelin- 1 signaling path-
way in females relative to males (P=0.0003), with 34 of 

187 pathway transcripts being differentially expressed 
or with at least a 1.5- fold change in abundance between 
sexes (Figure 4B).

Renal Endothelin- 1
Of the 34 transcripts in the endothelin- 1 signaling 
pathway that were differentially expressed in a sex- 
dependent manner, 19 transcripts were experimentally 
determined to be involved in the endothelin- 1 produc-
tion/signaling cascade in IMCD cells5 (Figure 4C). As 
shown, 16 of the 19 (84.2%) transcripts involved in the 
endothelin- 1 natriuretic pathway in IMCD cells were en-
riched in inner medullae from females compared with 
those of males (Figure 4C). Of note, inner medulla tis-
sue contains the highest concentration of endothelin- 1 
and ETB in the body.11

Endothelin- 1 evokes natriuresis primarily via activa-
tion of the ETA and ETB receptors.8,12,18 Thus, we mea-
sured ETA and ETB receptor expression in the cortex 
and inner and outer medulla of the kidneys from rats 
on the NS diet or day 1 of the HS challenge. Neither 
ETA nor ETB mRNA expression changed significantly in 
the renal cortical (Figure 5A through 5D) or inner med-
ullary (Figure 5I through 5L) tissues of either sex upon 
HS challenge. However, ETB receptor expression in-
creased within the outer medullae in males (Figure 5G), 

Figure 3. Na+ transporter protein expression during the HS diet challenge.
Representative Western blots of Na+ transporters and loading controls are presented (A). Protein abundance of total NCC, pNCC, 
and the ratio thereof (B), total NHE3 and pNHE3, and the ratio thereof (C), αENaC (D) and NKAα (E), in renal cortices from male and 
female Sprague Dawley rats during the NS diet phase or on day 1 of the HS challenge (protein abundance is presented relative 
to corresponding levels in male NS rats (n=6 rats in each group). Statistical comparisons were performed by 2- way ANOVA with 
Sidak’s post hoc test for multiple comparisons. ANOVA results: total NCC: Pinteraction=0.5, Pdiet=0.2, Psex=0.02; pNCC: Pinteraction=0.5, 
Pdiet=0.2, Psex=0.04; pNCC: total NCC: Pinteraction=0.8, Pdiet=0.6, Psex=0.1; total NHE3: Pinteraction=0.4, Pdiet=0.01, Psex=0.04; pNHE3: 
Pinteraction=0.4, Pdiet=0.4, Psex=0.4; pNHE3: total NHE3: Pinteraction=0.6, Pdiet=0.5, Psex=0.9; αENaC: Pinteraction=0.04, Pdiet=0.1, Psex=0.3; 
NKAα: Pinteraction=0.9, Pdiet=0.2, Psex=0.4. αENaC indicates epithelial Na+ channel α subunit HS, high salt; NCC, Na+/Cl− cotransporter; 
NHE3, Na+/H+ exchanger isoform 3; NKAα, Na+, K+- ATPase α; NS: normal salt; pNCC, phosphorylated Na+/Cl− cotransporter; and 
pNHE3, phosphorylated Na+/H+ exchanger isoform 3.
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whereas ETA receptor expression increased within 
the outer medullae of females upon HS challenge 
(Figure 5F).

Kidney Interleukin- 1β
Given that interleukin- 1β stimulates renal endothelin-
 1 production in vivo and in vitro,19– 21 we also deter-
mined sex and dietary effects on renal interleukin- 1β 
expression. Immunohistochemical analysis of tissues 
obtained from rats during the NS diet phase showed 
the expression of interleukin- 1β tended to be elevated 
in the renal cortex of females relative to that of males 
(Figure 6A), although interleukin- 1β localization in the 
kidney was similar in both sexes. Within the cortex of 
NS- fed rats, mesangial cells in the glomeruli and cor-
tical brush border stained positive for interleukin- 1β 
(Figure 6A). ELISA measurements revealed that renal 
cortical interleukin- 1β expression significantly in-
creased on day 1 of the HS challenge in males but 
not in females (Figure  6B). No diet- induced differ-
ences in interleukin- 1β expression were observed in 

the inner medulla, when compared with correspond-
ing NS values (Figure 6C). A sex difference in inner 
medullary interleukin- 1β expression was observed 
(Figure  6C). However, male rats had exaggerated 
cortical interleukin- 1β expression at the brush border 
and generalized staining in the tubular cell cytoplasm 
on day 1 of the HS challenge. In the females, tubular 
staining of interleukin- 1β at day 1 was limited to the 
brush border, at levels similar to those observed on 
the NS diet, and punctate staining within the cortical 
proximal tubules.

Na+ Regulatory Factors in Humans
To assess the relevance of our findings in humans, 
we measured the urinary excretion rate of endothe-
lin- 1, NOx, aldosterone, and norepinephrine in urine 
specimens collected from subjects maintained on 
an Na+- controlled diet. Subject characteristics are 
provided in Table  2. Of note, women excreted sig-
nificantly more endothelin- 1 than men (Figure  7A). 

Figure 4. Sex differences in endothelin- 1 signaling pathway activation in the inner medulla under NS conditions.
Inner medullae were collected from NS- fed Sprague Dawley rats (n=8/sex) and pooled (n=4 rats/pool/group) by sex for RNA sequencing 
analysis and subsequent IPA. Graphical representation of the sex differences in the renal inner medullary transcriptome (A). Graphical 
representation of the sex differences in transcript expression found within enriched IPA pathways with established roles in natriuresis 
(ET signaling, NOS3 signaling, and NO signaling in the cardiovascular system) (B). Pathways are ranked by – log (P value). The total 
number of genes found within each pathway is shown on the right of the respective bar. Graphical represenation of the relative 
abundance of inner medullary gene transcripts involved in the endothelin- 1 natriuretic signaling pathway in male and female rats (C). 
Gene transcripts that were differentially expressed and/or altered by at least 1.5- fold in female rats relative to males are shown. IPA 
indicates Ingenuity Pathway Analysis; NOS, nitric oxide synthase; and NS, normal salt.
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No sex differences were observed in the urinary 
excretion of NOx, aldosterone, or norepinephrine 
(Figure 7B through 7D).

DISCUSSION
A central dogma in kidney physiology is that it takes the 
body ≈3 days to reach steady- state urinary Na+ excre-
tion, where Na+ intake matches excretion.1 Consistent 
with this idea, we observed that urinary Na+ excretion 
in male rats increases gradually in response to the in-
duction of an HS diet, reaching a new steady state in 

3 to 5  days. In striking contrast, female rats elicited 
robust increases in urinary Na+ excretion on day 1 of 
HS. This observation indicates that females are primed 
to handle salt challenges more efficiently than males, 
which is in line with recent data.3 Similar to our findings 
in rats, a previous clinical study found that the magni-
tude of the increase in urinary Na+ excretion during hy-
pertonic saline infusion is lower in men than in women.4

In the current rat study, HS- induced water intake 
and urine output was more pronounced in females. 
Dickinson et al22 reported similar results in spiny mice 
fed an HS diet for 7 days. Supporting these results, 

Figure 5. HS diet challenge increases renal outer medullary endothelin receptor expression in a sex- dependent manner.
mRNA expression of cortical (A through D), outer medullary (E through H), and inner medullary (I through L) ETA and ETB receptors in 
male and female Sprague Dawley rats during the NS diet phase or on day 1 of the HS diet challenge (n=5– 6 rats in each group). Gene 
expression values represent the fold change from corresponding NS levels. Statistical comparisons were performed by unpaired 
Student t test. P<0.05 vs corresponding NS values. ETA indicates endothelin receptor subtype A; ETB, endothelin receptor subtype B; 
HS, high salt; and NS, normal salt.
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sex and sex hormones have been shown to regulate 
osmoreceptors that control thirst.4,23– 26 It has also 
been shown that estrogen supplementation to ovariec-
tomized rats increases water intake and urine flow.27 
Notably, pretreatment with angiotensin II decreased 
water intake in male but not female rats.28 Central in-
teractions between estrogen and angiotensin II control 
the drinking behavior in rats.29,30 The specific mech-
anism underlying the sex difference in water intake in 
the present studies remains to be determined, but sex 
hormonal– induced differences in the dipsogenic po-
tential of angiotensin II is a reasonable target for future 
studies.

The HS- induced augmentation in total body water 
observed only in male rats may appear paradoxical 

with respect to their relatively lower water intake. 
However, the difference between water intake and 
urine output being ≈4.6  mL higher in males versus 
females on day 1 of the HS would provide a proper 
explanation for the observed ≈1% increase in total 
body water relative to body weight in males (body 
weight average, 406 g). Consistent with our findings, 
previous work showed that total body water does 
not increase in female rats in response to 1% NaCl in 
drinking water.31

Our observation that serum Na+ concentration in 
female rats remained unchanged while males had an 
increase during acclimation to HS suggests that fe-
males have a greater capacity for maintaining circu-
lating levels of Na+. Of note, postprandial increases in 

Figure 6. Renal cortical interleukin- 1β expression during the HS diet challenge.
Representative images of IL- 1β protein expression in the renal cortex and outer and inner medulla of male and female Sprague Dawley 
rats during the NS diet phase or on day 1 of the HS challenge (n=5– 6 rats in each group; scale bar, 20 μm). Negative control images 
are represented (A). Protein levels of IL- 1β measured by ELISA in renal cortex (B) and inner medulla (C) of male and female Sprague 
Dawley rats during the NS diet phase or on day 1 of the HS challenge (n=6– 10 rats in each group). Brown color corresponds to IL- 1β- 
positive staining. Statistical comparisons were performed by two- way ANOVA with Sidak’s post hoc test for multiple comparisons. 
ANOVA results: cortex: Pinteraction=0.1, Pdiet=0.03, Psex=0.5; inner medulla: Pinteraction=0.8, Pdiet=0.02, Psex=0.008. HS indicates high salt; 
IL, interleukin; and NS, normal salt.
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circulating levels of Na+ impair NO- dependent vaso-
dilation in healthy subjects.32 The elevation in circu-
lating Na+ that we observed in males only suggests 
that males may be more susceptible to salt- related 
complications during acclimation to salt challenges. 
Earlier reports demonstrated that plasma obtained 
from salt- loaded subjects inhibited erythrocyte Na+/K+/
Cl− cotransport,33 which may contribute to alterations 
in plasma electrolytes.

We did not observe any effect on Na+ transporter 
expression in the kidney cortex on day 1 of HS. 
However, the abundance of total and phosphorylated 
NCC was higher in the kidneys of females than in those 
of males, which is consistent with recently published 
findings.3 Assuming that abundance is proportional to 
activity, these sex differences appear to be opposite to 
what would be presumed. However, control of trans-
porter activity is complex and has many levels of reg-
ulation. Additional studies are warranted to determine 
whether sex differences in the regional distribution of 
Na+ transporters3 and transporter trafficking may con-
tribute to acclimation to HS. Recently, Tahaei and col-
leagues34 revealed that the distal convoluted tubule of 
female mice expresses a greater density of NCC in a 
shorter distal convoluted tubule structure. Interestingly, 
the female distal convoluted tubule has greater struc-
tural remodeling capacity to elongate in response to 
loop diuretics.34 Altogether, it is clear that the female 
kidney is equipped with unique mechanisms to adapt 
to unique physiological challenges.

Upon HS challenge, the rate of urinary endothelin- 1 
excretion increased in male rats only, consistent with 
previous reports of HS diets increasing renal endothe-
lin- 1 production and activity.35– 37 Our RNA sequenc-
ing data demonstrated enrichment in the endothelin- 1 
signaling pathway in female rats. In addition, the rate 
of urinary endothelin- 1 excretion was higher in female 
rats than in males. Our study does not conclusively 
demonstrate that kidney endothelin- 1 signaling is the 
primary cause for the sex differences in HS- induced 
natriuresis but does show that the kidney endothelin- 1 
system is highly activated under basal conditions in 
females. The differential HS- induced overexpression 
of outer medullary ETB in males and ETA in females is 
interesting and suggests a female- specific contribution 
of ETA in the natriuretic response to salt, which aligns 
with previous studies.8 Furthermore, ETA and ETB can 
work cooperatively to facilitate Na+ and water excre-
tion.8,36,38,39 Future studies are required to determine 
the effect of salt on renal ET receptor protein abun-
dance and localization.

Since the NO pathway is known to contribute to 
endothelin- 1– induced natriuresis, we also measured 
the excretion of urinary NOx as a measure of NO pro-
duction. The increase in urinary NOx excretion in fe-
male rats on day 1 of HS may provide an explanation 
for the more rapid HS- induced natriuresis observed in 
females. IPA also revealed an enrichment of NO and 
nitric oxide synthase 3 signaling pathways in inner me-
dullae from female rats. Importantly, it has been shown 
that high levels of urinary NOx occur upon collecting 
duct endothelin- 1 production.37 This may suggest that 
endothelin- 1 and NO signaling pathways work cooper-
atively to prime efficient natriuresis in females.

Control of natriuresis is complex and involves nu-
merous signaling pathways in several systems. We 
postulate that sex steroids, possibly ovarian hormones, 
facilitate HS- induced natriuresis. Indeed, salt sensi-
tivity is reported to be increased after menopause.40 
Ovariectomy has been shown to exacerbate salt sen-
sitivity in Dahl salt- sensitive rats.41 This is relevant to 
our recent study demonstrating a female- specific na-
triuretic response to activation of G protein– coupled 
estrogen receptors.38,42 Therefore, it is possible, and 
perhaps likely, that additional pathways are involved 
in the enhanced efficiency of females to handle di-
etary Na+ challenges. Although we did not detect sex- 
specific differences in aldosterone, norepinephrine, or 
NO excretion when rats were maintained on a NS diet, 
the contribution of sex differences in the downstream 
signaling cascades for these Na+ regulatory factors 
in sex differences in acclimation to HS remains to be 
determined. Earlier studies have reported changes in 
urinary excretion of aldosterone and norepinephrine 
during the estrus cycle in sheep and rats, respective-
ly.43– 45 In addition, ETA and ETB mRNA expression and 

Figure 7. Women have higher urinary endothelin- 1 levels 
than men.
Urinary excretion of endothelin- 1 (A) nitrite/nitrate (NOx) (B), ALD 
(C), and NE (D) in healthy men and women (n=9– 13 subjects in 
each group). Statistical comparison was performed by unpaired 
Student t test. ET- 1 indicates endothelin- 1; ALD indicates 
aldosterone; and NE, norepinephrine.
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nitric oxide synthase activity in female rat kidneys are 
regulated by estradiol.46,47 Accordingly, we anticipate 
that the increased variability in the urinary excretion 
levels of Na+- regulatory factors in female rats would be 
related to different phases of the estrus cycle.

The inflammatory cytokine interleukin- 1β has been 
shown to provoke endothelin- 1 production in vari-
ous cell types, including kidney epithelial cells,20 and 
treatment of mouse IMCD- 3 cells with interleukin- 1β 
has been shown to promote endothelin- 1 release, at 
least partially, via activation of NF- κB (nuclear factor 
kappa- light- chain- enhancer of activated B cells).21 
Furthermore, Boesen et al21 demonstrated that sys-
temic infusion of interleukin- 1β promotes urinary en-
dothelin- 1 excretion in male rats. We did not observe 
a greater interleukin- 1β expression in the female kid-
ney of NS- fed rats, suggesting that the interleukin- 1β/
endothelin- 1 axis may not be as important in females 
as in males. This may be related to potential sex dif-
ferences in other factors that regulate endothelin- 1 
such as the transcription factor tonicity- responsive 
enhancer- binding protein.48,49 The increase in corti-
cal interleukin- 1β on day 1 of the HS in male rats is 
well poised to mediate the male- specific increase in 
urinary endothelin- 1 excretion observed at this time 
point.

Data from human studies have indicated a signif-
icant correlation between urinary endothelin- 1, NOx, 
and natriuresis.50 Further studies suggested that im-
pairments in the kidney endothelin- 1 system may con-
tribute to the development of essential hypertension 
and salt sensitivity.51– 53 Interestingly, it has been shown 
that patients with essential hypertension have reduced 
urinary endothelin- 1 excretion.52 An early study re-
vealed that salt- sensitive men and women have lower 
urinary endothelin- 1 excretion than their salt- resistant 
counterparts.52 Despite extensive evidence of sex dif-
ferences in the kidney endothelin- 1 pathway in animal 
studies, little is known about the role of kidney endo-
thelin- 1 in regulating renal Na+ handling in men and 
women. Correlating with results from our animal stud-
ies, we discovered that women excrete more endothe-
lin- 1 than men. This is consistent with the hypothesis 
that women are primed to better handle acute chal-
lenges to dietary sodium intake.

CONCLUSIONS
In conclusion, there are clear sex differences in the 
mechanisms involved in maintaining fluid and electro-
lyte homeostasis, and women have an efficient capac-
ity to manage dietary Na+ challenges. Defining of these 
mechanistic pathways may lead to the development 
of sex- specific therapies for salt- sensitive hyperten-
sion and other salt- related health complications. Given 
that an HS diet is one of the major risk factors for the 

development of hypertension, the enhanced capacity 
of women to handle salt challenges may contribute to 
the female protection against hypertension during their 
premenopausal age, compared with postmenopausal 
women.
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SUPPLEMENTAL MATERIAL



Supplemental Methods 

Metabolic cages. Animals were placed into metabolic cages 48 h before daily quantitative urine 

collections and measurements of food and water intake were performed. After basal 24-h urine collection, 

a nutrient-matched HS diet was introduced, and 24-h urine samples were collected daily for 5 consecutive 

days. Urine was centrifuged at 1000 × g for 5 min, aliquoted, and stored at −80°C until further analysis. At 

the end of the fifth day on the HS diet, rats (16-18 weeks old) were euthanized, and the blood, skin, and 

kidney tissues were harvested. Separate sets of animals were euthanized while maintained on a NS diet 

or on the first day of the HS diet to harvest blood, skin, gastrocnemius muscles, and kidney tissues. The 

kidney cortex, outer and inner medulla, whole body skin and gastrocnemius muscles were frozen in liquid 

nitrogen and stored at −80°C until molecular assays were performed. 

Telemetry. Blood pressure measurements were made in a different cohort of animals using DSI 

PA-C40 transmitters (Data Sciences International, Duluth, MN) as previously detailed.54 At the beginning 

of the 2-week NS diet, rats were anesthetized with 2% isoflurane, and telemetry transmitters were 

implanted with catheters inserted into the abdominal aorta. The catheter was secured in place with 

VetBond tissue glue (3M corporation, St. Paul, MN), the transmitter body was secured in place along the 

incision line, and the muscle layer was closed with sutures. Staples were used to close the skin. Rats were 

allowed to recover for at least 10 days after surgery before the basal 24-h urine collection and subsequent 

HS challenge. Blood pressure was recorded for 10 sec once every 10 min throughout the study. 

Body water measurement. In vivo body composition of rats was determined using an 2MHz 

Whole Body Composition Analyzer quantitative magnetic resonance (QMR) machine (Echo Medical 

Systems, Houston, TX), as previously validated.55  Rats were weighed and then placed into a clear Perspex 

tube, allowing constant airflow, and room for the rat to turn around. Total body water measurements 

were obtained at different time points in the same animals. Data were calculated relative to body weight 

and presented as percentage. 

Data S1.



Ashing. As previously described,56 whole body skin and gastrocnemius muscles were frozen at 

−80°C until processed. Samples were then weighed and placed in a drying oven at 80°C for 96 h. Water 

content was determined by subtracting the dry weight from the wet weight. Samples were ashed by 

heating to 150°C, 250°C, and 350°C in 6-h increments, followed by 24 h at 450°C. Finally, samples were 

held at 600°C for 20 h, and the ash was then dissolved in 5% nitric acid. 

Measurement of electrolytes. Urinary and serum electrolytes were measured using an EasyLyte 

Na+/K+/Cl- analyzer (Medica, Bedford, MA). Skin and muscle electrolytes were measured using atomic 

absorption spectrometry (ICE 3000; Thermo Fisher Scientific, Waltham, MA). 

Creatinine measurement. Plasma and urine creatinine levels were determined by non-derivitized, 

stable isotope dilution LC-MS/MS as previously described. 57 An Agilent (Wilmington, DE) Infinity 1260 LC 

and Infinity 1290 autosampler with a 6460 Triple Quad mass spectrometer were used. 

Aldosterone (ALD) measurement. Urinary ALD was measured by immunoassay as previously 

described.58 

Norepinephrine (NE) measurement. Urinary NE concentrations were measured using a 

Norepinephrine ELISA Fast Track kit (BA E-6200; Rocky Mountain Diagnostics, Colorado Springs, CO) 

according to the manufacturer’s directions. 

Nitrite and nitrate (NOx) measurement. Urinary NOx concentrations were analyzed using the E-

NO 30 HPLC system (Eicom, Kyoto, Japan) as previously described.59, 60 

ET-1 measurement. ET-1 concentrations were measured using the Quantiglo ET-1 ELISA kit 

(QET00B; R&D Systems, Minneapolis, MN) according to the manufacturer’s directions. 

Atrial natriuretic peptide (ANP) measurement. Serum ANP concentrations were measured using 

the Rat ANP ELISA Kit (ab108797, Abcam, Cambridge, MA) according to the manufacturer’s directions. 

Tissue RNA isolation, cDNA synthesis, and real time PCR. RNA was isolated from kidney tissue 

using the Purelink Mini RNA Extraction kit (12183018A, Thermo Fisher Scientific) according to the 



manufacturer’s instructions. RNA concentration was determined using a NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific). Then, the isolated RNA was reverse transcribed using the 

QuantiTect Reverse Transcription kit (Qiagen). Finally, the resulting cDNA was used to quantify mRNA by 

RT-PCR (CFX96 Real-Time System, Bio-Rad, Hercules, CA  using TaqMan primer gene expression assays 

with ET-1 (Rn00561129_m1), ETA receptor (Rn00561137_m1), ETB receptor (Rn00569139_m1) and β-

Actin (Rn00667869_m1) primers. Gene expression was quantified relative to β-actin as a housekeeping 

gene using the 2ΔΔCt method. 

RNA sequencing and IPA. Total RNA was extracted from inner medullary tissues collected from 

NS-fed male and female rats (n=8/sex) following the Trizol method (Ambion), pooled (n=4 rats/pool) by 

sex and quantified using a NanoDrop2000 spectrometer (Thermo Fisher Scientific). Thus, we sequenced 

two pools of four samples per sex.  RNA library construction for sequencing was performed using the 

Illumina TruSeq Stranded Total RNA Kit.  Samples were multiplexed 8 per lane on a 400 Gb flow cell, pair-

end sequenced with an Illumina HiSeq 2500.  Before the analysis, adapter sequences were removed from 

the output sequence reads using cutadapt (http://code.google.com/p/cutadapt/). Reads with low base 

quality (<13) were further trimmed and, if less than 25 base pairs, removed by FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The trimmed sequence reads were then 

aligned to the rat reference genome and gene annotation database (rn5) using TopHat2 (v2.1.1) with 

mammalian default parameters.61 Transcripts in all of the sequencing libraries were assembled by 

Stringtie.62 Differential expression analysis was performed using Cufflinks (v2.2.1).63 The Benjamini-

Hochberg procedure was used for controlling false discovery rates in multiple comparisons. A total of 

26,085 unique transcripts were identified through sequencing.  A list of transcripts that met the following 

criteria were uploaded to IPA (Qiagen) for core analysis: 1) detected in both male and female samples, 

and 2) identified to be differentially expressed by Cufflinks or at least a 1.5-fold different between the 



sexes. Transcripts meeting these criteria are represented by color-coded points in Supplemental Figure 3. 

A total of 2345 transcripts mapped to genes represented in the IPA for subsequent pathway analysis. 

Interleukin-1β (IL-1β) measurement. Cortical and inner medullary regions of the kidney were 

homogenized, sonicated and centrifuged as previously described.64 Protein concentration in the 

supernatant extract was determined using Quick Start Bradford 1× Dye Reagent (RLB00, Bio-Rad). IL-1β 

protein level in the supernatant extract was measured using rat-specific IL-1β Quantikine ELISA kits 

(RLB00, R&D Systems) according to the manufacturer’s instructions. Measurements were normalized to 

total protein measured by Bradford assay. 

Immunohistochemical staining. Kidneys were fixed and immunohistochemically stained as 

previously described 64. Primary antibodies against IL-1β (ab9787, Abcam, Cambridge, MA) were used at 

1:3000 dilution. DAB substrate (DAKO) was used to visualize the primary antibody. 

Western blotting. Kidney cortical lysates were separated by SDS-PAGE and processed for Western 

blot analysis as previously described.65 Primary antibodies against the sodium transporters and channels 

have previously been validated.66-71 Supplemental Table 1 lists all primary antibodies used for Western 

blotting in the present study. Alexa Fluor 680 (A21109, Invitrogen, Waltham, MA) and Alexa Fluor 800 

(A32730, Invitrogen) secondary antibodies were used at 1:1000 dilution except for those used to detect 

b-actin (1:10000). To quantify protein bands, densitometry was performed with a LI-COR Odyssey Image

Studio (v5.2.5), and all values were normalized to the corresponding values in the male NS group. 



Table S1. Western blotting antibody details. 
Antibody 

Target 
Source Host Clonality Dilution 

factor 
Expected 
molecular 

weight 
(kDa) 

Validated 
and/or 
citation 

ENaCa AB3530P, 
Chemicon, 
Temecula, 
California 

Rabbit Polyclonal 1:1000 ~100 
71

NKAa Developmental 
Studies Hybridoma 

Bank at the 
University of Iowa 

Rouse Monoclonal 1:1000 112 
66

NCC a kind gift from Dr. 
McDonough, 
University of 

Southern 
California 

Rabbit Polyclonal 1:1000 150 
67

pNCCT53 a kind gift from Dr. 
Loffing, University 

of Zurich 

Rabbit Polyclonal 1:1000 150 
68

NHE3 a kind gift from Dr. 
McDonough, 
University of 

Southern 
California 

Rabbit Polyclonal 1:1000 83 
69

pNHE3S552 SC-53962, Santa 
Cruz 

Biotechnology, 
Dallas, TX 

Mouse Monoclonal 0.2 µg/ml 83 
70

Actin A1978, Sigma, St. 
Louis, MO 

Mouse Monoclonal 1:10000 42 

 NHE3, Na+/H+ exchanger isoform 3; pNHE3, phosphorylated Na+/H+ exchanger isoform 3;  
aENaC, epithelial Na+ channel a subunit; NKAa, Na+, K+-ATPase a. 
  



Table S2. Pathways identified by Ingenuity Pathway Analysis to be enriched in transcripts 

with differential expression between males and females.   

See Excel file.



Table S3. Top 10 highly differentially expressed genes between sexes in the renal inner 
      medullary transcriptome. 

Gene Fold change 
(female over male) 

P values 

Adh1 53.3 5.00E-05 
Slc22a7 39.6 5.00E-05 
Mmp13 15.1 0.00045 
Acsm1 12.8 0.00095 
Car15 9.9 5.00E-05 

Slc5a10 9.6 5.00E-05 
Slc7a12 9.6 5.00E-05 
Tmigd1 8.7 5.00E-05 
Akr1c1 8.2 5.00E-05 
Kynu 7.7 5.00E-05 



Figure S1. Urine and serum electrolytes during the HS diet challenge. Food intake (A), 
urinary excretion of K+ (UKV) (B) and Cl- (UClV) (C), and serum K+ (D, E) and Cl- (F, G) in male and female SD 
rats during the NS diet phase or the HS challenge (n= 4-9 rats in each group). Statistical comparisons were 
performed by repeated measures two-way ANOVA with Sidak’s post-hoc test for multiple comparisons 
(A-C) or two-way ANOVA with Sidak’s post-hoc test for multiple comparisons (D-G). *P < 0.05 vs. 
corresponding NS values. ANOVA results: food intake: Pinteraction = 0.8, Ptime = 0.9, Psex = 0.8; UKV: Pinteraction = 
0.03, Ptime = 0.007, Psex = 0.4; UClV: Pinteraction = 0.6, Ptime < 0.0001, Psex = 0.3; serum K+: Pinteraction = 0.9, Ptime = 
0.0003, Psex = 0.09; serum Cl-: Pinteraction = 0.02, Ptime = 0.7, Psex = 0.006. NS, normal salt; HS, high salt; SD, 
Sprague Dawley. 
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Figure S2. Blood pressure during the HS diet challenge.  24-h measurements of mean arterial
pressure (MAP) in male and female SD rats during the NS diet phase or the HS diet challenge (n=4-6 rats 
in each group). Statistical comparisons were performed by repeated measures two-way ANOVA with 
Sidak’s post-hoc test for multiple comparisons. *P < 0.05 vs. corresponding NS values. #P < 0.05 vs. 
corresponding male values. ANOVA results: Pinteraction = 0.1, Ptime = 0.008, Psex = 0.01. NS, normal salt; HS, 
high salt; SD, Sprague Dawley. 
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Figure S3. RNA-sequencing results plotted as A) Scatter plot comparing the mean FPKM from 
male and female pools and B) Volcano plot of log fold difference in gene expression (females over males) 
against q-value of the comparisons. Criteria for transcripts inclusion in pathway analysis were >+/- 1.5-
fold difference in expression and/or q < 0.05.  Transcripts meeting these criteria are represented by color-
coded points, with all other transcripts in black. 
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