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Abstract

The use of mobile communication devices in health care is spreading worldwide. A huge

amount of health data collected by these devices (mobile health data) is nowadays avail-

able. Mobile health data may allow for real-time monitoring of patients and delivering ad-hoc

treatment recommendations. This paper aims at showing how this may be done by exploit-

ing the potentialities of fuzzy clustering techniques. In fact, such techniques can be fruitfully

applied to mobile health data in order to identify clusters of patients for diagnostic classifica-

tion and cluster-specific therapies. However, since mobile health data are full of noise, fuzzy

clustering methods cannot be directly applied to mobile health data. Such data must be

denoised prior to analyzing them. When longitudinal mobile health data are available, func-

tional data analysis represents a powerful tool for filtering out the noise in the data. Fuzzy

clustering methods for functional data can then be used to determine groups of patients. In

this work we develop a fuzzy clustering method, based on the concept of medoid, for func-

tional data and we apply it to longitudinal mHealth data on daily symptoms and consump-

tions of anti-symptomatic drugs collected by two sets of patients in Berlin (Germany) and

Ascoli Piceno (Italy) suffering from allergic rhinoconjunctivitis. The studies showed that clus-

ters of patients with similar changes in symptoms were identified opening the possibility of

precision medicine.

Introduction

Mobile Health (mHealth) refers to the use of mobile communication devices in health care

(see, e.g., [1]). In recent years, mHealth is rapidly growing. Nowadays, nearly every person pos-

sesses a mobile device and people carry their mobile device with them wherever they go. As

observed by the World Health Organization (WHO), this holds for developed countries as
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well as for developing ones. Therefore, mobile devices might represent valuable tools in pro-

viding health care even to population in remote areas or with limited access to health care

infrastructure by giving advices and taking recommendations for patients at low cost [2, 3].

The availability of mHealth data is exponentially increasing thanks to the impressive num-

ber of developed healthcare-related mobile apps [4]. These apps allow for effectively support-

ing disease prevention and management. In fact, for the first time, it is possible to monitor

health conditions of patients, in particular, changes in health states, risk factors, daily behaviors

and medication adherence. Healthcare-related apps usually acquire data by interactive ques-

tionnaires filled in by patients. When such questionnaires are repeated over a period of time

or, in general, when mHealth data are collected on the same patients over time, data are said to

be longitudinal, allowing for detecting developments or changes in the phenomenon under

investigation. The analysis of such longitudinal mHealth data offers new opportunities to iden-

tify ad-hoc disease risks or symptom checkers and to generate customized diagnoses and treat-

ment recommendations. The aim of this paper is to illustrate how this can be done by using

two famous classes of statistical techniques, namely, Functional Data Analysis [5–7] and fuzzy

cluster analysis [8, 9].

The need for Functional Data Analysis (FDA) naturally arises. In fact, a recognized draw-

back of (longitudinal) mHealth data is that they are full of noise [10]. For instance, in the case

of interactive questionnaires, data quality may be poor due to a low confidence of patients

with the app or to a limited accuracy in answering questions. Suitable techniques should be

used to convert noisy mHealth data into valid and accurate information on the patients’ health

status. Longitudinal mHealth data can be seen as realizations over time of continuous func-

tions on a given domain. Since these measurements are observed with noise, the functions

should be smooth in order to filter out the noise. This goal is achieved by means of FDA. FDA

has often been applied in the biological and medical domains (see, for a review, [11]). Recent

examples can be found in, e.g., [12–15].

Fuzzy cluster analysis is adopted in order to detect groups of patients with similar changes

in the examined characteristics. Cluster-specific customized diagnoses and treatment recom-

mendations can then be generated allowing for precision medicine. In practice, once noisy

longitudinal mHealth data are converted into (smooth) functionals, these can be further ana-

lyzed by means of fuzzy clustering methods for functional data. The theory of fuzzy sets [16]

represents an extension of the classical one where everything is a matter of degree. Formally, a

unit (e.g. a patient) belongs to a fuzzy set with the so-called (fuzzy) membership degree. Such a

degree varies from 0 (complete non-membership) or 1 (complete membership). This is obvi-

ously in contrast with the standard theory where a unit either belongs (membership = 1) or

does not (membership = 0) to the set. Therefore, fuzzy set theory permits conclusions true to a

certain extent admitting the selection of multiple options among a set of alternatives. In this

respect, fuzzy set theory and its extensions offer more flexible tools for dealing with real-world

complexity. Mathematical modelling based on fuzzy sets is widely applied in the medical

domain as witnessed by the large number of papers available in the literature. For instance,

fuzzy nonlinear systems can be considered [17–19]. A general model based on the novel con-

cept of linear Diophantine fuzzy set is developed in [20]. Special kinds of fuzzy sets for the

analysis of bipolar disorders are introduced in [21]. The so-called m-polar neutrosophic sets

can be used for medical diagnosis [22]. Its applications to COVID-19 are described in [23, 24].

To further motivate the adoption of the fuzzy approach, we focus our attention to cluster-

ing. In standard (hard) clustering, units either belong or does not belong to the clusters. In

fuzzy clustering, units can be assigned to the clusters with membership degrees in [0, 1]. Intui-

tively, units close to the cluster centers have membership degrees close to 1, while the member-

ship degrees decrease as units are farther from the cluster centers. Finally, units on cluster
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boundaries, have similar membership degrees to more than one cluster highlighting cases of

uncertain cluster membership. These cases are quite common in real life applications when-

ever there are units sharing the features of more than one cluster. They are not arbitrarily

forced to fully belong to only one of such clusters, as it occurs in conventional clustering, but

rather can be assigned to all the groups with certain membership degrees. The two most popu-

lar fuzzy clustering algorithms are the Fuzzy k-Means (FkM) algorithm [25] and the Fuzzy k-

Medoids (FkMed) algorithm [26], representing fuzzy extensions of the classical k-Means (kM)

[27] and k-medoids (kMed) [28] ones, respectively.

In this paper, the FkMed clustering algorithm for functional data is applied and introduced.

The use of the kMed algorithm is motivated by its robustness properties [28] that make it

more appropriate for mHealth data than the kM algorithm. In particular, the fuzzy k-medoids

clustering algorithm for functional data is applied to longitudinal mHealth data concerning

Allergic Rhinoconjunctivitis (AR). AR is an inflammatory disease of the nasal mucosa closely

related to the aeroallergen exposure, such as pollen, house dust mites, etc. [29]. AR is one of

the most common diseases among children and adults affecting over 300 million people, espe-

cially in industrialized countries [30]. Diagnosis and intervention trials depend on the severity

of AR, that can be measured daily by patients answering questions related to the level of the

perceived severity of symptoms and to the consumption of anti-symptomatic drugs. These

answers allow for computing the so-called Symptom Medication Scores (SMS) in order to

monitor the patients’ disease [31]. The present study is based on daily SMS referring to

patients who collected daily symptoms and drug intakes by using the app AllergyMonitor

(Technology Project & Software production, http://www.tpsproduction.com/en) developed

within the project “Allergymonitor” [32], a multi-center project aimed at evaluating and vali-

dating the use of mobile Health Technology for allergy diagnostics.

Materials and methods

Functional data and clustering methods for functional data

FDA represents a set of statistical techniques used for analyzing experimental data, varying

over a continuum, in the form of functions (see, e.g., [6]). If, for each unit, a collection of dis-

crete observations over time is recorded, FDA allows for identifying and synthesizing the gen-

eral trend of the discrete observed data. For the i-th unit (i = 1, . . ., n), this is done by

converting the set of discrete values yij observed at times tij (j = 1, . . ., vi), where vi denotes the

number of discrete values for unit i, in a continuous smooth function xi(t), where t is in a con-

tinuum. Letting εij be the error, we have

yij ¼ xiðtÞ þ εij: ð1Þ

The smoothing function xi(t) is created by using a basis function system, i.e., a set of s math-

ematically independent known functions, ϕp, p = 1, . . ., s:

xiðtÞ ¼
P

p cipϕpðtÞ; ð2Þ

where cip is the coefficient of ϕp, p = 1, . . ., s. Different types of basis functions exist. A popular

choice for non-periodic functional data is represented by spline functions. Their use is justified

by the fact that a limited number of spline functions allow for remarkable flexibility in the data

approximation. Splines are piecewise polynomials defined by dividing the observational time

interval into q subintervals separated by usually equally-spaced points called breakpoints or

knots, τl, l = 1, . . ., q– 1. Note that, if the knots are not distinct, then the concepts of breakpoints

and knots differ, but this occurs very rarely. In each sub-interval, the spline is a polynomial of

PLOS ONE A study of longitudinal mobile health data through fuzzy clustering methods for functional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242197 November 17, 2020 3 / 23

http://www.tpsproduction.com/en
https://doi.org/10.1371/journal.pone.0242197


order m. The order can be defined as the number of constants required to define it and is

equal to the degree of the polynomial plus one. To improve flexibility in a spline, the number

of breakpoints and the order of the polynomials can be increased at the cost of a more complex

model with a high number of parameters.

In practice, the construction of the smoothing functions requires the definition of the func-

tions ϕp, p = 1, . . ., s. Once such functions are chosen, it remains to estimate the coefficients

cip, p = 1, . . ., s, for all the units. The most widespread choice for ϕp is represented by the B-

spline basis system [33]. For the generic i-th unit, the smoothing function is obtained as fol-

lows. Let Fi be the matrix of order (νi × s) containing the values ϕp(tij) for unit i. Then, the esti-

mation problem refers to the vector ci = [ci1, . . ., cis]. Under the assumption that the errors are

independent, identically distributed with zero mean and the same variance, the estimate of ci is

found by minimizing

SSE ¼ εi
Tεi ¼ ðyi � ΦiciÞ

T
ðyi � ΦiciÞ; ð3Þ

where yi = [yi1, . . ., yivi] and εi = [εi1, . . ., εivi]. However, since the homoscedastic assumption

is often unrealistic, a weight matrix is usually incorporated in the loss function in (3). The

degree of smoothness of the estimated function depends on the number of basis functions s,
leading to underfitting (low values of s) or overfitting (high values of s) problems. For this rea-

son, a roughness penalty is usually added to (3) that explicitly defines the smoothness to be

achieved. We have

PENSSEl ¼ SSEþ lPENmðxÞ; ð4Þ

where PENm(x) =
R

[Dmxi(t)]2dt, being Dmxi(t) the m-th derivative of the function xi at t. A

common choice is m = 2, where the square of the second derivative of xi at t defines the curva-

ture degree of xi at t. In (4), λ (>0) is a smoothing parameter that quantifies the emphasis of

the roughness penalty in the loss function. The higher λ, the smoother the function xi. The

smoothing parameter λ can be chosen by the well-known generalized cross-validation (GCV)

measure [34]:

GCV ¼ nSSE=½n � df ðlÞ�2; ð5Þ

where df(λ) denotes the degrees of freedom in the smoothing curve. The best choice of λ is

associated with the minimum value of GCV.

By selecting q, s and λ, the functionals corresponding to the units can be determined. To

identify functionals with similar features, clustering methods for functional data can be

adopted. Such methods are recalled in the next section.

Clustering methods for functional data. Standard clustering methods assume to deal

with a finite number of variables, i.e. to deal with a finite dimensional problem. As such, they

are not adequate to cluster functional data lying on an infinite dimensional space. Functional

clustering methods combine the functional representation of the observed data with a cluster-

ing algorithm in order to classify the units into groups. For this purpose, several suggestions

have been proposed in the literature. For an overview, one may refer to [35] and references

therein. A popular strategy consists in reducing the dimensionality of the problem by passing

from an infinite dimensional space to a finite dimensional one. This goal can be achieved in

terms of spline basis representations or functional principal component analysis [6]. The clus-

tering method is then applied, in the former case, on the basis coefficients or, in the latter case,

on the retained component scores. In this respect, the kM algorithm is often considered.

The first attempt to apply kM to the B-spline coefficients (kMFD) can be found in [35]. In

kMFD, the prototypes (called centroids) are the average B-spline coefficients of the units
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assigned to the clusters. A few proposals suggest replacing the kM algorithm with the kMed

one. These proposals, henceforth denoted by kMedFD, consist in applying kMed to the B-

spline coefficients. In contrast with kM, the kMed prototypes are no longer fictitious entities,

but a subset of the observed ones such that their dissimilarity to all the units in the cluster is

minimal. Such prototypes are called medoids. This has two major advantages. The kMed pro-

totypes are usually more robust to outliers than the kM ones. Moreover, the use of medoids

simplify the cluster interpretation because observed entities can be used to describe the

obtained clusters. For these reasons, we think that medoid-based algorithms are more appro-

priate for mHealth data than centroid-based ones. In the literature, several studies in the bio-

logical and medical domains involve the use of kMedFD [13, 36, 37]. All these applications are

carried out following the classical approach to clustering. As far as we saw, studies adopting

the fuzzy approach are not available. This paper aims at filling this gap. The Fuzzy k-Medoids

algorithm for Functional Data (FkMedFD) is now introduced in detail by describing the two

steps, labelled fitting step and clustering step, required to discover the functionals of the units

and to identify clusters of functionals, respectively.

Fuzzy k-medoids clustering method for functional data

The Fuzzy k-Medoids algorithm for Functional Data (FkMedFD) generalizes FkMed to func-

tional data by means of two steps. In the first one (fitting step), the functionals are fitted to the

observed data by means of B-splines. In the second step (clustering step), FkMed is applied to

the B-spline coefficients obtained in the previous step. The two steps are related to each other

because the optimal fitting and partitioning should be jointly determined, as we shall see in the

application of Section 4.

Fitting step. In this step the functionals for all the units are built. In order to obtain com-

parable functional data, the same penalized B-spline functions should be used for all the units,

setting the same number of knots, polynomial degree and smoothing parameter λ. For this

purpose, a grid-search procedure can be implemented. For each combination of number of

knots and polynomial degree, the smoothing parameter λ is determined in such a way to mini-

mize

TGCVðq;mÞ ¼
P

iGCVi; ð6Þ

where GCVi is the GCV value for unit i, i = 1, . . ., n. Then, the optimal number of knots q� and

the polynomial degree m� are

ðq�;m�Þ ¼ argminq ;mTGCVðq;mÞ: ð7Þ

As we use the same number of knot and polynomial degree for all the n units, the same

basis functions are used. It follows that, for each functional, the coefficients cip, p = 1, . . ., s = q�

+ m� + 1, have the same meaning. Therefore, it is reasonable to use such coefficients for com-

paring the units in the clustering process. In fact, the obtained coefficients, stored in the matrix

C of order (n × s), are used as input in the next step.

Clustering step. In the current step, the following constrained minimization problem is

solved.

minU;H

P
i

P
luil

f d2ðci; hlÞ; ð8Þ

s:t: uil � 0; i ¼ 1; . . . ; n; l ¼ 1; . . . ; k; ð9Þ

P
luil ¼ 1; i ¼ 1; . . . ; n; ð10Þ
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fhl; l ¼ 1; . . . ; kg � fci; i ¼ 1; . . . ; ng; ð11Þ

where d denotes the squared Euclidean distance and U is the membership degree matrix of

order (n × k) with generic element uil expressing the membership degree of unit i to cluster l
(i = 1, . . ., n; l = 1, . . ., k). The elements of U belong to the interval [0, 1] and are such that their

row-wise sum is equal to 1. Moreover, H is the medoid matrix of order (k × s). The vector ci =

(ci1, . . ., cis,), the i-th row of C, contains the coefficients for unit i and hl = (hl1, . . ., hls,), the l-th

row of H, those for medoid l. Thus, a curve belongs to a cluster with a high membership degree

when its coefficients have a small distance with respect to those of the cluster medoid. Of

course, the medoids have membership degrees equal to 1 to the corresponding clusters (and

equal to 0 to the remaining clusters). Finally, f (>1) is the so-called parameter of fuzziness. Its

role is to tune the amount of fuzziness in the partition. High values of f imply uil! 1/k, 8i, l,
whilst low values of f lead to uil! {0, 1}, 8i, l, i.e., the partition tends to be hard. Therefore, if a

cluster should only comprise very similar units, f should be chosen larger [38]. It is important

to note that several papers available in the literature present studies on the role and impact of

the parameter of fuzziness on the obtained partition. Such works (e.g., [39–41]) usually con-

cerns FkM. In medoid-based algorithms, it is recommended f� 1.5 [26]. However, f cannot be

objectively tuned. Its choice requires a lot of heuristic and a simple but useful recommendation

is to perform several analyses setting different values of f and inspect whether and how the

solutions differ.

The solution of the constrained minimization problem in (8)-(11) can be found by means

of the method of Lagrange multipliers. The partial derivatives of the Lagrange function should

be computed with respect to the parameters in order to find the stationary points of the

Lagrange function. In doing so, it is convenient to split the optimization problem in two parts

by treating H as a constant and minimizing with respect to U and vice-versa. In this way, the

objective function is a convex function of U (and vice-versa). The updates of U and H should

be repeated alternately until convergence.

The following iterative algorithm can be implemented.

Step 0: Set the number of clusters k, the parameter of fuzziness f and the convergence crite-

rion z (>0, e.g. 10−6). Randomly select the membership matrix U(t) with t = 0, provided that

the constraints in (9) and (10) are fulfilled, where t denotes the iteration number.

Step 1: Considering U(t) as fixed, update the medoid matrix H(t+1). For the generic l-th row,

we have

hl
ðtþ1Þ ¼ argmini

P
iuil
ðtÞf d2ðci; ciÞ; l ¼ 1; . . . ; k: ð12Þ

From (12) we observe that, for each cluster, the prototype, i.e., the medoid, is the observed

unit such that the weighted sum of the distances between the unit involved and all the other

ones with weights given by the membership degrees at the power of f is minimized.

Step 2: Considering H(t+1) as fixed, update the membership degree matrix U(t+1) as

uil
ðtþ1Þ ¼ d2ðci; hl

ðtþ1ÞÞ
� 1=ðf � 1Þ

=
P

ld
2ðci; hl

ðtþ1ÞÞ
� 1=ðf � 1Þ

; i ¼ 1; . . . ; n; l ¼ 1; . . . ; k: ð13Þ

Step 3: Compute Δ = ||U(t+1)—U(t+1)||. If Δ> z, set t: = t + 1 and go to Step 1, otherwise con-

sider the algorithm as converged.

It is not guaranteed that the above-described algorithm reaches the global minimum. To

limit the chance of hitting local optima, more than one random start is recommended and the

solution providing the lowest objective function value upon convergence should be selected.

Remark. Fuzzy k-means clustering methods for functional data.
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By removing the constraint in (16), FkMedFD boils down to the Fuzzy k-means clustering

methods for functional data (FkMFD). In this case, H is no longer the medoid matrix, but the

prototype matrix. The solution of the FkMFD constrained minimization problem can be

determined according to the iterative algorithm described in Section 3.2.2 provided that the

update of H in (12) is replaced by

hl
ðtþ1Þ ¼

P
iuil
ðtÞfhi=

P
iuil
ðtÞf ; l ¼ 1; . . . ; k: ð14Þ

Therefore, the centroids are now the weighted means of the units with weights correspond-

ing to the membership degrees at the power of f.
The selection of the optimal number of clusters for FkMedFD is a complex issue. The opti-

mal choice depends on the goals of the clustering process. Since clustering involves subjective

judgements, the optimal number of clusters cannot be uniquely determined. However, in

order to reach a decision, the use of fuzzy cluster validity criteria may help. A very common

choice is the fuzzy silhouette index [42], which extends in a fuzzy setting the standard silhou-

ette index [43]. Given a (hard) partition, we can compute the silhouette value for unit i:

sðiÞ ¼ ½bðiÞ � aðiÞ�=max½bðiÞ; aðiÞ�; ð15Þ

where a(i) denotes the average dissimilarity between unit i and the other ones assigned to the

same cluster and b(i) denotes the smallest average dissimilarity between unit i and the other

ones assigned to the remaining clusters. The silhouette value ranges in [–1, 1]. If s(i) is close to

1, then unit i is well assigned to the cluster. Conversely, if a(i) approaches to –1, then the

assignment of unit i is wrong. Values close to 0 mean that i shares the features of two clusters.

The standard silhouette index is the average of the silhouette values:

SðkÞ ¼
P

isðiÞ=n: ð16Þ

The optimal number of clusters can be found in connection with the largest value of S(k).

In order to consider the fuzziness of the obtained partition, i.e., the membership degrees in

U, the fuzzy silhouette (FS) index can be adopted:

FSðkÞ ¼
P

iðuig � uigÞ
gsðiÞ=

P
iðuig � uigÞ

g
; ð17Þ

where uig and uig’ are the first and second largest elements of the i-th row of U and γ� 0 is a

weighting coefficient (usually γ = 1). The FS(k) index is a weighted mean of the silhouette val-

ues where the system of weights depends on the difference between the two largest member-

ship degrees for every unit. In this way, the silhouette values of the units in the near vicinity of

the cluster prototypes play a more relevant role if compared with those of the units located in

overlapping areas. As for S(k), the optimal number of clusters can be found by maximizing the

FS(k) index computed for different values of k. Nevertheless, in practice, we believe that this

strategy may be too drastic. Specifically, we suggest inspecting not only the solution with the

highest FS(k) value, but also those with values close to such a reference value. In fact, these

alternative solutions may extract more relevant information.

Data

FkMedFD was applied to mHealth data on children affected by AR. In particular, two studies,

referring to two populations (from Ascoli, Italy, and Berlin, Germany) of patients suffering

from AR, were considered. The study protocols were approved by the local responsible ethics

committees, ethics committee of Charité Universitätsmedizin Berlin (approval number: EA2/

004/13) for Berlin and Comitato Etico Asur (approval number: 46/CE-RMB, fascicolo n. 47/
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QQ, parere 383; date of approval 05/06/2009) for Ascoli Piceno. All parents or legal tutors pro-

vided written informed consent at the time of enrolment. The aim of these studies is to identify

groups of children with similar levels of severity of symptoms allowing for (cluster-wise) tai-

lored diagnoses and treatments.

Study population. mHealth data from two populations of children with seasonal allergic

rhinitis and pollen sensitization in Berlin and Ascoli Piceno were analyzed. In Berlin, 31 chil-

dren aged 5–18 years old were enrolled by a pediatric outpatient practice. All patients suffered

from moderate-to-severe AR and grass pollen allergy. Exclusion criteria were the Immuno-

globulin E sensitization to molds (e.g. Alternaria) and severe chronic diseases. The monitoring

period started on May 14, 2013, and finished on June 12, 2013 (overall vi = 30 days, 8i). In

Ascoli Piceno, 94 children aged 5–18 years old were enrolled by a pediatric outpatient clinic if

they had mild or moderate-to-severe AR and grass pollen allergy with symptoms in May and/

or June in at least one of the last two years. Exclusion criteria were the current or past adminis-

tration of allergen immunotherapy for any pollen allergen and severe chronic diseases. The

monitoring period started on May 13, 2011, and finished on June 21, 2011 (overall vi = 40

days, 8i). Both the populations of patients used the app AllergyMonitor. Its use was explained

to patients during the medical visits. Patients could enter daily data on the app during the

same day or not later than the day after. For each patient, the functional was built according to

a finite number of SMS values during a reference time.

Results and discussion

The results of the two above-mentioned studies involving the application of the FkMedFD algo-

rithm are reported. For comparative purposes, results obtained by using potential competitors are

also given. All the analysis was implemented by the open source statistical software R [44]. In par-

ticular the packages fda [45] for FDA and fclust [46] for fuzzy cluster analysis were used.

Preliminary analyses

CSMS values. The first step of the analysis was the computation of daily SMS values on

the basis of the daily mHealth data recorded by AllergyMonitor. In the literature, several SMS

indexes have been developed to measure the severity of AR [19, 47]. With the aim to make

clinical studies comparable, a task force of the European Academy of Allergy and Clinical

Immunology recommended the use of the so-called Combined Symptom and Medication

Scores (CSMS) index [48, 49]. The CSMS index represents a simple tool balancing both the

symptoms and the need for antiallergic medication in an equally weighted manner. Symptoms

are measured by the Average Rhinoconjunctivitis Total Symptom Score (ARTSS). For each

patient, the daily ARTSS value ranges in the interval [0, 3] and is equal to the average values of

the symptoms for six clinical features, i.e., sneezing, rhinorrhea, pruritus and nasal congestion

(nasal symptoms), ocular pruritus and lacrimation (ocular symptoms). The consumption of

anti-symptomatic drugs is evaluated by the Rescue Medication Score (RMS) that measures the

category of anti-symptomatic drugs that the patient is taking. Increasing scores from 0 to 3 are

assigned to different categories of drugs, taking into account their intensity (0 = no medica-

tion, 1 = antihistamine, 2 = nasal corticosteroid, 3 = oral corticosteroid). For a given day the

RMS is equal to the highest score recorded by the patient. CSMS is the sum of ARTSS and

RMS and thus takes values in the interval [0, 6].

Pollen data. Pollen data were also observed. In particular, for Ascoli Piceno, the counts of

three pollens were recorded allowing to relate the patients’ symptoms to a specific pollen. Such

a study was not carried out for Berlin, because only one pollen was recorded. Pollen data for

Berlin (Gramineae) were provided by the Institute of Meteorology of the Freie Universität
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Berlin and those for Ascoli Piceno (Gramineae, Olea, Urticaceae, Cupressaceae) by the aerobi-

ology center of the Agenzia Regionale per la Protezione Ambientale delle Marche, located in

Castel di Lama (Ascoli Piceno). Pollen counts were expressed as grains/m3. The pollen curve

of Berlin was characterized by a phase of absence or paucity of pollens in the atmosphere dur-

ing May and the appearance of moderate concentration in June. The pollen season of Ascoli

Piceno was very prosperous, with peaks of over 400 grains/m3 for the Olea and almost 200

grains/m3 for the Gramineae. Cypress pollens reached concentrations of negligible clinical rel-

evance and, hence, were not considered in the study.

For comparative purposes, daily CSMS and pollen values were normalized in such a way to

vary in the interval [0, 1]. Specifically, for the CSMS index, values were divided by 6, whilst, for

each pollen, values were divided by the maximum observed level during the reference time.

Missing data. Several missing data were observed. In fact, some patients did not access

the app daily or some others partially filled in the form. We assumed that, in a given day, no

available information on symptoms and drug intakes denoted missingness. Instead, if in a

given day only symptoms were recorded, we assumed that the patient did not take any medica-

tion, i.e., RMS = 0.

We imputed missing values as in [50]. Specifically, for the generic i-th patient, if the first

available value was yit’, with t’> 1, the imputed value yitI was set equal to yit’, 8t = 1, . . ., t’–1; if

the last available value was yit’, then yitI = yit’, 8t = t’, . . ., vi. Finally, intermediate missing data

were imputed by interpolation. For instance, if the values {yit’+1, . . ., yit’+w-1} were missing,

then yit’+t”I = yit’ + (yit’+w−yit’)t”/w, 8t” = 1, . . ., w–1. It is suggested imputing missing data for

patients that did not exceed 25% of missing values [50]. In our case, this cut-off had dramatic

consequences especially in the Berlin population leading to a subpopulation of only 21 patients

(10 out of 31 patients excluded). For this reason, we decided to consider a milder cut-off equal

to 37.5% such that n = 26 patients were analyzed in Berlin. Regarding Ascoli Piceno, 22

patients with more than 37.5% of missing values were excluded from the analysis. Moreover,

two patients were managed as outliers and thus excluded. The first one daily recorded no

symptoms and no drug intakes. The second one always recorded the same daily values. This

led to n = 71 patients included in the analysis. The extent to which the results were affected by

the cut-off was investigated by a small sensitivity analysis considering an extremely mild and a

severe cut-off equal to 50% and 25% respectively.

Statistical analysis

In both the studies for each patient, the daily CSMS values were considered to build the corre-

sponding functional. Then, we used the coefficients of these functionals as input for FkMedFD

in order to discover groups of patients. The functionals were built by varying the number of

equidistant B-spline knots (5, 10, 15 and 20, labelled, respectively, 6-days, 3-days, 2-days and

1.5-days for Berlin and 8-days, 4-days, 3-days and 2-days for Ascoli Piceno) and the order of

the B-spline function (polynomial degree equal to 3 and 5, respectively, m = 4 and 6). The

smoothing parameter λ was equal to 10g, where g took values in the interval [–30, 20] with

increasing step equal to 0.05 [51]. The optimal parameters were selected according to (7).

However, when the differences in the optimal TGCV values were negligible, for the sake of par-

simony the coefficients of the simpler model were used as input in FkMedFD. Concerning

FkMedFD, the optimal number of clusters was chosen by inspecting the solutions with the

highest value of the fuzzy silhouette index varying k from 2 to 7 (for Berlin) or 10 (for Ascoli)

and setting f = 1.5. Once k was selected, we checked whether different partitions were obtained

by varying f. In both the studies we found that the same groups of patients were identified but,

obviously, the larger f, the fuzzier the membership degrees.
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Berlin. The functionals were constructed by considering cubic B-splines and 15 knots.

This choice did not lead to the minimum TGCV. Nevertheless, it represented the best compro-

mise between computational feasibility and feature reproduction. In fact, by considering the

case 1.5-days, the TGCV value was slightly lower than that obtained in the case 3-days, but the

number of parameters noticeably increased, without any advantage in the obtained partition,

as we shall see later. The details on the performance of the various models in terms of TGCV
are reported in Table 1.

In order to select the number of clusters, we found that the highest FS(k) value was regis-

tered when k = 2 (0.64) whilst, when k = 3, it was equal to 0.59. The values sensibly decreased

when k = 4 and 5 (0.50 and 0.40, respectively) and fell to about 0 for higher values of k. For all

of these reasons, we concentrated our attention to the solutions with k = 2 or 3. When k = 3,

the sizes of Clusters 1, 2 and 3 were 12, 9 and 5, respectively, by considering the maximum

membership degree. Note that, in the hard-clustering sense, i.e., a unit is assigned to a cluster

when the maximum membership degree is higher than 0.50, three patients (two from Cluster

1 and one from Cluster 3) had unclear assignments. This occurred because these patients

shared the characteristics of more than one cluster.

A deeper analysis of the three clusters highlighted that the membership degrees of the

patients assigned to Clusters 2 and 3 were rather fuzzy. In fact, except for the medoids, all the

patients had membership degrees lower than 0.70. This suggested that a too fragmented group-

ing of the patients was found and that these two clusters should probably be joined. We thus

investigated the solution with k = 2 clusters. Clusters 1 and 2 had sizes equal to 12 and 14,

respectively. Cluster 2 was mainly composed by the patients belonging to Clusters 2 and 3

found setting k = 3. This confirmed that the solution with k = 2 clusters should be the preferred

one. Moreover, the membership degrees were high (� 0.90) for 19 patients (9 for Cluster 1

and 10 for Cluster 2). Thus, two well separated clusters seemed to exist.

To further inspect the obtained clusters, we plotted the functionals distinguishing the clus-

ter memberships and the medoids in Fig 1. Note that the figure also contains the functional for

the Gramineae, built by using m = 3 and q = 15, in order to interpret the clusters in terms of

the pollen. Moreover, the characteristics of the clusters were analyzed by considering demo-

graphic and clinical information (Table 2), the severity of symptoms and the intake of anti-

symptomatic drugs (Table 3). In particular, Table 3 contains the average scores of three alter-

native indexes for AR during the reference time and the last two weeks (i.e., during the pollen

peak). Two of them were RMS and ARTSS, used to build CSMS. By considering RMS and

ARTSS separately, the aim was to assess whether high CSMS values depended on severe symp-

toms, high levels of anti-symptomatic drug intakes or both. The third index, called ACS (see,

e.g., [50]), considers not only nasal and ocular symptoms (as is for ARTSS), but also bronchial

symptoms (cough, wheezing and dyspnea). For this reason, larger values of ACS compared

Table 1. Model selection for the functional data: Best values of TGCV for different choices of m, q and λ.

Functional model m q λ TGCV
B-splines 6-days 4 5 35.48 0.0902

B-splines 6-days 6 5 35.48 0.0899

B-splines 3-days 4 10 25.12 0.0891

B-splines 3-days 6 10 19.95 0.0887

B-splines 2-days 4 15 1.26 0.0861

B-splines 2-days 6 15 1.26 0.0859

B-splines 1.5-days 4 20 1.26 0.0860

B-splines 1.5-days 6 20 1.26 0.0859

https://doi.org/10.1371/journal.pone.0242197.t001
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Fig 1. Plot of the FkMedFD solution and of the pollen (red functional). Cyan and grey functionals identify patients assigned to Cluster 1 (medoid in blue) and

Cluster 2 (medoid in black), respectively. Solid, dashed and dotted functionals denote membership degrees higher than 0.90, between 0.70 and 0.90 and between 0.50

and 0.70, respectively.

https://doi.org/10.1371/journal.pone.0242197.g001

Table 2. Demographic and clinical information grouped by cluster.

Cluster 1 (n = 12) Cluster 2 (n = 14) p-value

Males (n, %) 6 50.0 9 64.3 0.736

Age (years) (mean, SD) 13.6 2.6 12.3 2.8 0.233

Nationalilty (n, %)

German 10 83.3 8 57.1 0.216

Others 2 16.7 6 42.9

Atopic sensitization (n, %)

Birch pollen 8 72.7 9 69.2 1.000

Dermatophagoides spp. 4 36.4 3 23.1 0.659

Others 8 72.7 9 69.2 1.000

Desensitization (n, %) 10 90.9 11 78.6 0.604

Asthma (n, %) 6 54.5 9 64.3 0.697

Atopic dermatitis (n, %) 2 18.2 0 0.0 0.183

Duration of allergy (years) (mean, SD) 6.2 1.3 4.3 2.3 0.043

Note: Quantitative data are summarized as mean and standard deviation (SD) and categorical data as frequency (n) and percentage (%). The p-values are computed by

T-test, when conditions were met, or Mann-Whitney U-Test for quantitative data and Chi square test, when conditions were met, or Fisher exact test for categorical

data.

https://doi.org/10.1371/journal.pone.0242197.t002
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with those of ARTSS represent a proxy of asthma diseases and, therefore, help to discover

patients with severe disease.

By inspecting Fig 1 we can see that the patients assigned to Cluster 2 were affected by more

severe AR, if compared with those belonging to Cluster 1. This is easily visible for the curves

corresponding to the two medoids. During the first half of the reference time, the pollen con-

centrations were very low and, except for a few cases, the symptoms of the patients of Cluster 2

were slightly more intense than those of Cluster 1. During the second half of the reference

time, the values of almost all the functionals increased. This means that, during the pollen-

peak days, all the patients suffered from more severe symptoms. Such a result can be seen by

observing the functional of the medoid of Cluster 1 (the one in blue). In fact, the maximum

value of such a curve occurred together with the maximum value of the pollen curve. During

the pollen-peak days, the differences between the clusters were more evident. It follows that

the pollen especially affected the patients belonging to Cluster 2. A couple of patients belong-

ing to Cluster 1, in particular those having the highest values of the curves around day 25, suf-

fered from slightly more severe symptoms. Such patients, denoted by dotted functionals, were

well captured by the clustering method because were characterized by the lowest membership

degrees to Cluster 1 (0.66 and 0.69). The opposite comment holds for one patient assigned to

Cluster 2 with the lowest membership degree (0.59). Her/his dotted curve allowed us to iden-

tify a patient characterized by medium symptoms approximately between those of the two

medoids. The remaining patients were strongly assigned to the clusters, i.e., with membership

degrees higher than 0.90 except for a few patients (one from Cluster 1 and three from Cluster

2) with membership degrees belonging to the interval [0.70, 0.90). These patients can be recog-

nized by dashed functionals quite far from the corresponding medoid and very far from the

medoid of the other cluster. For instance, these are clearly visible on the top of the figure,

hence referring to patients with extremely severe symptoms.

By looking at the demographic and clinical information reported in Table 2, we can see that

Cluster 1 was composed by a larger percentage of German and slightly older patients. More

cases of desensitization ad atopic dermatitis were registered for Cluster 1, whilst Asthma was

observed for the patients belonging to Cluster 2 with a higher percentage. However, such vari-

ables were not significantly different between clusters. The only clinical information playing a

significant role in distinguishing the two clusters seemed to be the duration of allergy that was

longer for Cluster 1.

The results of Table 3 showed that the scores of RMS, ARTSS and ACS increased with

respect to time. This means that higher values of CSMS were related to high values of both

Table 3. Severity of symptoms and intake of anti-symptomatic drugs grouped by cluster.

Cluster 1 (n1 = 12) Cluster 2 (n2 = 14) p-value

Average RMS

total period-30 days (mean, SD) 0.01 0.03 0.19 0.16 0.006

last 14 days (pollen peak) (mean, SD) 0.03 0.07 0.43 0.37 0.006

Average ARTSS

total period-30 days (mean, SD) 0.26 0.16 0.82 0.27 <0.001

last 14 days (pollen peak) (mean, SD) 0.30 0.25 0.89 0.36 <0.001

Average ACS

total period-30 days (mean, SD) 1.93 1.22 6.15 1.95 <0.001

last 14 days (pollen peak) (mean, SD) 2.17 1.93 6.86 2.83 <0.001

Note: Data are summarized as mean and standard deviation (SD). The p-values are computed by T-test, when

conditions were met, or Mann-Whitney U-Test.

https://doi.org/10.1371/journal.pone.0242197.t003
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RMS and ARTSS. In particular, the registered values were higher for patients assigned to Clus-

ter 2 with respect to those assigned to Cluster 1. This especially holds during the pollen-peak

days. With respect to ACS, we observed large values for Cluster 2, particularly during the pol-

len-peak days. We can thus conclude that the patients assigned to Cluster 2 suffered from

asthma symptoms in a more pronounced way in comparison with those belonging to

Cluster 1.

Overall, the partition classified the patients into two clusters according to the severity of

AR. Cluster 1 was interpreted as ‘‘mild symptoms” and Cluster 2 as ‘‘severe symptoms”. In the

Berlin data, the severity of AR was inversely related to the duration of allergy. Therefore, the

patients having a longer history of AR had milder symptoms.

The assessment of the stability of the obtained partition was carried out by means of a sensi-

tivity analysis varying the chosen parameters. First of all, we noted that different values of the

parameter of fuzziness f led to the same partition. The only differences were in the member-

ship degrees. Moreover, we investigated whether the solution differed by building the func-

tional data by setting m = 6 and q = 20. This was the most complex model leading to the lowest

TGCV value. We found that the same clusters were discovered by using k = 2 and f = 1.5. Spe-

cifically, the same medoids described the clusters and the membership degrees were very simi-

lar between the two solutions. The largest difference between corresponding membership

degrees was 0.03. Furthermore, we checked how the cut-off for the missing values affected the

results. We observed that the use of the cut-offs equal to 50% and 25%, respectively, did not

modify the obtained partition.

Finally, we compared the previously described partition with those obtained by applying

alternative clustering methods, summarized in Table 4. The comparison was not only limited

to clustering methods according to the hard or fuzzy approaches. In fact, we also considered

probabilistic clustering methods where the posterior probabilities (taking values in [0, 1]) play

the role of the fuzzy membership degrees. Probabilistic and fuzzy clustering methods produce

soft partitions to distinguish them from clustering methods built according to the classical

approach producing hard partitions. We were interested in the solutions with k = 2 clusters.

These solutions were found by R functions run by using default options and setting f = 1.5 for

the fuzzy clustering methods. Some clustering methods are tailored for functional data. For

comparative purposes, the same functional data, i.e., setting the same values of m, q and λ as

for FkMedFD, were used as input in the R functions. On the contrary, the clustering methods

for standard data were applied to the raw (observed) data. Since raw data were assumed to be

noisy, we expected different (and worse) results if compared with those from methods for

functional data.

Table 4. Alternative clustering methods used for comparison purposes.

Method Use of functional data Hard/Soft partition Centroid/Medoid based R function

funFEM [52] Yes Soft Centroid funFEM [53]

funHDDC [54] Yes Soft Centroid funHDDC [55]

kMFD Yes Hard Centroid kmeans [44]

kMedFD Yes Hard Medoid pam [56]

FkMFD Yes Soft Centroid FKM [46]

kM No Hard Centroid kmeans [44]

kMed No Hard Medoid pam [56]

FkM No Soft Centroid FKM [46]

FkMed No Soft Medoid FKMed [46]

https://doi.org/10.1371/journal.pone.0242197.t004
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The results of the comparison are summarized in Fig 2 containing the plots of the obtained

partitions and the corresponding Adjusted Rand Index (ARI) [57] values computed with

respect to the FkMedFD solution. As is well-known, ARI is a measure of the similarity between

two partitions such that ARI = 1 means perfect agreement. Although variants of ARI for soft

partitions exist [58], we chose the traditional ARI measure because we were interested in com-

paring hard and soft partitions. To this purpose, soft partitions were converted into hard ones

in the hard clustering sense.

By inspecting Fig 2, we can observe a general agreement among the solutions. In particular,

four methods (funFEM, funHDDC, kMedFD and FkMed) produced the same partition as for

FkMedFD. Nevertheless, some differences emerged. Specifically, funFEM and funHDDC

assigned the patients to the clusters with posterior probabilities essentially equal to 1 even if, as

already observed, some functionals shared the features of both the clusters and therefore more

uncertainty in the cluster assignment would be desirable. On the contrary, FkMed led to quite

low membership degrees for a large number of patients, in particular those assigned to Cluster

2. This might be explained by the use of raw data containing noise that implies too high dis-

tances with respect to the medoids. By comparing the FkMedFD partition with those provided

Fig 2. Plot of the solutions of the methods reported in Table 4 and of the pollen (red functional). Cyan and grey functionals identify patients assigned to Cluster 1

(medoid in blue) and Cluster 2 (medoid in black), respectively. Solid, dashed and dotted functionals denote membership degrees higher than 0.90, between 0.70 and 0.90

and between 0.50 and 0.70, respectively.

https://doi.org/10.1371/journal.pone.0242197.g002
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by the remaining five methods we observed only one or two patients assigned to a different

cluster. Such patients had rather uncertain memberships because their symptoms and drug

intakes were in between the medoids or centroids of the two clusters.

Ascoli Piceno. The results of the analysis for the patients from Ascoli Piceno are reported

in this section. There were at least two relevant differences with respect to the Berlin study,

namely, a larger number of patients (n = 71 by using the cut-off for missing data equal to

37.5%) and the availability of data on three pollen concentrations (Gramineae, Olea, Urtica-

ceae). The latter information was used in order to assess whether the clusters could be inter-

preted by the pollen counts and to relate the patient allergy to a specific pollen. The most

compelling models are summarized in Table 5 where the number of knots, the degree of the

polynomials, the penalization coefficient and the TGCV value are reported.

We can see that the minimum TGCV value was found when m = 6 and q = 20. Nevertheless,

this model was the most complex one and therefore we decided to consider the more parsimo-

nious one with m = 4 and q = 20.

The FkMedFD clustering algorithm was then applied by varying the number of clusters.

We got decreasing scores of the FS(k) index for increasing values of k passing from FS(k) =

0.67 when k = 2 to FS(k) = 0.38 when k = 10. This result suggested that a limited number of

groups was needed to cluster the patients. Nevertheless, preliminary studies showed that the

solution with only k = 2 clusters oversimplified the patients’ taxonomy. For this reason, we pre-

ferred the partition obtained setting k = 3 for which FS(k) = 0.58.

By considering the maximum membership degrees, the sizes of Clusters 1, 2 and 3 were 27,

23 and 21, respectively. However, the fuzzy approach to clustering allowed for identifying six

patients not clearly assigned, i.e., with highest membership degrees lower than 0.50. All of

them had membership degrees slightly lower than 0.50 to two clusters. Hence, these patients

shared the features of the two involved clusters. Clusters 1 and 2 closely resembled the ones

obtained by setting k = 2. Specifically, Cluster 1 was composed by patients with severe symp-

toms during the entire reference time and, hence, labelled ‘‘severe symptoms”. On the con-

trary, Cluster 2 was characterized by ‘‘mild symptoms”. Therefore, such two clusters seemed to

distinguish the patients with respect to high and low values of CSMS. More interestingly, Clus-

ter 3 discovered some patients suffering from severe symptoms during the first half of the ref-

erence time and from mild symptoms during the second half.

All of these findings can be observed by looking at Fig 3, where the functionals of the

patients grouped by cluster and of the pollens are displayed. From the figure, we can also see

that the peaks of Olea and Gramineae occurred between Day 10 and Day 20. During the same

days, the peaks of several functionals for patients assigned to Cluster 3 (for instance Medoid 3) are

visible. This stimulated us in order to assess whether a relationship between the patients of Cluster

3 and the pollens Olea and Gramineae existed. This point will be further discussed below.

Table 5. Model selection for the functional data: Best values of TGCV for different choices of m, q and λ.

Functional model m q λ TGCV
B-splines 8-daily 4 5 14.13 0.6047

B-splines 8-daily 6 5 1.58 0.5778

B-splines 4-daily 4 10 3.98 0.5288

B-splines 4-daily 6 10 3.98 0.5239

B-splines 3-daily 4 15 2.82 0.5100

B-splines 3-daily 6 15 2.82 0.5089

B-splines 2-daily 4 20 1.78 0.5015

B-splines 2-daily 6 20 2.00 0.5011

https://doi.org/10.1371/journal.pone.0242197.t005
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To aid the cluster interpretation we considered some demographic and clinical information

(Table 6) and the severity of symptoms and the intake of anti-symptomatic drugs by means of

RMS, ARTSS and ACS (Table 7). From Table 6, we found that the clusters were very similar in

terms of the demographic features of the patients. With respect to the clinical characteristics,

we observed lower percentages of the allergic comorbidities for the patients of Cluster 2 with

respect to those assigned to the other clusters. All the indexes reported in Table 7 were signifi-

cantly different among the clusters.

Consistently with the cluster interpretation, the highest and lowest average values of RMS,

ARTSS and ACS were registered for Clusters 1 and 2, respectively. Note that Table 6 does not

contain scores on the indexes for the pollen-peaks because the three pollen-peaks occurred in

different occasions.

In order to further interpret the clusters in terms of the pollens, we developed the so-called

Allergic Rhinoconjunctivitis-pollen (ARp) index, aiming at assessing, for each patient, the rela-

tionship between the CSMS functionals and the pollen ones. The index takes scores in the

interval [0, 1] and expresses the extent to which a patient is related to a pollen curve. From a

clinical point of view, this index may have relevant consequences in helping doctors to address

a patient to a specific immunotherapy.

The ARp index was built as follows. For each patient i (i = 1, . . ., n) and each pollen u
(u = 1, . . ., v, where v denotes the number of pollens), we computed the Spearman correlation

coefficient riu by using the coefficients of their corresponding functional curves. The

Fig 3. Plot of the FkMedFD solution and of the pollens (red, violet and brown functionals). Cyan, grey and green functionals identify patients assigned to

Cluster 1 (medoid in blue), Cluster 2 (medoid in black) and Cluster 3 (medoid in dark green), respectively. Solid, dashed and dotted functionals denote

membership degrees higher than 0.90, between 0.70 and 0.90 and between 0.50 and 0.70, respectively.

https://doi.org/10.1371/journal.pone.0242197.g003
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significance of the correlation coefficient was then evaluated. We assumed that patient i was

allergic to pollen u if riu was significantly larger than 0. Taking into account that the functional

coefficients are dependent [6], the usual correlation test could not be applied. For this reason,

a permutation (or randomization) test [59–61] was considered. It performs a statistical signifi-

cance test with weaker assumptions. The central one is that of exchangeability, allowing for

relaxing the fundamental assumption of independence in the classical test theory. The number

of permutations used for the correlation test was 10,000 [62]. Note that permutation tests are

implemented in R in several packages such as, for instance, the package jmuOutlier [63].

Let piu be the p-value resulting from the permutation correlation test. If piu> α, where α is

the significance level (in our study we used α = 0.05), we assumed that there was not statistical

evidence that patient i was correlated with pollen u and, thus, we had ARp = 0. If piu� α, the

ARp index was computed as the ratio between riu and the sum of the correlations between the

patient and all the pollens significantly larger than 0. Therefore, ARpiu, the ARp index for

patient i and pollen u was equal to 0 if piu< 0.05 and to riu / ∑u|piu�α riu, otherwise. By comput-

ing the ARp index for all the patients we obtained the results summarized in Table 7. Table 7

contains, for each cluster, the weighted means of ARp distinguished by cluster with weights

given by the membership degrees. Note that, for each cluster, the mean values were computed

Table 6. Demographic and clinical information grouped by cluster.

Cluster 1 (n1 = 27) Cluster 2 (n2 = 23) Cluster 3 (n3 = 21) p-value

Males (n, %) 20 74.1 16 69.6 15 71.4 0.938

Age (years) (mean, SD) 10.4 3.1 10.0 3.7 9.3 3.1 0.503

Nationality (n, %)

Italian 26 96.3 22 95.7 21 100.0 0.859

Others 1 3.7 1 4.3 0 0.0

Allergic comorbidities (n, %)

Asthma 7 25.9 5 21.7 8 38.1 0.459

Oral allergy syndrome 3 11.1 3 13.0 3 14.3 1.000

Anaphylaxis 3 11.1 2 8.7 2 9.5 1.000

Urticaria and/or angioedema 3 11.1 4 17.4 0 0.0 0.159

Atopic dermatitis 9 33.3 6 26.1 10 47.6 0.330

Gastrointestinal symptoms 1 3.7 0 0.0 0 0.0 1.000

Atopic reactivity (mean, SD)

Overall SPT reactivity to pollens (mm) 45.3 33.1 46.6 32.4 46.3 24.1 0.912

Number of positive SPT 7.2 5.4 7.7 5.4 7.8 4.4 0.792

Duration of allergy (years) (mean, SD) 3.7 2.0 3.7 2.3 3.0 1.3 0.556

Note: Quantitative data are summarized as mean and standard deviation (SD) and categorical data as frequency (n) and percentage (%). The p-values are computed by

one-way ANOVA, when conditions were met, or Kruskal-Wallis test for quantitative data and Chi square test, when conditions were met, or Fisher exact test for

categorical data.

https://doi.org/10.1371/journal.pone.0242197.t006

Table 7. Severity of symptoms and intake of anti-symptomatic drugs grouped by cluster.

Cluster 1 (n1 = 27) Cluster 2 (n2 = 23) Cluster 3 (n3 = 21) p-value

Average RMS total period-40 days (mean, SD) 1.75 0.33 0.14 0.20 0.90 0.46 <0.001

Average ARTSS total period-40 days (mean, SD) 0.57 0.35 0.26 0.21 0.46 0.31 0.001

Average ACS total period-40 days (mean, SD) 4.51 3.09 1.81 1.35 3.62 2.29 <0.001

Note: Data are summarized as mean and standard deviation (SD). The p-values are computed by one-way ANOVA, when conditions were met, or Kruskal-Wallis test.

https://doi.org/10.1371/journal.pone.0242197.t007
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by considering only the patients assigned to the cluster. In Table 8 we also report the percent-

ages of times in which the patients assigned to a cluster had the ARp index equal to 1 for a

pollen.

From Table 8 we can see that the Gramineae was the most common allergenic. The

dynamic of the CSMS values were highly correlated with the Gramineae counts. With respect

to the Gramineae, 28.2% of patients were such that ARp = 1. This percentage remarkably

increased for Cluster 3 (55.6%). Moreover, the mean value of ARp for Cluster 3 was the highest

(0.61). For all of these reasons, such a cluster was interpreted as ‘‘Gramineae allergy”.

Concerning the stability of the obtained solution, we found that, apart for a few exceptions,

the use of the cut-off equal to 25% did not modify the cluster assignments of the patients. This

did not hold for the cut-off equal to 50% that was, therefore, too mild for the Ascoli Piceno

data. Furthermore, by considering the most complex functional model with m = 6 and q = 20,

the solution of FkMedFD setting f = 1.5 and k = 3 was virtually equal to the one previously

interpreted.

Finally, we compared the FkMedFD solution with those of its competitors reported in

Table 4. As for the Berlin case, we used default options and set the same parameters as for

FkMedFD, i.e., k = 3 and, for fuzzy methods, f = 1.5. Moreover, the clustering methods for

functional data were applied to the functionals obtained setting the same values of the parame-

ters m, q and λ. Note that, with respect to funHDDC, no partition was found by using default

options. Thus, we used the option init = “random” such that the algorithm was run 20

times and the solution maximizing the log-likelihood was kept. We did it four times in order

to assess the stability of the obtained solutions, and found that three times the same solution

was attained. Such a solution was used for comparison purposes.

The results, displayed in Fig 4, showed that the nine clustering methods identified rather

different clusters with respect to the FkMedFD ones although, consistently with FkMedFD, all

the competitors discovered clusters characterized by different levels of severity of the symp-

toms. The main difference among the partitions was related to Cluster 3 (green coloured

curves). The cluster size and the medoid/centroid noticeably differed. The lowest ARI values

were observed in connection with medoids/centroids with symptoms and drug intakes pretty

stable during the reference time, thus in contrast with the features of the corresponding

FkMedFD medoid. Once again, funFEM and funHDDC produced a hard partition with poste-

rior probabilities equal to either 0 or 1, thus highlighting their tendency to discover hard

partitions.

Conclusion and future work

The paper focused on clustering for longitudinal mHealth data observed on a set of patients

with the aim of opening the possibility of precision medicine. Given the large amount of noise

in mHealth data, the suggestion is to convert mHealth data into functional data to denoise it.

In order to discover clusters of homogenous patients, we proposed to apply the fuzzy k-

medoids algorithm to the obtained functional coefficients (FkMedFD). By the B-spline basis

Table 8. Mean values of ARp and percentages of times in which ARp = 1 distinguished by cluster.

Gramineae Olea Urticaceae

Cluster 1 (n1 = 27) 0.23 (19.2) 0.15 (7.7) 0.19 (15.4)

Cluster 2 (n2 = 23) 0.31 (19.0) 0.20 (9.5) 0.11 (4.8)

Cluster 3 (n3 = 21) 0.61 (55.6) 0.11 (5.6) 0.06 (5.6)

Total 0.36 (28.2) 0.16 (7.0) 0.15 (9.9)

https://doi.org/10.1371/journal.pone.0242197.t008
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system, these coefficients allow for finding continuous smoothing functions synthesizing the

general trend of the observed data. The peculiarities of FkMedFD, are:

• The use of smoothing techniques in order to remove the noise of the recorded mHealth

data;

• The adoption of the fuzzy approach to clustering that makes the method more flexible to

handle all those situations with unclear assignments;

• The use of medoids to interpret and characterize the clusters: this is in general more natural

than the use of centroids and appears particularly effective for mHealth data due to its

robustness properties;

• The ease of implementation by using standard software tools, making the method also suit-

able for non-expert users.

FkMedFD has been applied in order to analyze two mHealth datasets referring to patients

affected by Allergic Rhinoconjunctivitis (AR) living in Berlin (German) and Ascoli Piceno

(Italy). The studies have allowed us to identify groups of patients with similar levels of disease

Fig 4. Plot of the solutions of the methods reported in Table 4 and of the pollens (red, violet and brown functionals). Cyan, grey and green functionals identify

patients assigned to Cluster 1 (medoid in blue), Cluster 2 (medoid in black) and Cluster 3 (medoid in dark green), respectively. Solid, dashed and dotted functionals

denote membership degrees higher than 0.90, between 0.70 and 0.90 and between 0.50 and 0.70, respectively.

https://doi.org/10.1371/journal.pone.0242197.g004
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allowing for tailoring of treatments. The clusters we found were interpreted by considering S1

File related to the patients and trends in air concentration of the supposed environmental

causes of the patient diseases. The Berlin data set was quite small and two clusters, distinguish-

ing two levels of AR severity, were found. For the Ascoli Piceno data, three clusters of patients

were discovered. As for Berlin, two clusters distinguished the patients with respect to the levels

of AR severity (high and low). The additional cluster detected some patients suffering from AR

and allergic to the Gramineae. This result was discovered by comparing the curves of the

patients and those of the pollens and developing a new index for assessing their relationships

based on permutation correlation tests.

Our studies showed how the joint use of fuzzy clustering and functional data analysis can

be fruitfully applied for the analysis of mHealth data. The obtained findings may stimulate fur-

ther research on the topic with particular reference to the characterizations of the clusters with

respect to external information. This is fundamental for precision medicine. In this paper, we

have partially explored this point in terms of some demographic variables and the sensibiliza-

tion to some pollens. However, this should be further investigated by studying whether the

clusters are similar with respect to the clinical or biological phenotypes for some characteristics

so that the patients belonging to the same cluster may represent a specific diagnostic sub-phe-

notype and be treated ad-hoc.
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8. Höppner F, Klawonn F, Kruse R, Runkler T. Fuzzy Cluster Analysis: Methods for Classification, Data

Analysis and Image Recognition. Chichester, Wiley; 1999.

9. de Oliveira JV, Pedrycz W (eds.). Advances in Fuzzy Clustering and its Applications. Chichester,

Wiley; 2007.

10. Chen C, Haddad D, Selsky J, Hoffman JE, Kravitz RL, Estrin DE, et al. Making sense of mobile health

data: An open architecture to improve individual- and population-level health, J Med Internet Res. 2012;

14(4): e112. https://doi.org/10.2196/jmir.2152 PMID: 22875563

11. Ullah S, Finch CF. Applications of functional data analysis: a systematic review. BMC Med Res Metho-

dol. 2013; 13: 43. https://doi.org/10.1186/1471-2288-13-43 PMID: 23510439

12. Sørensen H, Goldsmith J, Sangalli LM. An introduction with medical applications to functional data anal-

ysis. Stat Med. 2013; 32: 5222–5240. https://doi.org/10.1002/sim.5989 PMID: 24114808

13. Ranalli MG, Rocco G, Jona Lasinio G, Moroni B, Castellini S, Crocchianti S, et al. Functional exploratory

data analysis for high-resolution measurements of urban particulate matter. Biom J. 2016; 58: 1229–

1247. https://doi.org/10.1002/bimj.201400251 PMID: 27072888

14. Dong JJ, Wang L, Gill J, Cao J. Functional principal component analysis of glomerular filtration rate

curves after kidney transplant. Stat Methods Med Res. 2018; 27: 3785–3796. https://doi.org/10.1177/

0962280217712088 PMID: 28633602

15. Fontanella L, Ippoliti L, Valentini P. Predictive functional ANOVA models for longitudinal analysis of

mandibular shape changes. Biom J. 2019; 61: 918–933. https://doi.org/10.1002/bimj.201800228 PMID:

30865334

16. Zadeh LA, Fuzzy sets. Inf. Control. 1965; 8: 338–353.

17. Umek A, Kos A. Smart equipment design challenges for real time feedback support in sport. F U Mech

Eng. 2018; 16: 389–403.

18. Precup R, Teban T, Albu A, Borlea A, Zamfirache IA, Petriu EM. Evolving fuzzy models for prosthetic

hand myoelectric-based control. IEEE Trans Instrum Meas. 2020; 69: 4625–4636.

19. Yuhana UL, Fanani NZ, Yuniarno EM, Rochimah S, Koczy LT, Purnomo MH. Combining fuzzy signa-

ture and rough sets approach for predicting the minimum passing level of competency achievement. Int

J Artif Intell. 2020; 18: 237–249.

20. Riaz M, Hashmi MR. Linear Diophantine fuzzy set and its applications towards multi-attribute decision-

making problems. J Intell Fuzzy Syst. 2019; 37: 5417–5439.

21. Riaz M, Tehrim ST. Bipolar fuzzy soft mappings with application to bipolar disorders. Int J Fuzzy Syst.

2019; 12 1950080.

22. Hashmi MR, Riaz M, Smarandache F. m-polar neutrosophic topology with applications to multicriteria

decision-making in medical diagnosis and clustering analysis. Int J Fuzzy Syst. 2020; 22 273–292.

23. Hashmi MR, Riaz M, Smarandache F m-polar neutrosophic generalized weighted and m-polar neutro-

sophic generalized Einstein weighted aggregation operators to diagnose coronavirus (COVID-19). Int J

Fuzzy Syst. 2020; in press, https://doi.org/10.3233/JIFS-200761

24. Naeem K, Riaz M, Peng X, Afzal D. Pythagorean m-polar fuzzy topology with TOPSIS approach in

exploring most effectual method for curing from COVID-19. Int. J. Biomath. 2020; in press, https://doi.

org/10.1142/S1793524520500758

25. Bezdek JC. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press;

1981.

26. Krishnapuram R, Joshi A, Nasraoui O, Yi L. Low complexity fuzzy relational clustering algorithms for

web mining, IEEE Trans Fuzzy Syst. 2001; 9: 595–607.

PLOS ONE A study of longitudinal mobile health data through fuzzy clustering methods for functional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0242197 November 17, 2020 21 / 23

https://doi.org/10.1371/journal.pmed.1001363
http://www.ncbi.nlm.nih.gov/pubmed/23458994
https://doi.org/10.1056/NEJMhle1403384
http://www.ncbi.nlm.nih.gov/pubmed/25054722
https://doi.org/10.1111/all.13953
http://www.ncbi.nlm.nih.gov/pubmed/31230373
https://doi.org/10.2196/jmir.2152
http://www.ncbi.nlm.nih.gov/pubmed/22875563
https://doi.org/10.1186/1471-2288-13-43
http://www.ncbi.nlm.nih.gov/pubmed/23510439
https://doi.org/10.1002/sim.5989
http://www.ncbi.nlm.nih.gov/pubmed/24114808
https://doi.org/10.1002/bimj.201400251
http://www.ncbi.nlm.nih.gov/pubmed/27072888
https://doi.org/10.1177/0962280217712088
https://doi.org/10.1177/0962280217712088
http://www.ncbi.nlm.nih.gov/pubmed/28633602
https://doi.org/10.1002/bimj.201800228
http://www.ncbi.nlm.nih.gov/pubmed/30865334
https://doi.org/10.3233/JIFS-200761
https://doi.org/10.1142/S1793524520500758
https://doi.org/10.1142/S1793524520500758
https://doi.org/10.1371/journal.pone.0242197


27. MacQueen JB. Some methods for classification and analysis of multivariate observations. Proc. Fifth

Berkeley Symp Math Stat Probab. 1967; 1: 281–297.

28. Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken:

Wiley; 1990.

29. Demoly P, Bousquet J. The relation between asthma and allergic rhinitis. Lancet. 2006; 368: 711–713.

https://doi.org/10.1016/S0140-6736(06)69263-5 PMID: 16935669

30. Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic rhinitis and its

impact on asthma (ARIA) 2008. Allergy. 2008; 63: 8–160. https://doi.org/10.1111/j.1398-9995.2007.

01620.x PMID: 18331513

31. Clark J, Schall R. Assessment of combined symptom and medication scores for rhinoconjunctivitis

immunotherapy clinical trials. Allergy. 2007; 62: 1023–1028. https://doi.org/10.1111/j.1398-9995.2007.

01469.x PMID: 17686105

32. Pizzulli A, Perna S, Florack J, Pizzulli A, Giordani P, Tripodi S, et al. The impact of telemonitoring on

adherence to nasal corticosteroid treatment in children with seasonal allergic rhinoconjunctivitis. Clin

Exp Allergy. 2014; 44: 1246–1254. https://doi.org/10.1111/cea.12386 PMID: 25109375

33. De Boor C. A Practical Guide to Spline. New York: Springer; 2001.

34. Craven P, Wahba G. Smoothing noisy data with spline: estimating the correct degree of smoothing by

the method of Generalized Cross-Validation. Numer Math. 1979; 31: 377–403.

35. Jacques J, Preda C. Functional data clustering: A survey. Adv Data Anal Classif. 2014; 8: 231–255.

36. Abraham C, Cornillon PA, Matzner-Løber E, Molinari N. Unsupervised curve clustering using B-splines.

Scand J Stat. 2003; 30: 581–595.

37. Ignaccolo R, Ghigo S, Giovenali E (2008). Analysis of air quality monitoring networks by functional clus-

tering. Environmetrics. 2008; 19: 672–686.

38. Di Giuseppe E, Jona Lasinio G, Esposito S, Pasqui M. Functional clustering for Italian climate zones

identification. Theor Appl Climatol. 2013; 114: 39–54.

39. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci. 1984; 10:

191–203.

40. Pal NR, Bezdek JC. On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst. 1995; 3:

370–379.

41. Kroll A. On choosing the fuzziness parameter for identifying TS models with multidimensional member-

ship functions. J Artif Intell Soft Comput Res. 2011; 1: 283–300.

42. Campello RJGB, Hruschka ER. A fuzzy extension of the silhouette width criterion for cluster analysis,

Fuzzy Sets Syst. 2006; 157: 2858–2875.

43. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster Analysis. J

Comput Appl Math. 1987; 20: 53–65.

44. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna; 2020. http://www.R-project.org/.

45. Ramsay JO, Wickham H, Graves S, Hooker G. fda: Functional Data Analysis. R package version

2.4.8.1; 2020. URL: https://CRAN.R-project.org/package=fda

46. Ferraro MB., Giordani P, Serafini A. fclust: An R package for fuzzy clustering. R J. 2019; 11(1): 198–

210.

47. Florack J, Brighetti MA, Perna S, Pizzulli A, Pizzulli A, Tripodi S, et al. Comparison of six disease sever-

ity scores for allergic rhinitis against pollen counts a prospective analysis at population and individual

level. Pediatr Allergy Immunol. 2016; 27: 382–90. https://doi.org/10.1111/pai.12562 PMID: 26992008

48. Pfaar O, Demoly P, Gerth van Wijk R, Bonini S, Bousquet J, Canonica GW, et al. Recommendations for

the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunc-

tivitis: an EAACI position paper. Allergy. 2014; 69: 854–867. https://doi.org/10.1111/all.12383 PMID:

24761804

49. Pfaar O, Lang S, Pieper-Fürst U, Astvatsatourov A, Gerich F, Klimek L, et al. Ultra-short-course booster

is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis. Allergy. 2018; 73: 187–195.

https://doi.org/10.1111/all.13240 PMID: 28675499
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